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ABSTRACT

Maps of perfusion and Arterial Transit Time (ATT) can be
measured quantitatively using non-invasive Pulsed Arterial
Spin Labeling (PASL) techniques. This can be achieved
by fitting a kinetic model to magnetization difference data
images acquired at multiple inversion times (TI). Here, spa-
tial information is incorporated into a Bayesian estimation
method, based on amaximum a posteriori(MAP) criterion,
which also incorporatesa priori knowledge regarding the
model physiological parameters. Two types of spatial priors
were tested. Monte Carlo simulations showed reduced pa-
rameter estimation errors when including spatial information
using a Total Variation prior. Furthermore, the feasibility
of the method proposed here was demonstrated through the
application to empirical data.

Index Terms— PASL, MRI, spatial prior, Bayesian.

1. INTRODUCTION

Arterial Spin Labeling (ASL) magnetic resonance imaging
(MRI) techniques offer a non-invasive way of obtain perfu-
sion measurements which are potentially quantitative. They
consist on magnetically labeling the water molecules in the
blood and then measuring the magnetization of the tissues af-
ter a certain time interval, the inversion time (TI). The mag-
netization difference,∆M , between a labeled image and a
control image, as a function ofTI, can be described by a ki-
netic model [1]. Perfusion information can be estimated by
fitting the model to the data, acquired at multipleTI points.

In order to cope with the intrinsically low signal-to-noise
ratio (SNR) of PASL data, averaging over large regions-of-
interest (ROI) is often performed, yielding a single value for
each physiological parameter [2]. However, spatial maps of
the parameters are more informative from a clinical point
of view. Extraction of information regarding the parameters
can be accomplished with improved performance on a voxel-
by-voxel basis by using a Bayesian estimation method [3].
This procedure has the advantage of incorporating knowledge
about the physiological distributions of the parameters, help-
ing guide the estimation to a more consistent and realistic
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solution [4]. When working with maps of PASL data, the
spatial structure of the values of each parameter can also be
incorporated as additional information, describing the belief
that the value of the parameter in a voxel is correlated in
some way with that in its neighbors. Considering a Bayesian
approach, this spatial prior can be defined in different ways
[5][6]. For example, Groveset al implemented a combined
physiological and spatial Gaussian process and used the Eu-
clidean distance between voxels to describe the spatial prior
information [5]. Commonly used Euclidean distance pri-
ors are usually useful for images with slow transitions [7].
However, more drastic transitions in the parameter values
are expected to occur at the boarders between different tis-
sue types or arterial territories and also in discrete lesions
exhibiting pathological values of the parameters. In other
contexts, a Total Variation (TV) regularization [7][8] has
been used, which is an edge preserving prior and is therefore
more indicated in such cases.

In this work, we propose to investigate the performance
of a spatial prior in a Bayesian framework for the estimation
of perfusion and ATT maps based on themaximum a posteri-
ori (MAP) criterion. This Bayesian method accounts for the
amount of noise in the data and incorporatesa priori knowl-
edge of the physiological distributions of the multiple model
parameters. Here, we additionally introduce a spatial prior
taking into account the correlation between adjacent voxels
in the parameter maps. We test two different types of spa-
tial correlation, by considering a Total Variation (TV) regu-
larization [7][8] and a common squared Euclidean distance
between voxels. Both perfusion and ATT are estimated us-
ing both simulated and empirical data. With the simulated
data, the proposed estimation approach is compared with a
Bayesian method that does not account for the spatial regu-
larization. In empirical data, we show the applicability ofthe
method in the estimation of perfusion and ATT maps with real
PASL data.

2. PROBLEM FORMULATION

Let us consider the following Additive White Gaussian Noise
(AWGN) observation model,

yv(tp) = ∆M(tp,θv) + η , (1)

where yv(tp) is the observation at instanttp and voxel
v, ∆M(tp,θv) is the magnetization difference andη ∼



N (0, σ2

y) is the noise with varianceσ2

y (independent in time
and space).

Here, we use a two-compartment kinetic model that de-
scribes∆M as a function of the model parameters of interest
θ = [f,∆t], wheref is the perfusion and∆t is the arterial
transit time (ATT) [9].

The MAP criterion for model parameter estimation can be
formulated as the following optimzation task

θ̂ = arg min
θ

E(y, t,θ) , (2)

where the energy functionE(y, t,θ) is given by

E(y, t,θ) = − log [p(y|t,θ)p(θ)] . (3)

The distribution functionp(y|t,θ) models the acquisi-
tion process and the observations are assumed to be sta-
tistically independent along time and space. The distri-
bution functionp(θ) represents the a priori knowledge of
the parameters to be estimated. Here, both physiological
and spatial priors are considered. The parametersθ are
defined with a multivariate Normal distributionN (θ,C),
whereC = diag({σ2

1
, σ2

2
, ..., σ2

K.V }) is a diagonal covari-
ance matrix (K is the number of unknown parameters). The
uncertainty associated with the parameters is assumed to be
known.

The energy function (3) can be rewritten as the sum of
three distinct terms,

E(y, t,θ) = EY (y, t,θ) + EP (θ) + ES(θ) . (4)

The first is called thedata fidelity termand is given by the
posterior function,− log[p(y|t,θ)], which can be written as

EY (y, t,θ) =
1

2

∑

v

1

σy
2

v

∑

p

(yp,v − ∆Mp,v(tp,θv))
2

,

(5)
The second and the third terms describe the prior physi-

ological and spatial knowledge of the parameters (see Figure
1). Thephysiological prior termis given by

EP (θ) =
1

2

∑

v

∑

k

(

θk,v − θ0k,v

)2

σ2

k,v

. (6)

The first type ofspatial prior term considered is the
quadratic form of the euclidean distance (QFED) between the
parameter values in neighboring voxels

ES(θ) =
1

2

∑

v

∑

k

βk,v

∑

n

(θk,v − θk,v,n)
2

, (7)

where βk,v is a normalization spatial prior parameter and
θk,v,n is the value of the parameterk of voxel v, in n

horizontal and vertical adjacent neighbors. We consider
n = 1, 2, 3, 4, known as four-element neighborhood [7].

Fig. 1. Illustration of the the physiological prior (EP ), given
by a constant value, and the spatial prior (ES) obtained using
a four-element neighborhood.

The second type ofspatial prior termconsidered is a TV
prior described by the energy function

ES(θ) =
1

2

∑

v

∑

k

βk,v

√

∑

n

(θk,v − θk,v,n)
2

. (8)

The complexity and the computational cost of determin-
ing the first and second derivatives required for the task
of optimizing the energy function (8) are extremely high.
Therefore, a variation of the TV method, called Iteratively
Reweighted Norm (IRN) [10], is used. The IRN approach
consists of an iterative process whereby, at each iteration,
a weighted form of the QFED is taken as the spatial prior
energy function. An automatic hyper-parameter is also con-
sidered to guarantee the correct imposition on the strengthof
the spatial prior.

In the estimation procedure, the optimization is accom-
plished by the Levenberg-Marquardt algorithm. Both the Ja-
cobian and Hessian matrix are determined at each iteration of
the algorithm which allows the determination of the parame-
ters simultaneously on all voxels.

3. EXPERIMENTAL RESULTS

Here, results with synthetic and real data are presented.

Monte Carlo Simulations
To test the performance of our proposed method, Monte

Carlo simulations were performed. A 2D test object with a
realistic brain mask of 700 voxels was considered: a segmen-
tation into gray matter and white matter was considered for
the perfusion maps and three arterial territories (anterior, me-
dial and posterior) were considered for the ATT maps. For
each condition tested, 15 synthetic datasets were generated at
each voxel, yielding a total of 10500 runs.

Noise was added as a fraction of the maximum signal gen-
erated by the mean values of the parameters of all voxels:

σY = γ × max[∆M(t,θ0)] . (9)

and three different levels of noise were considered (γ = 10,
100 and 150%).

For the estimation of the model parameters, three different
types of prior information were used: i) physiological prior
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Fig. 2. Normalized mean square errors off (top) and∆t

(bottom) estimation (mean± SE), for 3 levels of noise and 3
different estimation methods.
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Fig. 3. Maps of estimated parametersf (top) and∆t (bottom)
obtained using the 3 types of priors in one synthetic dataset,
with 100% noise level. The true maps of the parameters are
shown on the first column.

only; ii) physiological and spatial QFED prior; and iii) phys-
iological and spatial TV regularization prior.

In Figure 2, the mean values of the normalized mean
square errors (MSE) obtained in the estimation of both per-
fusion and ATT are shown, for the three levels of noise and
the three types of priors tested. For the estimation off , the
TV spatial prior always provided the most accurate results,
both compared with using the QFED spatial prior or the
physiological prior only. The benefit of using the TV in the
estimation of the perfusion in the white matter was particu-
larly important, since this region typically exhibits critically
low SNR. In general, the use of a spatial prior yielded reduced
errors relative to using physiological information only inthe
estimation of∆t, and the TV prior was advantageous relative
to the QFED prior. The only exception was the posterior
region, which exhibits extremely long transit times and hence
relatively poorer SNR.

An example of the perfusion and ATT maps obtained with
one synthetic dataset with100% noise level, using the three
different types of priors, is shown in Figure 3. The ATT maps
are clearly less noisy when obtained with the TV prior in com-
parison with the other two priors. On the other hand, looking

at the perfusion maps, we observe that the TV does not have
a strong effect in their visual aspect relative to the maps ob-
tained with the physiological prior only. Moreover, we ob-
serve very smooth maps when obtained with the QFED prior
relative to when they were obtained with the other two pri-
ors, probably because the relatively abrubt transition between
gray and white matter is not well suported by the QFED prior.

Real Data
In order to demonstrate the applicability of the proposed

Bayesian method, the maps of the physiological parameters
perfusion and ATT were estimated from real multi-inversion
time PASL data. The PASL data was collected from seven
healthy volunteers on a 3T Siemens system. The acquisition
slab contained nine contiguous axial slices, positioned par-
allel to the AC-PC line, with a resolution of3.5 × 3.5 ×
5.0mm3. The magnetization difference (tag-control pairs)
was sampled at a uniform set of inversion time points in the
interval [0.2; 2.4]s, in steps of 2s, with 8 repetitions for each
inversion time (total of 96 points). For each∆M map, the
noise was measured as the standard deviation of data inside a
background region with a reasonable number of voxels.

The estimated maps of perfusion and ATT obtained with
the three types of priors are presented in Figures 4 and 5, re-
spectively. In general, all the estimation methods used were
able to identify the expected brain regions on the perfusion
and ATT maps. However, the absence of a spatial prior in
the estimation procedure produced noisier maps than in the
other two cases, which may impair a clear identification of
the relevant regions. As expected from the simulated data, the
perfusion maps estimated using the QFED based prior were
smoother than the maps obtained with the physiological prior
only and the TV based prior.

4. CONCLUSIONS

In this work, a Bayesian framework was implemented in or-
der to obtain quantitative brain maps of perfusion and arterial
transit time from a time series of label-control image pairsof
PASL data. In order to improve the parameter estimation from
a kinetic model, spatial prior information was incorporated in
addition to physiological prior information, and two different
types of spatial priors were compared.

Monte Carlo simulations showed that using a Total Varia-
tion based spatial prior generally produces more accurate re-
sults than a Euclidean distance based spatial prior or the use
of no spatial information. The proposed method was also ap-
plied to empirical PASL data to show the applicability of the
algorithm. The results showed a good performance of the spa-
tial prior in the identification of the expected perfusion and
arterial brain regions.

In this work, the prior map of the parameter∆t was con-
sidered to be homogeneous for all the voxels at each slice.
In order to improve the estimation of the ATT maps, a priori
knowledge of the arterial regions in the brain could be incor-
porated into the spatial prior.



Fig. 4. Maps of estimated
parameter f (s−1) for 4
brain slices of subject 3, ob-
tained with using the 3 types
of priors tested: physiolog-
ical prior only (top), QFED
based prior (medial) and TV
based prior (bottom).

Fig. 5. Maps of estimated
parameter∆t (s) for 4 brain
slices of subject 3, obtained
with using the 3 types of
priors tested: physiologi-
cal prior only (top), QFED
based prior (medial) and TV
based prior (bottom).
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