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ABSTRACT

Pulsed Arterial Spin Labeling (PASL) techniques potentially
allow the absolute, non-invasive quantification of brain per-
fusion using Magnetic Resonance Imaging (MRI). This can
be achieved by fitting a kinetic model to the data acquired at
a number of inversion times (TI). Some model parameters
such as the arterial transit time need to be estimated together
with perfusion, while others are usually assumed to be known.
The accuracy of the model estimation strongly depends on
the distribution of the TI sampling points. Here, we propose
a Bayesian framework for PASL perfusion estimation based
on the Fisher information criterion, whereby the optimal sam-
pling points can be determined taking into account the uncer-
tainty of the model parameters as well as the amount of noise
in the data. We show that the optimal sampling strategy for
PASL depends on the a priori knowledge of the model param-
eters and this should therefore be taken into account.

Index Terms— ASL, MRI, perfusion, Bayesian, Fisher.

1. INTRODUCTION

Perfusion describes the distribution of nutrients to the tissues
by blood flow through the capillary bed and is defined as vol-
ume of blood per unit time and per unit volume of tissue. Ar-
terial spin labeling (ASL) magnetic resonance imaging (MRI)
techniques offer a non-invasive way of generating perfusion
images that are potentially quantitative [1]. They consist on
magnetically labeling the water molecules in the blood and
then measuring the magnetization of the tissues after a cer-
tain time interval, the inversion time (TI). The magnetization
difference ΔM as a function of TI in pulsed ASL (PASL)
can be described by a standard kinetic model [2], illustrated
in Fig.1 and defined in equation (1) where A is a constant and
the vector Θ = {f,Δt, τ, r1b, k} contains the parameters per-
fusion, f , arterial transit time, Δt, bolus time width, τ , blood
relaxation rate, r1b, and a constant related with the tissue re-
laxation rate, k.
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In principle, the magnetization collected at a single TI

point is sufficient to obtain a perfusion estimate, provided that
the values of the other model parameters are available or can
be assumed. However, this is not always the case, particu-
larly regarding the arterial transit time, which is often delayed
in pathological conditions such as cerebrovascular disease.
In these cases, it would be possible to estimate perfusion,
as well as other unknown parameters, by fitting the PASL
model to ΔM data collected at multiple TI points [3]. How-
ever, the intrinsically low signal to noise ratio (SNR) of ASL
measurements usually requires substantial signal averaging,
which could result in undesirably long scanning times. On the
other hand, the accuracy of the estimated parameters strongly
depends on the distribution of the TI sampling points. A ju-
dicious choice of the sampling points is therefore crucial in
order to minimize scanning time, while optimizing estima-
tion accuracy. Optimal sampling strategies have previously
been designed based on the Fisher information matrix opti-
mality criterion for the simultaneous estimation of perfusion,
f , and the arterial transit time, Δt [4]. However, the uncer-
tainly associated with the remaining model parameters was
not take into account. Here, we propose a Bayesian frame-
work for PASL perfusion estimation based on the maximum
a posteriori (MAP) criterion, whereby the optimal sampling
points can be determined taking into account the uncertainty
of the model parameters as well as the amount of noise in the
data.

2. PROBLEM FORMULATION

Let us consider the unknown function, F (t,Θ), where Θ is a
vector of unknown parameters to be estimated from a set ofN
observations y = {yi} taken at the N instants, t = {ti}. The
goal is to choose the N optimal time points that maximize the
accuracy of the Θ estimate by reducing the variance of the
estimator.

Let us consider the following observation model

yi = F (ti,Θ) + η (2)

where an Additive White Gaussian Noise (AWGN) model
is adopted which means p(η) ∼ N (0, σ2

y). Therefore,
p(yi|ti,Θ) = N (F (ti,Θ), σ2

y) where σy is the standard
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Fig. 1. PASL signal ΔM as a function of the inversion time
TI , according to a standard kinetic model.

deviation of the noise. The estimation of the vector Θ by
using the maximum a posteriori (MAP) [5] criterion may be
formulated as the following optimization task:

Θ̂ = argmin
Θ

E(y, t,Θ) (3)

where the energy function to be minimized is

E(y, t, θ) = − log [p(y|t,Θ)p(Θ)] (4)

The distribution function p(y|t,Θ) models the acqui-
sition process and p(Θ) incorporates the a priori knowl-
edge about the parameters to be estimated. Assuming
statistical independence of the observations p(y|t,Θ) =∏N

i=1 p(yi|ti,Θ). Here, the P elements of the vector Θ =
{θ1, θ2, ..., θP } are assumed independent and Gaussian dis-
tributed with distribution θi ∼ N(θ0i, σ

2
i ). The values

{θ0i, σi} reflect the a priori knowledge about the model
parameters to be estimated obtained, e.g., from experimental
data. In particular, the standard deviation σi accounts for
the uncertainty about θi. Therefore, the distribution of Θ is a
multivariate Gaussian distribution, p(Θ) = N (Θ0,C), where
C = diag({σ2

1 , σ
2
2 , ...σ

2
P }) is a diagonal covariance matrix.

The energy function (4) may be written as follows:

E(y, t,Θ) =
1

2σ2
y

N∑
i=1

(F (ti,Θ)− yi)
2

︸ ︷︷ ︸
Data fidelity term

+
1

2

P∑
i=1

(θi − θ0i)
2

σ2
i︸ ︷︷ ︸

Prior term

. (5)

The estimation of the model parameters Θ may be ob-
tained by computing the stationary point of E(y, t,Θ) with

respect to Θ,

∇ΘE(y, t,Θ) = 0, (6)

which is equivalent to the following set of equations:

∂E(y, t,Θ)

∂θk
=

N∑
i=1

[
(F (ti,Θ)− yi)

∂F (ti,Θ)

∂θk

]

+
σ2
y

σ2
k

(θk − θ0k) = 0 (7)

where 1 ≤ k ≤ P .

3. OPTIMAL SAMPLING STRATEGY

The N optimal sampling time points t = {ti} to estimate Θ
depend on the function F (t,Θ) and on the distribution of the
parameters, p(Θ). They are optimal, according the minimum
variance of the estimator for a given vector of parametersΘ, if
the determinant of the Fisher Information matrix [6], is max-
imum:

t∗(Θ) = argmax
t

J (t,Θ) (8)

where J (t,Θ) = |Hkr(Θ)|.
The elements of the Fisher Information matrix are defined

as follows:

Hkr = EY

[
∂2 log p(Y,Θ)

∂θk∂θr

]
, (9)

where EY() is the expectation with respect to the multivariate
random variable Y. These elements, according with (5), are:

Hkr(Θ) =
1

σ2
y

N∑
i=1

[
∂F (ti,Θ)

∂θk

∂F (ti,Θ)

∂θr

]
+

1

σ2
k

δk,r. (10)

The analytical solution of (8) is usually difficult mainly
due to the complexity and non-continuity of the derivatives
of F (t,Θ). Here, the set of optimum time points is deter-
mined on an incremental basis, whereby each time point is
computed at a time, as a function of the previously computed
time points, and added to these.

Let us consider the cost function Jn(t, tn−1,Θ) where
tn−1 = {t1, t2, ..., tn−1} are the first n − 1 optimum time
points estimated up to the (n − 1)th iteration. The nth op-
timum time point, tn, is obtained by solving the following
optimization problem:

tn(Θ) = argmax
t

Jn(t, tn−1,Θ) (11)
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where Jn(t, tn−1,Θ) is the determinant of the matrix with
elements

Hk,r(t, tn−1,Θ) = Hk,r(tn−1, tn−2,Θ)

+
1

σ2
y

∂F (t,Θ)

∂θk

∂F (t,Θ)

∂θr
(12)

where

Hk,r(tn−1, tn−2,Θ) =
1

σ2
y

n−1∑
i=1

[
∂F (ti,Θ)

∂θk

∂F (ti,Θ)

∂θr

]

+
1

σ2
k

δk,r (13)

was incrementally estimated in the previous n− 1 steps.
Equations (11), (12) and (13) describe an incremental pro-

cedure to compute the N optimum time points where in each
iteration a 1D cost function is maximized.

The set of points obtained from (8), or equivalently from
the incremental approach (11), depends on the value of the
parameter vector Θ which is not known but for which there is
a prior knowledge incorporated in p(Θ).

Here, the following strategy is proposed for the identifica-
tion of the set of optimal sampling time points for ASL model
estimation:

1. Sample the prior distribution p(Θ) to obtain a vector of
parameters Θi.

2. Use equation (8) to obtain a collection of M optimal
time points, Ti, for the parameter value Θi.

3. Add the resulting time point distribution, Ti, to a run-
ning histogram of optimal time points, h(t,T).

4. Repeat steps 1) to 3) to cover the full distribution p(Θ).

5. Compute the cumulative curve from the final histogram
to extract the required N optimal points by partitioning
the area under the final histogram in N interval with the
same area .

In general terms, the cumulative curves, e.g. Fig.2 and
Fig.3, give the optimal density of the N desired sampling
points that should be used to maximize J (t,Θ). In fact, as
shown in these figures, if N samples are decided to be ac-
quired, its optimal distribution is not uniform, as expected,
but following a different distribution.

4. EXPERIMENTAL RESULTS

Sets of optimal TI sampling points were obtained for the esti-
mation of parameters f and Δt, using different levels of data
noise, σy , as well as different levels of the parameter uncer-
tainty, σf and σΔt. Physiologically plausible parameter dis-
tributions were considered, according to values in the litera-
ture [4]:
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Fig. 2. Histograms and cumulative curves obtained by opti-
mization using different values for the amount of noise cor-
rupting the data σY = {100, 1000, 1500, 2000, 5000} (red,
green, blue, black, magenta).

• p(f) = N (0.012, 0.052)s−1

• p(Δt) = N (0.7, 0.32)s

• p(τ) = N (0.7, 0.12)s

• p(k) = N (−0.16, 0.012)

• p(r1b) = N (0.63, 0.052)s−1

In order to investigate the effects of different amounts of
noise corrupting the data on the optimal distribution of the
sampling time points, the following noise levels were con-
sidered, σY = {100, 1000, 1500, 2000, 5000}, while keeping
the parameter uncertainty levels constant, at σf = 0.05s−1

and σΔt = 0.3s. The resulting histograms and corresponding
cumulative curves are shown in Fig. 2. It can be observed
that the optimal sampling points are, in general, distributed
around the values Δt0 = 0.7s and Δt0 + τ0 = 1.4s. For
moderate noise levels, there is only a small advantage of sam-
pling around Δt0 + τ0 = 1.4s. However, as noise levels
increase, the advantage of sampling around Δt0 + τ0 = 1.4s
becomes greater. This behaviour can be understood in terms
of the fact that the curve assumes its greatest value at this time
point, which therefore becomes the sampling point of choice
when noise levels increase.

In order to investigate the effects of different amounts of
uncertainty on the prior knowledge of the model param-
eter f on the optimal distribution of the sampling time
points, the following uncertainty levels were considered
σf = {0.001, 0.002, 0.0025, 0.005, 1}s−1, while keeping
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Fig. 3. Histograms and cumulative curves obtained
by optimization using parameter uncertainties σf =
{0.001, 0.002, 0.0025, 0.005, 1}s−1 (red, green, blue, black,
magenta).

Δt uncertainty levels constant, at σΔt = 0.3s, and the noise
level constant, at σY = 500. The resulting histograms and
corresponding cumulative curves are shown in Fig. 3. It
can be observed that, as the uncertainty on the value of f

decreases, the distribution of the optimal sampling points
moves towards the point Δt0 = 0.7s and away from the
point Δt0 + τ0 = 1.4s. This behaviour can be understood
in terms of the fact that better knowledge of the parameter
f will concentrate estimation efforts on the other unknown
parameter, Δt.

In order to investigate the effects of different amounts
of uncertainty on the prior knowledge of the model param-
eter Δt on the optimal distribution of the sampling time
points, the following uncertainty levels were considered,
σΔt = {0.05, 0.1, 0.3, 0.5, 1}s, while keeping f uncertainty
levels constant, at σf = 0.05s−1, and the noise level constant,
at σY = 500. The resulting histograms and corresponding
cumulative curves are shown in Fig. 4. In this case, similarly
to what was observed as a function of the uncertainty of f ,
better knowledge of Δt moves the optimal sampling points
away from Δt0 = 0.7s and towards Δt0 + τ0 = 1.4s.

5. CONCLUSIONS

A fast and computationally efficient method was implemented
to obtain the optimal set of TI sampling points for the estima-
tion of ASL-MRI perfusion model parameters. This proposed
method is developed within a Bayesian framework, such that
the choice of the optimal sampling points is based on the
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Fig. 4. Histograms and cumulative curves obtained
by optimization using parameter uncertainties σΔt =
{0.05, 0.1, 0.3, 0.5, 1}s (red, green, blue, black, magenta).

Fisher information matrix optimality criterion, but further
incorporating prior knowledge about the uncertainty of the
model parameters to be estimated. We show that the optimal
distributions of the TI sampling points strongly depend on
the uncertainty of the model parameters. Our results there-
fore suggest that a Bayesian approach should be considered
when optimizing a multiple-TI ASL perfusion experiment,
so that the a priori knowledge of model parameters may be
taken into account. Future work will consist on validating
the optimal distributions obtained here through Monte Carlo
experiments on artificial data, as well as through empirical
evidence obtained from real ASL data.
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