
ULTRASONOGRAPHIC PLAQUE CHARACTERIZATION
USING A RAYLEIGH MIXTURE MODEL

José Seabra∗, João Sanches

Institute for Systems and Robotics
Instituto Superior Técnico
1049-001 Lisboa, Portugal

Franscesco Ciompi, Petia Radeva

Computer Vision Center
08193 Bellaterra (Barcelona), Spain

ABSTRACT

A correct modelling of tissue morphology is determinant for
the identification of vulnerable plaques. This paper aims at
describing the plaque composition by means of a Rayleigh
Mixture Model applied to ultrasonic data. The effectiveness
of using a mixture of distributions is established through
synthetic and real ultrasonic data samples. Furthermore,
the proposed mixture model is used in a plaque classifica-
tion problem in Intravascular Ultrasound (IVUS) images of
coronary plaques. A classifier tested on a set of 67 in-vitro
plaques, yields an overall accuracy of 86% and sensitivity of
92%, 94% and 82%, for fibrotic, calcified and lipidic tissues,
respectively. These results strongly suggest that different
plaques types can be distinguished by means of the coeffi-
cients and Rayleigh parameters of the mixture distribution.

Index Terms— Plaque Composition, Rayleigh Mixture
Model, Intravascular Ultrasound

1. INTRODUCTION
Vulnerable plaques are defined as lesions presenting high risk
of rupture, possibly leading to brain stroke or heart attack. It
is important to objectively characterize the plaque morphol-
ogy to identify these kind of lesions. Intravascular ultrasound
(IVUS) is an imaging technique which allows to clearly as-
sess the arterial wall internal morphology.

Appearance-based methods [1] were pursued to qualita-
tively characterize plaque morphology as soft (echolucent),
fibrous (intermediate echogenicity), mixed (several acoustical
subtypes) and calcified (strongly echogenic). Given the high
variability in the appearance of tissues, the IVUS imaging pa-
rameters are often changed to improve visualization, turning
the application of appearance-based methods into a challeng-
ing task. Hence, recent studies on plaque composition per-
form analysis on the raw Radio Frequency (RF) signals [2].
In this paper we use an objective and reproducible method for
image reconstruction and tissue assessment from the RF data,
avoiding machine- and operator- dependent settings [3].

∗This work was supported by Fundação para a Ciência e a Tecnologia
(ISR/IST plurianual funding) through the POS Conhecimento Program which
includes FEDER funds.

tissue sample 

Mixture of 
Rayleigh
Distributions 

Single
Rayleigh

Distribution 

Fig. 1. Tissue acoustic model, where different scattering phe-
nomena may occur.

It is well established that under particular conditions
[4], pixel observations in ultrasound images can be mod-
elled by Rayleigh statistics, while deviations to the so-called
fully developed speckle are better described by other more
complex distributions [5]. Since plaque morphology may
present different types of components and spatial organiza-
tion/complexity, the use of such statistical models may be
valid but not sufficient. In this paper we propose to use a
mixture of Rayleigh distributions, designated as Rayleigh
Mixture Model, for a complete description of plaque mor-
phology. This model associates the mathematical easiness
of using the Rayleigh model with the robustness of using a
mixture of distributions.

2. METHODS

2.1. Tissue Acoustic Model

In medical ultrasound, a transmitted pulse interacts with a cer-
tain anatomical region, providing information about inner tis-
sue structures. Here, we hypothesize that the morphology of
a scanned tissue sample results from different scattering phe-
nomena, as depicted in Fig. 1. The backscattered signal is
thus dependent on the number of scatterers as well as their
size. As pointed out in [4] these features can be considered as
histological descriptors of tissues.
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Fig. 2. Rayleigh pdfs, created with 102 < σ2 < 103 (from
darker to lighter curves.)

2.2. Rayleigh Mixture Model (RMM)
In this section we formulate the RMM and describe the es-
timation method which provides the mixture coefficients
(weights) and the Rayleigh parameters associated with each
mixture component (distribution).

We define Y = {yi} as a set of pixel intensities obtained
from a region of interest, specifically a plaque, taken from
an ultrasound image. Pixel intensities are considered random
variables which are described by the following mixture of L
distributions:

p(yi|Ψ) =
L∑

j=1

θjpj(yi|σj), (1)

where

pj(yi|σj) =
yi

σ2
j

e
− y2

i
2σ2

j (2)

is the Rayleigh probability density function (pdf) parameter-
ized by σj . The effect of changing σ in the shape of the distri-
bution and thus in the image intensity is illustrated in Fig. 2.
In (1), Ψ = (θ1, ..., θL, σ1, ..., σL) are the parameters to be
estimated, accounting for the weights θj and the Rayleigh pa-
rameters σj of each mixture component. In this case, the con-
dition

∑L
j=1 θj = 1 must hold to guarantee that p(yi|Ψ) is

a true distribution function. The Rayleigh parameters σj as-
sociated with yi, characterize the acoustic properties of the
tissue at the ith location. The joint distribution of the pixels,
considered independent and identically distributed (i.i.d), is
given by:

p(Y|Ψ) =
N∏
i

p(yi|Ψ). (3)

The goal is to estimate Ψ by maximizing the likelihood
function such that:

Ψ̂ML = arg max
Ψ

L(Y,Ψ), (4)

where

L(Y,Ψ)=log p(Y|Ψ)=
N∑

i=1

log

⎛
⎝ L∑

j=1

θjpj(yi|σj)

⎞
⎠. (5)

The maximization of (5) is a difficult task because it con-
sists of a logarithmic function of a sum of terms. To over-
come this difficulty the Expectation-Maximization (EM) [6]
method is used where a set of hidden variables are introduced,
K = {ki} where ki ∈ {1, ..., L}. The value of ki = j in-
forms us about the mixture component j that generated the
ith observation, yi, with probability pki

(yi|σki
) defined in

(2). Each nth iteration of the EM method is composed of
two steps:

• E step: where the expectation of the new likelihood
function, L(Y,K,Ψ), is computed with respect to K,

Q(Y,Ψn,Ψ) = EK [L(Y,K(Ψn),Ψ)] (6)

and

• M step: where a new estimate of Ψ, Ψn+1, is obtained
by maximizing the function Q,

Ψn+1 = arg max
Ψ

Q(Y,Ψn,Ψ). (7)

These two steps alternate until convergence is achieved. The
new likelihood function is

L(Y,K,Ψ) = log p(Y,K|Ψ)=
N∑

i=1

log p(yi, ki|Ψ)

=
N∑

i=1

log pki
(yi|σki

) + log p(ki|σki
)︸ ︷︷ ︸

θki

(8)

where pki
(yi|σki

)|ki=j , defined in (2), is the kth
i component

of the RMM and θki
is the mixture coefficient associated with

the kth
i component. The maximization of (8) is impossible

because the hidden variables K are not known. Therefore,
the expectation with respect to K is computed as follows:

Q(Ψ, Ψ̂) = EK

[
L(Y,K,Ψ)|Y, Ψ̂

]

=
N∑

i=1

Eki
[log pki

(yi|σki
) + log p(ki|σki

)]

=
N∑

i=1

L∑
j=1

γi,j [log pj(yi|σj) + log θj ], (9)

where Ψ̂ = (θ̂1, ..., θ̂L, σ̂1, ..., σ̂L) is the previous estimation
of the parameters and γi,j is the distribution of the unobserved
variables which is defined as follows:

γi,j =p(ki = j|yi, Ψ̂) =
pj(yi|σ̂j)p(ki = j)

p(yi|Ψ̂)
. (10)

In (10), pj(yi|σ̂j) is computed by using (2), p(ki = j) = θ̂j

and, by definition, p(yi|Ψ̂) =
∑L

j=1 pj(yi|σ̂j). The likeli-
hood function (9) can be rewritten by separating the terms
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which depend exclusively on θj and σj , and considering (2)
resulting in:

Q(Ψ,Ψ̂)=
N∑

i=1

L∑
j=1

γi,j log(θj)+
N∑

i=1

L∑
j=1

γi,j

[
log(

yi

σj
)− y2

i

2σj

]
. (11)

To estimate θj , we introduce the Lagrange multiplier λ to
solve the following equation:

∂

∂θj

⎡
⎣ N∑

i=1

L∑
j=1

γi,j log(θj) + λ(
∑

j

θj − 1)

⎤
⎦ = 0, (12)

resulting in: 1
θj

∑N
i=1 γi,j = −λ. If we sum both sides over

j, we get that
∑L

j=1 λi,j = N and λ = −N , finally yielding:

θ̂j =
1
N

N∑
i=1

γi,j . (13)

The Rayleigh parameter of each mixture component, σj , is
computed by finding the stationary point of Q with respect to
Σ, ∇ΣQ = 0 such that:

∂

∂σj

⎡
⎣ N∑

i=1

L∑
j=1

γi,j

(
log(

yi

σj
) − y2

i

2σj

)⎤
⎦ = 0, (14)

which is easily solved for σj to obtain:

σ̂j =
∑N

i=1 γij

y2
i

2∑N
i=1 γi,j

=
1
N

N∑
i=1

γi,j
y2

i

2
. (15)

The EM algorithm is initialized with uniformly weighted
coefficients Θ = (θj) = 1

L while the mixture parameters
are assigned with the Maximum Likelihood (ML) estimator,

σ̂ML =
∑N

i=1
y2

i

2 , such that Σ = {σj} = σ̂ML. The initial
choice of components was set arbitrarily to L = 10; however,
when |σi − σj | < ε = 1 with (i �= j) = {1, ..., L}, then
σi = σi+σj

2 and θi = θi + θj , while σj and θj are padded to
zero. This constraint assures stability of the RMM, particu-
larly, for modelling plaque morphology. Our experiments led
us to the value L = 3 as being a sufficient input value for
the RMM algorithm. Thus, after applying the RMM we get a
7-length feature vector which includes 3 mixture coefficients,
3 Rayleigh parameters and the value M which corresponds to
the number of non-zero (effective) mixture components.

3. EXPERIMENTAL RESULTS

3.1. Synthetic Ultrasonic Sample
The adequacy of the RMM algorithm to model tissue mor-
phology is first tested using an ultrasonic phantom. The syn-
thetic image consists of one large ellipse with a background
intensity (Rayleigh parameter) containing three smaller el-
lipses featuring two different intensities. Details of region
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Fig. 3. (a) Phantom image. (b) Pdfs obtained with RMM and
ML, overlapped with phantom histogram.

Table 1. RMM estimation results with synthetic image
RMM Components Phantom Estimated

1 100.0 100.8
Rayleigh parameters 2 20.0 21.3

3 350.0 357.0

1 0.59 0.60
Mixture weights 2 0.27 0.26

3 0.14 0.14

intensities and corresponding proportions (weights) are pre-
sented in Table 1. The noisy ultrasonic image (Fig. 3(a)), Y,
is built from the phantom by a convolutional approach, as-
suming the imaging system has a linear, space-invariant point
spread function and a linear transducer according to [7].

This phantom is modelled using the described RMM and
the ML estimator of the Rayleigh parameter σ̂, assuming the
traditional single Rayleigh distribution model, according to

σ̂ =
√

1
2nm

∑n,m
i,j=1 y2

i,j where the pixels are considered i.i.d.

random variables with Rayleigh distribution. In Fig. 3(b) the
phantom data histogram is depicted together with the mix-
ture pdf obtained with the RMM and the ML estimated single
Rayleigh pdf. It is evident that a single distribution is not
able to correctly describe the whole tissue sample. On the
other hand, the RMM is able to model the entire tissue sam-
ple, providing correct estimates of the coefficients θk and σk,
as shown in Table 1.

3.2. Plaque Composition
The characterization of plaque composition is based on an
in-vitro IVUS study of plaques obtained from post-mortem
human coronary arteries by a Galaxy II IVUS Imaging Sys-
tem (Boston Scientific) with a catheter Atlantis SR Pro 40
MHz (Boston Scientific). For each artery, RF data is acquired
at different cross-sections, and then processed according to a
rigorous reconstruction protocol [3] to obtain images corre-
sponding to the envelope of the RF data in cartesian coordi-
nates (Fig. 4(a)). It is worth to note that, for what concerns the
image properties, these processing operations do not change
the statistical properties of the data, specifically, the ability
to be modelled with Rayleigh pdfs. In-vitro data was sam-
pled from 8 coronary specimens, resulting in 45 IVUS im-
ages. Plaques were labelled by an expert interventionist and a
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Fig. 4. (a) IVUS image containing 3 distinct labelled plaques.
(b-d) Mixture pdfs estimated with RMM.

Table 2. Mean values of Rayleigh parameters and Mixture
coefficients estimated with RMM applied for the dataset of
67 plaques

RMM Components lipidic fibrotic calcified

1 188 140 318
Rayleigh parameters 2 410 275 1171

3 - 555 3390

1 0.82 0.51 0.33
Mixture coefficients 2 0.18 0.39 0.46

3 - 0.10 0.21

pathologist, according to histology, resulting in 24 fibrotic, 12
lipidic and 31 calcified plaques (example in Fig.4a). We first
investigate how the RMM behaves for different tissue types.
Hence, we consider an IVUS example containing three dif-
ferent tissue types. It is observed in Fig. 4(b)-Fig. 4(d) that
the RMM is a robust ultrasonic modelling method since it de-
scribes correctly each tissue type. Additionally, the applica-
tion of the RMM to our dataset determines its usefulness for
plaque characterization because it provides specific outcomes
according to each tissue type (Table 2).

The estimated RMM parameters are used as discrimi-
native features in a multi-class characterization framework,
where the Error Correcting Output Code (ECOC) technique
[8] is employed together with the AdaBoost classifier [9].
The classifier performance is assessed by means of the
Leave-One-Patient-Out (LOPO) [3] cross-validation tech-
nique, where the training set, containing 7 RMM features per
plaque (3 mixture coefficients, 3 Rayleigh parameters and
the number of effective mixture components) is built taking
at each time all in-vitro cases, except one, used as test. The
RMM estimation for each plaque is performed by consid-
ering all the pixels enclosed in it. Classification results are

Table 3. Performance results. Sensitivity: S =
TP

TP+FN , Specificity K = TN
TN+FP , global Accuracy A =

TP+TN
TP+TN+FP+FN , where TP = true positive, TN = true nega-
tive, FP = false positive and FN = false negative

LOPO Sfib Scal Slip A

median 65.00 (39.09) 81.53 (20.34) 44.00 (37.82) 66.30 (15.92)
ML 41.67 (46.85) 0.00 (0.00) 90.42 (15.84) 44.17 (36.28)

RMM 91.67 (13.94) 93.75 (15.30) 82.00 (24.90) 85.56 (18.85)

presented in Table 3. It becomes clear that the application of
RMM outperforms the classification results obtained using
solely the ML Rayleigh parameter or the median intensity.
Regarding the classification obtained with RMM, it is ob-
served that lipidic plaques are well described by 2 mixture
components, while calcified and fibrotic plaques are modelled
by 3 components, with difference in the range of estimated
Rayleigh parameters (Table 2).

4. CONCLUSIONS

This paper presented an algorithm based on mixture of
Rayleigh distributions to model and characterize the tissue
morphology in ultrasonic data. The application of the RMM
in both synthetic and real data demonstrates the adequacy
of a mixture of distributions to model ultrasonic data. The
usefulness of RMM features for tissue characterization was
established through a practical plaque characterization prob-
lem in IVUS, with high classification scores being achieved.
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