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Abstract. Maximum a posteriori (MAP) in the scope of the Bayesian
framework is a common criterion used in a large number of estimation
and decision problems. In image reconstruction problems, typically, the
image to be estimated is modeled as a Markov Random Fields (MRF) de-
scribed by a Gibbs distribution. In this case, the Gibbs energy depends on
a multiplicative coefficient, called hyperparameter, that is usually manu-
ally tuned [13] in a trial and error basis.
In this paper we propose an automatic hyperparameter estimation method
designed in the scope of functional Magnetic Resonance Imaging (fMRI)
to identify activated brain areas based on Blood Oxygen Level Dependent
(BOLD) signal.
This problem is formulated as classical binary detection problem in a
Bayesian framework where the estimation and inference steps are joined
together. The prior terms, incorporating the a priori physiological knowl-
edge about the HRF, drift and spatial correlation across the brain (using
edge preserving priors), are automatically tuned with the new proposed
method.
Results on real and synthetic data are presented and compared against
the conventional General Linear Model (GLM) approach.
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1 Introduction

The detection of neuronal activation based on BOLD signals measured using
fMRI is one of the most popular brain mapping techniques.

The data are classically analysed using the Statistical Parametric Mapping
(SPM) technique [10, 9] where the General Linear Model (GLM) is used to de-
scribe the observations at each voxel and the corresponding coefficients are es-
timated by using the Least Square Method [13]. The detection of the activated
regions is performed from the estimated explanatory variables (EV’s) by us-
ing a second step of classical inference approach based on the Neyman-Pearson
theorem.

Still, Bayesian approaches have been gaining popularity since they provide
a formal method of incorporating prior knowledge in data analysis [5, 11]. In

⋆ This work was supported by project the FCT (ISR/IST plurianual funding) through
the PIDDAC Program funds.



2 D. Afonso and J. Sanches

[7], Groutte et al. propose a non-parametric approach where a Finite Impulse

Response (FIR) filter is used to describe the Hemodynamic Response Function
(HRF) and smoothing constraints are imposed at the solution by using a reg-
ularization matrix. Ciuciu et al. describe another non-parametric approach for
the Bayesian estimation of the HRF in [3]. The authors make use of temporal
prior terms to introduce physiological knowledge about the HRF. Basic and soft
constraints are incorporated in the analysis, namely the considerations that the
HRF starts and ends at zero and that the HRF is a smooth function. In [15]
the authors propose a Bayesian approach in which the data noise is estimated
using a spatio-temporal model and propose a half-cosine functions HRF model
based on their experimental findings. In Yet another Bayesian approach based
on the mathematical formalism of the GLM is proposed in [1]. The authors de-
scribe an SPM algorithm based on the maximum a posteriori (MAP) criterion
to jointly estimate and detect the activated brain areas characterized by binary
coefficients. The prior term introduced for these parameters comprises a bimodal
distribution defined as the sum of two Gaussian distributions centered at zero
and one.

In this paper we further improve this last method [1] by implementing an
automatic HyperParameter estimation method to automatically set the prior
strength in the Bayesian estimation, by constraining it to a probability density
function. Additionally, data drift estimation is incorporated and the spatial cor-
relation between neighbors is taken into account by using edge preserving priors
that promote piecewise constant region solutions. The optimization of the over-
all energy function with respect to the activation binary variables is performed
by using the graph-cuts (GC) based algorithm described in [2], which is com-
putationally efficient and is able to find out the global minimum of the energy
function.

2 Problem Formulation and Method

By making use of the problem formulation and variables defined in [1] we further
incorporate a slow time data drift variable (a.k.a. baseline) di of time dimension
N into the observation model, yielding eq. 1 at each ith voxel, when L stimuli
are applied simultaneously.

yi(n) =

zi(n)
︷ ︸︸ ︷

hi(m) ∗
L∑

k=1

βi(k)pk(n)

︸ ︷︷ ︸

xi(n)

+di(n) + ηi(n), (1)

where yi(n) is the N length observed BOLD signal at the ith voxel, hi(m) is
the M ≤ N dimensional HRF, and ηi(n) is noise signal. The activity unknowns
βi(k) ∈ {0, 1} are binary with βi(k) = 1 if the ith voxel is activated by the
kth pk(n) stimulus. ηi(n) ∼ N (0, σ2

y) is assumed Additive White Gaussian Noise
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(AWGN) which is an acceptable assumption mainly if a prewhitening prepro-
cessing [8] of the data is performed.

The maximum a posteriori (MAP) estimation of the unknown vectors bi, hi

and di is obtained, in matrix form, by minimizing the following energy function

E(yi,bi,hi,di) =

Data fidelity term
︷ ︸︸ ︷

Ey(yi,bi,hi,di)+

Prior terms
︷ ︸︸ ︷

Eh(hi) + Ed(di)

= − log(p(yi|hi,hi, ))− log(p(hi))− log(p(di)) (2)

where the prior terms incorporate the a priori knowledge [12] about the temporal
behavior of hi and di - the HRF (C1) starts and ends at 0; (C2) is smooth; (C3)
has similar magnitude to the HRF one gamma function (hc(t)) proposed in [4,
8]; and that the di is (C4) a slow varying signal with a smaller bandwidth than
the one of hi.

By the Hammersley-Clifford theorem [6] and Markov Random Fields theory,
these constraints may be imposed in the form of the following Gibbs distributions

p(hi) =
1

Zh

e−αU(hi) (3)

p(di) =
1

Zd

e−γU(di) (4)

where Zh and Zd are partition functions and the Gibbs energies U(hi) and U(di)
are designed in the following way, where [α, γ] are regularization parameters to
tune the degree of smoothness of the estimated vectors.

U(hi) =

C3
︷ ︸︸ ︷

wh(1)h(1)
2

︸ ︷︷ ︸

C1

+

C3
︷ ︸︸ ︷

wh(M)h(M)2
︸ ︷︷ ︸

C1

+

M−1∑

n=2

C3
︷ ︸︸ ︷

wh(n)





Discrete version of the 2nd derivative
︷ ︸︸ ︷

(hi(n + 1) − hi(n)) − (hi(n) − hi(n − 1))





2

︸ ︷︷ ︸

C2

(5)

U(di)i =

N∑

n=2






Discrete version of the 1st derivative
︷ ︸︸ ︷

di(n)− di(n− 1)






2

︸ ︷︷ ︸

C4

(6)

Here the weigh coefficients wh(n) = 1/(|hd(n)|+10−6)2, where the discrete version
of the HRF gamma function is hd(n) = hc(t)|t=n×TR, are used to compensate for the
reduced prior strength when the second derivatives are small.

Its can be shown that the overall energy eq. (2) is rewritten as follows

Ey =
1

2σ2
y

‖(Ψibi + di − yi)‖
2
2 + αhT

i H0Dhhi + γdT
i Dddi (7)

where H0 = diag{hd(n)} is a M ×M diagonal matrix containing the HRF. Dh and
Dd are M ×M and N × N second and first order difference matrix operators [13],
respectively. Ψi is a toeplitz L×N convolution matrix of bi and bi as defined in [1]
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3 Optimization

The MAP estimation of the unknown vectors bi, hi and di is obtained by minimizing
the energy function (7) with respect to each vector, one step at a time. bi is first
estimated with the drift initialized with the mean of the TC (d0

i = ȳ)i and h0
i equal

to hd(n) [4, 8].

3.1 Step One: b estimation

Its easily shown that the binary elements of b̂t
i = {β̂t

k,i} that leads to the minimization
of (7) are a simple binarization by thresholding (thrs = 0) of the following fields, in
matrix notation, where ψt−1

i (k) is the kth column of Ψt−1
i :

Bt
i(k) = −ψt−1

i (k)T
[
ψt−1

i (k) + 2(dt−1 − y)
]

(8)

To solve this huge combinatorial problem, a fast and computationally efficient
graph-cuts based algorithm [2] is used to binarize the fields Bt

r,l(k), defined in (8), at
each (r, l) pixel location in the data slice, by minimizing the following energy function:

Σ(βr,l(k),Br,l(k)) =

data fidelity term
︷ ︸︸ ︷
∑

r,l

Br,l(k)(1− βr,l(k))+ σ̂2
y

∑

r,l

[

V v
r,l(k) + V h

r,l(k)
]

/g̃r,l

︸ ︷︷ ︸

spatial regularization term

(9)

where σ̂2
y is the observed signal variance (var(y)); V v

r,l(k) and V h
r,l(k) are XOR

⊕ operators between βr,l(k) and its causal vertical βr,l+1(k) and horizontal βr+1,l(k)
neighbors, respectively; g̃r,l (10−2 ≤ g̃r,l ≤ 1) is the normalized (smoothed) filtered
gradient of B(k).

Non-uniform solutions to (9) have a higher cost due to the spatial regularization
term. However, in order to preserve transitions, the division by g̃r,l reduces this nun-
uniform cost at locations where the gradient magnitude is large.

3.2 Step Two: h estimation

A new estimative of ĥi is calculated by finding the null derivative point of (2) with
respect to h, yelding:

ĥi =
[

(Φt
i)

T
Φ

t
i + 2ασ2

yH0D
T
h

]
−1

(Φt
i)

T (yi − d
t−1
i ) (10)

where Φt
i is calculated with the current bt

i vector, estimated at the previous iteration
step 3.1. However, the HRF is only estimated in the case of voxel activation by at least
one paradigm, i.e., if ∃(r,l) : β̂r,l(k) > 0.

HyperParameter estimation In this method the regularization parameter α is
not constant but is automatically and adaptively estimated along the iterative process
as follows. Considering (5), we can rewrite eq. (3) as

p(hi) =
N∏

n

1

Zh

e−αw(n)δ(n)2

︸ ︷︷ ︸

p(δ)

(11)
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where δ2 is the 2nd derivative operator in (5). By assuming p(δ(n)) to be a probability
density function (of unitary area) and αw(n) = 1

2σ(n)2
we get

√
2πσ(n)2

Zh(n)

∫ + inf

− inf

1
√

2πσ(n)2
e

δ(n)2

2σ(n)2 dδ(n)

︸ ︷︷ ︸

=1

= 1 (12)

which implies that Zh(n) =
√

π
αw(n)

, hence the energy term of (2) with respect to h

can be rewritten as

Eh(hi) = − log(h) =
N

2
log π −

1

2

N∑

n

logw(n)−
N

2
logα+ α

N∑

n

w(n)δ(n)2 (13)

By finding the null derivative of (13) we obtain the automatic HyperParameter esti-
mation that is, in each iteration, dependent on the initialization and current estimate
of the HRF.

αt =
N

2U(h)
=

N
2

(ht−1
i )T (H0Dh)h

t−1
i

(14)

3.3 Step Three: d estimation

A new estimative of d̂i is calculated by finding the null derivative point of (2) with
respect to di, yelding:

d̂i =
[

I+ 2γσ2
yD

T
d

]
−1

(yi −Ψ
t
ib

t
i) (15)

where I is the identity matrix and Ψt
i is computed by using the current ĥt

i vector,
obtained in the previous iteration step.

Since γ is a regularization parameter associated with the drift signal, a much slower
frequency signal than HRF, then γ should be higher than α, i.e., γ ≫ α [14]. Here
γ = 100α.

4 Experimental Results

In this section tests with synthetic and real data are presented to illustrate the ap-
plication of the algorithm and evaluate its performance. The real data, acquired in
?????, were kindly provided by Profa. Patrcia Figueiredo from Institute for Systems
and Robotics at the Instituto Superior Técnico.

4.1 Synthetic Data

The synthetic data is based on the well known Shepp-Logan image phantom with
256 × 256 pixels. The paradigm was generated in a block-design basis with 4 epochs,
60 sec each (30 sec of activation and 30 sec of rest) with TR = 3 sec.

Making use of (1) for generating the yi observed data, a Monte Carlo experiment
with a total of 3, 276, 800 runs was performed with several different noise levels (see
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Fig. 1. Monte Carlo results for 50 runs on 256 × 256 pixels, for σ =
{0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5}. The mean and standard deviation
(error bars) values of Pe, as a function of σ, SNRdB and SNR, are presented on the
first, second and third columns, respectively. The results with and without GC are dis-
played on the top and middle rows, respectively, and the ratio [Pe(GC)/Pe(w/GC)] (σ
is displayed on the bottom row.

Fig. 1 captation). The resulting mean and standard deviation (error bars) values of
probability of error (Pe), as a function of σ, SNRdB and SNR, are presented in Fig.1.
The results with and without GC are shown, as well as the ratio Pe(GC)/Pe(w/GC).

These results demonstrate the activity detection robustness of the method, even
in highly noisy data. They also show that taking into account the spatial correlation
among neighboring voxels leads to a significant decrease in Pe. As expected, the im-
provement increases when the amount of noise increases or, equivalently, the SNR de-
creases. This is observed by the monotonic increasing behavior of the [Pe(GC)/Pe(w/GC)] (σ).

4.2 Real Data

Two volunteers with no history of psychiatric or neurological diseases participated in a
visual stimulation and a motor task fMRI experiment. Functional images were obtained
using echo-planar imaging (EPI) with TR/TE = 2000ms/50ms. Datasets were pre-
processed and analyzed using the FSL software (http://www.fmrib.ox.ac.uk/fsl) for:
motion correction; non-brain removal and mean-based intensity normalization. The
data used in the standard SPM-GLM analysis using FSL (not for the proposed SPM-
Drift-GC) was further pre-processed with spatial smoothing (Gaussian kernel, 5mm
FWHM) and high-pass temporal filtering (Gaussian-weighted least squares straight
line fitting, 50 sec cut-off).

For the FSL processing a GLM approach with local autocorrelation correction was
used on square stimulus functions convolved with the canonical Gamma HRF and it’s
first derivative [4, 8]. Linear stimulus/baseline contrast analysis and t-tests are applied
to obtain the SPM, followed by cluster thresholding by the Gaussian Random Fields
(GRF) theory. Since the results provided by this ”‘standard”’ method are depend on
the inference p-value and clustering Z -score threshold values used, our experienced
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experimentalist provided two results of SPM-GLM: a relatively strict result and a
more loose result, displayed on columns d) and e) of Fig. 2 respectively. The proposed
SPM-Drift-GC method results are displayed on columns a), b) and c) of Fig. 2

V isual activity detection Motor activity detection

Fig. 2. Activated regions obtained by the new SPM-Drift-GC (a-b-c) and standard
SPM-GLM (d-e) methods, on the visual (lef) and motor (right) real data, where each
row (1), 2), 3) and 4)) corresponds to a different stimulus. Left to right: a) Binary
SPM-Drift algorithm results without GraphCuts; b) Binary SPM-Drift-GC algorithm
results; c) Weighted SPM-Drift-GC algorithm results; d) SPM-GLM algorithm Strict
results; e) SPM-GLM algorithm Loose results. Activation intensity is color coded from
red (0) to yellow (1) and is overlaid on the EPI brain image with linearly decreasing
transparency from 100% (activity = 0) to 0% (activity ≥ 0.5).

In general, visual inspection of the activation brain maps suggests good agree-
ment between the methods, although the SPM-Drift-GC also detects some regions not
present in the strict results, but present, most of them, in the loose results. However,
in some brain slices, there are areas only detected as active by SPM-Drift-GC that
correspond to low energy estimated HRF’s (coded in transparent red) and somewhat
deviant shaped HRF’s from the rigid HRF restrictions of SPM-GLM.

5 Conclusions

In this paper, a new Bayesian parameter-free method to detect activated brain areas
in fMRI is proposed where thehyperparameters are automatically estimated from the
observations. Estimation and inference are joined together and the drift and HRF
estimation and iteratively estimated by taking into account the spatial correlation.

Monte Carlo tests with synthetic data are presented to characterize the performance
of the algorithm in terms of error probability. The introduction of the final step with
graph-cuts greatly improves the accuracy of the algorithm, yielding an error probability
that is close to zero even at the high noise levels observed in real data.
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Real data activation results are consistent with a standard GLM approach, and
most importantly, the activation clusters are best matched with the ones obtained at
a significance threshold validated by the specialist, but with the advantage that the
specification of user-defined subjective thresholds are not required. With the proposed
method it also becomes unnecessary to apply spatial smoothing an high-pass temporal
filtering as pre-processing steps, while accounting for important physiological properties
of the data by estimating the HRF.
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