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A Novel Metric for Bone Marrow Cells
Chromosome Pairing
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Abstract—Karyotyping is a set of procedures, in the scope of
the cytogenetics, that produces a visual representation of the 46
chromosomes observed during the metaphase step of the cellular
division, called mitosis, paired and arranged in decreasing order of
size. Automatic pairing of bone marrow cells is a difficult task be-
cause these chromosomes appear distorted, overlapped, and their
images are usually blurred with undefined edges and low level of
detail. In this paper, a new metric is proposed to compare this
type of chromosome images toward the design of an automatic
pairing algorithm for leukemia diagnostic purposes. Besides the
features used in the traditional karyotyping procedures, a new
feature, based on mutual information, is proposed to increase the
discriminate power of the G-banding pattern dissimilarity between
chromosomes and improve the performance of the classifier. The
pairing algorithm is formulated as a combinatorial optimization
problem where the distances between homologous chromosomes
are minimized and the distances between nonhomologous ones are
maximized. The optimization task is solved by using an integer pro-
gramming approach. A new bone marrow chromosome dataset—
Lisbon-K1 (LK1) chromosome dataset with 9200 chromosomes—
was build for this study. These chromosomes have much lower
quality than the classic Copenhagen, Edinburgh, and Philadelphia
datasets, and its classification and pairing is therefore more dif-
ficult. Experiments using real images from the LK1 and Grisan
et al. datasets based on a leave-one-out cross-validation strategy
are performed to test and validate the pairing algorithm.

Index Terms—Bone marrow cells, chromosome pairing, classifi-
cation, image processing, integer programming, leukemia, mutual
information (MI), optical microscopy, optimization.

I. INTRODUCTION

THE STUDY of chromosome morphology and its relation
with some genetic diseases is the main goal of cytogenet-

ics. Normal human cells have 23 classes of large linear nuclear
chromosomes, in a total of 46 chromosomes per cell. The chro-
mosomes contains approximately 30 000 genes (genotype) and
large tracts of noncoding sequences. The analysis of genetic
material can involve the examination of specific chromosomal
regions using DNA probes, e.g., fluorescent in situ hybridiza-
tion (FISH) [1], called molecular cytogenetics, comparative
genomic hybridization (CGH) [2], or the morphological and
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pattern analysis of entire chromosomes, the conventional cyto-
genetics, which is the focus of this paper. These cytogenetics
studies are very important in the detection of acquired chromo-
somal abnormalities, such as translocations, duplications, inver-
sions, deletions, monosomies, or trisomies. These techniques are
particularly useful in the diagnosis of cancerous diseases and are
the preferred ones in the characterization of the different types
of leukemia, which is the motivation of this paper [3].

The pairing of chromosomes is one of the main steps in
conventional cytogenetics analysis where a correctly ordered
karyogram is produced for diagnosis of genetic diseases based
on the patient karyotype.

The karyogram is an image representation of the stained
human chromosomes with the widely used Giemsa Stain
metaphase spread (G-banding) [4], where the chromosomes are
arranged in 22 pairs of somatic homologous elements plus two
sex-determinative chromosomes (XX for the female or XY for
the male), displayed in decreasing order of size. A karyotype is
the set of characteristics extracted from the karyogram that may
be used to detect chromosomal abnormalities. Fig. 1(a) shows a
typical metaphasic plate for a normal male and Fig. 1(b) shows
the respective karyotype. The metaphase is the step of the cel-
lular division process where the chromosomes are in their most
condensed state [5]. This is the most appropriated moment to
its visualization and abnormality recognition because the chro-
mosomes appear well defined and clear [3], [4], [6].

The pairing and karyotyping procedure, usually done man-
ually by visual inspection, is time consuming and technically
demanding. The application of the G-banding [4] procedure to
the chromosomes generates a distinct transverse banding pat-
tern characteristic for each class, which is the most important
feature for chromosome classification and pairing. The Inter-
national System for Cytogenetic Nomenclature (ISCN) [7] pro-
vides standard diagrams/ideograms of band profiles, as shown
in Fig. 2, for all the chromosomes of a normal human, and
the clinical staff is trained to pair and interpret each specific
karyogram according to the ISCN information. Other features,
related to the chromosome dimensions and shape, are also used
to increase the discriminative power of the manual or automatic
classifiers.

The design of automatic algorithms for pairing and classifica-
tion has been an active field of research in the last two decades
and still is an open problem today. The main aspects that must
be taken into account in the design of an automatic pairing
algorithm are common to the general classification problems:
1) feature selection; 2) classifier design; and 3) training and
testing (validation). The most used features for chromosomes
classification and pairing described in the literature are the
following.

0018-9294/$26.00 © 2010 IEEE
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Fig. 1. Metaphase and corresponding karyogram. (a) Metaphase plate of a
normal male. (b) Normal male karyotype.

1) Dimensions [8]: Length, area, convex hull perimeter and
centromeric index (ratio between the length of the short
p-arm and total length of the chromosome).

2) Geometrical: Normalized area and fitted ellipsis axis di-
mensions and ratio.

3) Pattern based: The G-banding [4] profile was developed
in the beginning of the 20th century and had become the
most discriminative feature used in karyotyping. In order
to grasp this relevant banding information, several strate-
gies have been proposed, such as integrals or intensity av-
erage values computed over orthogonal directions to the
medial axis of the chromosome [8], [9], weighted density
distributions (WDDs) values of density and shape pro-
files [8]–[10], and multiresolution analysis of the banding
pattern using wavelets [11]–[13].

Besides the feature selection, the classifier is the other crucial
component in any automatic chromosome classification or pair-
ing algorithm. Throughout the years, a significant number of
approaches have been proposed and used in the design of clas-
sifiers, e.g., neural network and multilayer perceptron [9], [10],
[14]–[17], Bayes [14], hidden Markov models (HMM) [18],
template matching [19], wavelet [11], and fuzzy [19]. However,
the classification rate obtained with automatic classifiers, typi-
cally in the range of 70%–80%, are still far from the performance
reached by the human operator, typically with an approximate
classification rate of 99.70% [16]. The main reasons for this

Fig. 2. ISCN Ideogram for the chromosomes of class 1 in various states of
condensation. This picture shows in a more comprehensive way the differ-
ence between the chromosomes used in our paper and the traditional datasets.
While the chromosome quality in the Edinburgh, Copenhagen, and Philadelphia
datasets can be included in (b)–(e) interval, the quality of the chromosomes in
our sets, extracted from bone marrow cells is below the (a) level of band de-
scription, which can be confirmed by analyzing the chromosomes of class 1 in
the karyogram represented in Figs. 1(b), 3, and 5.

difference is the difficulty to incorporate in the automatic clas-
sifiers the relevant subjective criteria used by the humans to
achieve such high-classification performance, and eliminate the
redundant and nondiscriminative features [16].

Recently, Wu et al. [20] and Wang et al. [21] proposed and
evaluated a subspace approach based on principal components
analysis (PCA), linear discriminant analysis (LDA), and dis-
crete cosine transform (DCT) subspaces for automatic proto-
typing and classification of chromosome images. Another inter-
esting approach was proposed by Karvelis et al. [22] to segment
M-FISH chromosome images based on a multichannel water-
shed transform [23] and a Bayes classifier where a 82.40%
classification rate is reported. This new technique is promising,
but it is computationally expensive and demanding, and does
not bring practical improvements to the cytogenetics analysis
problem.

References to the pairing problem without classification are
rare. Some of the most important ones are provided by Wu
et al. [24] and Biyani et al. [25], where homologue pairing
using maximum-weight graph matching is performed on 350
cells dataset and a 90.10% classification rate is reported.

In the traditional approach, the pairing procedure is performed
after the classification of the chromosomes. Here, a different
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approach is used. Instead of trying to accurately classify the
chromosomes, the proposed algorithm attempts to pair them
directly without knowing the class to which they belong. The
algorithm was designed to process bone marrow cells chro-
mosomes used in the scope of leukemia diagnosis. The im-
ages of this type of chromosomes present less quality than the
ones used in the traditional genetic analysis using datasets such
as Edinburgh [8], [16], Copenhagen [8]–[10], [17], [24], and
Philadelphia [8], [10], namely, with respect to the centromere
position, band profile description/discrimination, and level of
condensation. Therefore, a new dataset, here called LK1 , with
chromosomes not available in the traditional datasets, is used to
evaluate the proposed algorithm.

The algorithm described in this paper is composed of the
following three sequential steps.

1) Image processing—In this step, the chromosome images,
extracted from the unordered karyogram, are processed
by making histogram equalization, geometric distortion
compensation, and dimensional scaling normalization (see
Section II-A).

2) Feature extraction—In this step, discriminative features
are extracted from the processed images, e.g., dimensions,
normalized area, G-banding profile, and mutual informa-
tion (MI) [26] between each pair of chromosomes in the
karyogram (see Section II-B). The features extracted in
this step are organized in a distance matrix containing the
distances (using a given metric described later) between
every two chromosomes in the karyogram.

3) Pairing—In this step, a combinatorial optimization prob-
lem is solved in order to obtain a permutation matrix that
establishes the right correspondence between the chromo-
somes of each pair.

The images were acquired with a Leica Optical Microscope
DM 2500. Some image preprocessing tasks, namely, noise re-
duction and chromosome segmentation, were manually per-
formed with Leica continuous wave (CW) 4000 Karyo software
used by the clinical staff. The pairing ground truth was obtained
manually by the technical staff of the Institute of Molecular
Medicine, Lisbon, and used to assess the accuracy of the pro-
posed pairing algorithms.

Tests using real datasets with 4, 8, and 22 different classes
of chromosomes (with increasing pairing difficulty, as shown in
Fig. 3) extracted from 27 karyograms in a leave-one-out cross-
validation and an 8-D feature space have been performed, and
the error rate was computed. Results of the early stages of this
study have already been published in [27] and [28], where the
evaluation of the MI as a useful feature in the discrimination
on the G-banding pattern is focused and the more appropriated
metric to be used in the battery of classifiers is studied. This
present paper puts together these results, proposes a new method
to solve the optimization task of pairing, and tests the algorithm
with an extended set of bone marrow chromosomes and with
one other better quality dataset, as mentioned previously.

This paper is organized as follows. Section II formulates the
problem, describing the real dataset, the extracted features used
in a pairwise basis jointly with the training procedure and with
the algorithm to compute the distances between chromosomes.

Fig. 3. Illustration of the three test sets extracted from each karyogram.
(a) (Dashed line) Test set D1. (b) (Continuous line) Test set D2 . (c) (All 22
classes) Test set D3 .

Section III describes the classification/pairing procedure and the
classifier itself. Section IV illustrates the several experiments
performed to evaluate the performance of the algorithm and the
comparison results with other methods and datasets. Section V
concludes the paper.

II. MATERIAL AND METHODS

In a typical cytogenetic diagnosis based on the karyogram at
least 20 karyograms must be analyzed (when possible), while
in a typical patient sample, the number of metaphases observed
can reach 200. Therefore, the set of metaphases from which
the karyograms are extracted for the diagnosis is composed of
the ones presenting better quality for the trained human eye,
namely, the ones that present less overlaps and blur. The auto-
matic selection of metaphases from each plate is not considered
in this paper. The chromosomes used in the leukemia diagno-
sis are obtained from bone marrow cells and present much less
quality than the ones used in the traditional cytogenetics. The
images from the Edinburgh and Copenhagen datasets are based
on routinely acquired peripheral blood cells (constitutional cyto-
genetics), while in the Philadelphia dataset, the images are based
on cells extracted from chorionic villus (prenatal cytogenetics).
In both constitutional and prenatal cytogenetics, the observed
cells are all equal, meaning that the same karyotype is always
observed, independently of which cell is being analyzed, making
it possible to choose those metaphases that present better im-
age quality. On the contrary, in tumoral cytogenetics (leukemia
in this case), a mixture of both normal and cancerous cells is
observed, with significant differences not only between normal
and tumoral cells, but also within the tumoral cells, which are
the key cells for the diagnosis. In addition, while in prenatal and
constitutional cytogenetics, it is possible to accurately control
the cell division cycle in order to obtain chromosomes with the
best possible morphology, in tumoral cytogenetics, this is not
possible because it is much more difficult to predict the behavior
of these cancerous cells.

A new chromosome dataset LK1 [29] was created in collabo-
ration with the Institute of Molecular Medicine, Lisbon, to test
the classification and pairing algorithms of this type of “low”
quality chromosomes for leukemia diagnosis purposes. The
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Fig. 4. (a) Two different metaphase plates containing bone marrow chromo-
somes and (b) chromosomes from the Copenhagen dataset [24].

bone marrow cell chromosomes in this new dataset were man-
ually segmented, correctly oriented, ordered and annotated by
the clinical staff to be used as ground truth data in the conducted
tests. Two different quality metaphase plates are displayed in
Fig. 4 to illustrate the differences between the chromosomes of
our dataset and the chromosomes of the other standard datasets.
The ideogram for the chromosomes of class 1, in various states
of condensation, displayed in Fig. 2, shows in a schematic and
more comprehensive way the difference between the chromo-
somes used in our study and the traditional datasets, while the
chromosomes in the Edinburgh, Copenhagen, and Philadelphia
datasets can be observed at different levels of detail shown in
Fig. 2(b)–(e), the detail level of our chromosomes is below the
level shown in Fig. 2(a), which can be confirmed by analyzing
the chromosomes of class 1 in the karyograms represented in
Figs. 1(b), 3, and 5.

To further validate the proposed algorithm, experiments were
made by using Grisan et al. dataset [30]. This dataset is of the
same nature and quality as the Philadelphia, Edinburgh, and
Copenhagen datasets because the images are based on cells
extracted from the amniotic fluid and choroidal villi (prenatal
cytogenetics).

In this paper, the data are organized in karyograms, each one
composed by 2N chromosomes images obtained with a Leica
Optical Microscope DM 2500, where N = 22 is the number of
homologous pairs, as shown in Fig. 1(b). The sex chromosomes

Fig. 5. Example of a very “low” quality karyogram based on bone marrow
cells.

Fig. 6. Geometrical compensation. (a) Original image. (b) Chromosome and
medial axis segmentation. (c) Axis smoothing. (d) and (e) Interpolation along
orthogonal lines to the smoothed medial axis. (f) Border regularization.

were put aside and only karyograms that present no numerical
or structural abnormalities were used at this stage of the paper.

The automatic pairing algorithm is composed of four main
steps: 1) chromosome image extraction from the unordered
karyogram and image processing; 2) feature extraction; 3) clas-
sifier training; and 4) pairing. In the next sections, these com-
ponents are described in detail.

A. Image Processing

The image processing step aims at image contrast enhance-
ment and compensation of geometric distortions observed in
each chromosome not related with its intrinsic shape or size.
The image brightness and contrast depend on the specific tuning
of the microscope and the particular geometric shape of each
chromosome depends on the specific metaphase plaque from
which the chromosomes were extracted. These effects must be
compensated to improve the results of the pairing algorithm.

The image processing step is composed of the following op-
erations.

1) Chromosome extraction—Each chromosome is isolated
from the unordered karyogram.

2) Geometrical compensation—The geometric compensa-
tion, performed by using the algorithm described in [8], is
needed to obtain chromosomes with vertical medial axis,
as shown in Fig. 6. This compensation algorithm is com-
posed of the following main steps:

a) chromosome and medial axis segmentation [see
Fig. 6(b)];

b) axis smoothing [see Fig. 6(c)];
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Fig. 7. Dimension and shape normalization and intensity equalization.
(a) Geometrically compensated image. (b) Spatial normalization. (c) Histogram
equalization. (d) Band profile.

c) interpolation along orthogonal lines to the
smoothed medial axis [see Fig. 6(d)–(e)];

d) border regularization [see Fig. 6(f)].
3) Shape normalization—The features used in the compari-

son of chromosomes are grouped into two classes: 1) ge-
ometric based and 2) pattern based (G-banding). To com-
pare chromosomes from a band pattern point of view, ge-
ometrical and dimensional differences must be removed,
or at least attenuated. Therefore, a dimensional scaling is
performed before the pattern features is extracted to make
all the chromosome with the same size and aspect ratio
by interpolating the original images, as shown in Fig. 7(a)
and (b).

4) Intensity compensation—The metaphase plaque from
which the chromosomes are extracted does not present
a uniform brightness and contrast. To compensate for this
inhomogeneity, the spatially scaled images are histogram
equalized [31], as shown in Figs. 7(b) and (c).

B. Feature Extraction

The processed images are used to extract discriminative fea-
tures to pair the chromosomes. We are using some of the most
used features in the classification of chromosomes, but others,
such as the centromere location, are not used due the very poor
quality of the images. The extracted features, used to compute
the distance between two chromosomes in the pairing process
according to a metric defined later, are the following.

1) Size/Area: This class of features includes the area in pixels
of each chromosome, its perimeter, bounding box dimen-
sions, and aspect ratio, extracted from the nonnormalized
shape images.

2) Shape: Normalized area is computed as the ratio between
the perimeter and the area of the normalized shape images.

3) Pattern: Two classes of features are used to discriminate
chromosomes pairs with respect to its pattern characteris-
tics are the following.

a) Band profile—Band profiles, like the one displayed
in Fig. 7(d), are computed as the average intensity
values across each line of the shape normalized pro-
cessed image, h(n) = (1/N)

∑N
i=1 I(n, i), where

N is the number of columns of the image. To avoid
measurement degradation due to misalignment dur-
ing the comparison step, the band profiles of two
chromosomes are aligned. A shift constant τ̂ is esti-
mated by maximizing the cross correlation function
of the two profile vectors hi(n) and hj (n) as

τ̂ = arg max
τ

φi,j (τ) (1)

where φi,j (τ) = φ(hi(n), hj (n − τ)) is the cross
correlation function [32]. The maximum of this
function, when both profiles are aligned, occurs
when τ = 0. The distance between the chromo-
somes with respect to the band profile is the Eu-
clidean distance between one profile and the other,
shifted by τ̂

d(i, j) = ‖hi(n) − hj (n − τ̂)‖2 . (2)

b) Mutual Information—The MI is proposed in this
paper as a new feature for chromosome pairing
that aims at increasing the discriminative power
of the classifier with respect to the band pattern
(G-banding) that characterizes each class of chro-
mosomes. This measure is widely used in medical
image processing, namely, in medical image regis-
tration [26] and is particularly suitable to compare
pattern similarities based on the histograms of two
images [31], such as chromosome images. This is
a valid assumption since given two chromosomes
from the same class, the corresponding G-banding
will overlap and maximal dependence between the
gray value of the images will be obtained [26].
The MI associated with two chromosome shape
normalized images IA (i, j) and IB (i, j) is defined
as follows [26]:

MI(IA , IB ) =
∑
a,b

pAB (a, b) log
[

pAB (a, b)
pA (a)pB (b)

]

(3)
where pA (a) and pA (b) are the histograms of the
images IA and IB , respectively, and pAB (a, b) is
the joint histogram of both images. Note that this
feature is not associated with each chromosome
individually, as the previous ones, but is calculated
for every pair. This property is particularly useful
in our approach where the chromosomes are not
individually classified.

The features extracted in this step are used to compute a
(44)2 × L matrix of distances, as shown in (8), where 442

is the total number of chromosome pairs in a given karyo-
gram, excluding the sexual pair and L is the total number
of features. The distance between two chromosomes with re-
spect to each kth feature fk is the absolute difference of both
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features when they are scalars, dk (a, b) = |fak − fbk |, an Eu-
clidean distance when they are vectors (e.g., band profile),
dk (a, b) =

√∑
n (fak (n) − fbk (n))2 , and a single scalar in

the case of the MI.

C. Distance Between Chromosomes

The overall distance between two chromosomes involving all
features, given a vector of weights, w, is defined as a weighted
distance computed as follows:

D(i, j;w) =
L∑

k=1

w(k)dk (i, j) (4)

where w(k) is the weight associated with the kth feature and
dk (i, j) is the distance between the ith and jth chromosomes
with respect to the kth feature.

The proposed pairing algorithm is based on a supervised clas-
sifier, previously trained with manually paired images provided
by experts. During the training step, a set of vector weights wr

with 1 ≤ r ≤ N = 22 are estimated by using all possible pairs
of the training set.

The distance between two chromosomes is assumed to be the
smallest one among all weight vectors wr

D(i, j) = min
r∈{1,...,22}

D(i, j;wr ). (5)

The vectors wr , obtained during the training step, are com-
puted by minimizing an energy function under the constraint
‖w‖ = 1

wr = arg min
w :‖w‖=1

E(w) (6)

where

E(wi) =
∑

(a,b)∈V (i)

D(a, b;wi)

︸ ︷︷ ︸
intraclass distance

−
∑

(a,b)∈U (i)

D(a, b;wi)

︸ ︷︷ ︸
interclass distance

(7)

where V (i) is the set of all pairs of chromosomes of the ith
class and U(i) is the set of all chromosomes where at most one
chromosome in each pair belongs to the ith class. Each weight
vector wr is computed by minimizing the sum of intraclass
distances (between chromosomes of the same class) and maxi-
mizing the sum of interclass distances (between chromosomes
where at most one of them belongs to that class).

Let us consider the following matrix where each element
di(k) is the distance associated with the kth feature of the ith
pair of chromosomes in the karyogram

Θr =




d1(1) d1(2) d1(3) . . . d1(L)
d2(1) d2(2) d2(3) . . . d2(L)
d3(1) d3(2) d3(3) . . . d3(L)
. . . . . . . . . . . . . . .

dR (1) dR (2) dR (3) . . . dR (L)


 . (8)

Θr is a R × L matrix, where L is the number of features
used in the pairing process and R the number of different pairs
of chromosomes in the training set from class r. Let us also
consider the matrix Θ̃r with the same structure of Θr , but

now involving all pairs of the training set where at most one
chromosome in each pair belongs to the rth class.

By using the Lagrange method, the energy function may be
written as follows:

E(wr ) = Φrwr + γwT
r wr (9)

where Φr = 1T Θr − 1̃T Θ̃r is a line vector with length L, 1 is
a column vector of ones, and γ is the Lagrange multiplier. The
minimizer of E(wr ) is

wr = ΦT
r /

√
ΦrΦT

r = vers(Φr ) (10)

where vers(Φr ) is the unit length vector aligned with Φr .
Equation (10) is used in the training step to compute the set

of vectors wr , with 1 ≤ r ≤ 22, which are then used, in turn, to
compute the distance between two chromosomes using (5).

The distances computed using (5) form a symmetric matrix
of distances D, where each element, D(i, j), is the distance
between the ith and the jth chromosomes

D =




D(1, 1) D(1, 2) D(1, 3) . . . D(1, 22)
D(2, 1) D(2, 2) D(2, 3) . . . D(2, 22)
D(3, 1) D(3, 2) D(3, 3) . . . D(3, 22)

. . . . . . . . . . . . . . .
D(22, 1) D(22, 2) D(22, 3) . . . D(22, 22)


 .

III. CLASSIFIER

The pairing process is a computationally hard problem be-
cause the optimal pairing must minimize the overall distance,
i.e., the solution is the global minimum of the cost function. This
problem can be stated as a combinatorial optimization problem.
Moreover, it can be formulated as an integer programming prob-
lem, thus allowing for very efficient optimization methods. To
do so, the cost function, as well as the constraints, have to be
expressed by linear functions of the variables.

Considering n chromosomes (for n even), a pairing assign-
ment P is defined as a set of ordered pairs (i, j), such that:
1) i �= j holds for any pair and 2) any given index i appears in
no more than one pair of the set. A pairing assignment is said to
be total if and only if, for any i = 1, . . . , n, there is exactly one
pair (r, s) in the set such that either i = r or i = s. The sum of
distances implied by a pairing P can be written as

C(P) =
∑

(i,j )∈P
D(i, j) (11)

and the goal of the pairing process is to find a total pairing P
that minimizes C(P).

Note that the cost function (11) can be reformulated as a ma-
trix inner product between the distance matrix D and a pairing
matrix X = {x(i, j)}, where

x(i, j) =
{

1, (i, j) ∈ P or (j, i) ∈ P
0, otherwise.

(12)

Thus, (11) can be rewritten as C(P) = (1/2)D · X where “·”
denotes the usual matrix inner product, which is defined as
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follows:

D · X :=
∑

i

∑
j

D(i, j)x(i, j). (13)

The cost function then becomes linear with the pairing matrix
X. The entries of this matrix are the parameters with respect to
which (13) is to be minimized.

In order for the matrix X to represent a valid total pairing,
this matrix has to satisfy constraints 1) and 2) mentiones earlier,
which can be expressed in linear form as follows: constraint
1) is equivalent to state that the main diagonal of D is all zeros
and constraint 2) corresponds to having one and only one entry
equal to 1 in each row, as well as in each column. Constraining
the domain of the matrix entries to be Boolean (i.e., x(i, j) ∈
{0, 1}), the latter is the same to say that

∀i

∑
j

x(i, j) = 1 and ∀j

∑
i

x(i, j) = 1. (14)

The combinatorial optimization problem can then be restated
as a integer programming problem, consisting of

minimize D · X
where ∀i∀j x(i, j) ∈ {0, 1}

subject to X = XT

∀ix(i, i) = 0

X1 = 1

XT 1 = 1 (15)

where 1 is a column of ones of appropriate dimension.
This integer programming problem can be solved by stan-

dard numeric optimization packages, such as the GNU Linear
Programming Kit1 (GLPK) that was used here.

IV. EXPERIMENTS AND RESULTS

Three kind of experiments were performed in this paper to
assess the performance of the proposed algorithm, here called
linear combination of distances (LCD): 1) in the first stage, the
introduction of the MI is evaluated as a valuable discriminative
factor to the pairing procedure; 2) in the second experiment, a
comparison of the proposed method with three standard classifi-
cation techniques—nearest neighbor (NN), support vector ma-
chines (SVMs), and Euclidean distances (EDs)—is done; and
3) in the last experiment, the performance of the LCD algorithm,
designed to deal with bone marrow chromosomes, is assessed
with a better quality Grisan et al. dataset [30]. This dataset is of
the same nature and similar quality as the Philadelphia, Edin-
burgh, and Copenhagen datasets because these images are based
on cells extracted from the amniotic fluid and choroidal villi.

Two subsets from the LK1 dataset containing 27 and 19 real
karyograms are used to form three test sets. From the first sub-
set, two different test sets with different pairing difficulty are
extracted. The first set, D1 , contains chromosomes only from
classes 1, 10, 16, and 21 (framed with a dashed line in Fig. 3),

1http://www.gnu.org/software/glpk

TABLE I
DIFFERENT CHROMOSOME TEST SETS BUILT FROM LK1 AND GRISAN

et al. DATASET USED TO EVALUATE IMPLEMENTED ALGORITHMS

presenting a low pairing difficulty level mainly due to the great
size difference between the four classes of chromosomes. The
second test set, D2 , is formed by adding chromosomes from
classes 3, 12, 15, and 22 to D1 (framed with a continuous line in
Fig. 3). The added chromosomes are similar to the ones already
present in D1 , and therefore, the pairing task difficulty increases.
The last test set, D3 , contains all 22 homologous pairs extracted
from the second subset, containing 19 karyograms. Therefore,
the first testing set is composed of 27 × 4 × 2 = 216 chromo-
somes, the second of 432, and the third one of 836 chromosomes,
as shown in Table I.

The pairing results using different methods, test sets, and
datasets are displayed in Table II. This table displays the num-
ber of pairing errors in each experiment, where each line cor-
responds to a single test using a leave-one-out cross-validation
strategy (LOOCV), i.e., where all, but one, karyogram are used
for training and the remaining one is used for testing. The sym-
bol

√
is used to indicate that a completely correct pairing was

obtained (0 errors).
It is concluded that the introduction of the MI as a new fea-

ture, in the case of the LCD method proposed here, leads to an
improvement in the pairing results in most of the cases. This
can be observed in the case of experiments 3, 12, and 26 in D2
with eight classes (see Table II) and 2, 13, 14, and 16 in the D3
with 22 classes (see Table II).

For comparison purposes, three standard classification/
pairing methods were also used with the D3 dataset. In two of
them, a two-stage process was followed: first, the chromosomes
were individually classified, and then, it was evaluated whether
both chromosomes of each (ground truth) class were classified
in the same class. The two classification methods are: 1) the
NN, where each chromosome is classified in the same class of
the nearest chromosome in the training set, using the Euclidean
metric, 2) the SVM classifier, trained with the training set. An
open-source implementation of this classifier [33] is used. The
goal of this experiment is to compare the performance of the
proposed method, involving only a pairing procedure, with the
classical approach where the pairing task is based on a previous
classification step of each chromosome in one of the 22 admis-
sible classes. As mentioned previously, the LOOCV approach
was used in the training and testing steps. In the last classifica-
tion/pairing method, here called 3) ED, the same optimization
method as described in Section III was used, but the distance
between chromosomes is simply the Euclidean distance com-
puted with its respective feature vectors. The goal is to evaluate
the benefits of the proposed metric (see Section II-C).
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TABLE II
CLASSIFICATION RESULTS

TABLE III
COMPARISON OF CLASSIFICATION RATES FOR ALL TRAINING/TEST DATASETS

Because our proposed method was developed to process bone
marrow cells chromosomes with a much lower quality than the
standard datasets (Copenhagen, Philadelphia, and Edinburgh),
it was of our interest to assess how the algorithm performs with
a higher quality dataset. As expected, the algorithm performs
better for the Grisan et al. dataset. See columns 6 and 10 in
Tables II and III. For the D3 test set, the algorithm achieved a
76.10% classification rate for the Grisan et al. dataset, which is
higher than the rate achieved for the LK1 dataset, and although
not presented here, this behavior is consistent across various
experiments performed for the D1 and D2 test sets for the same
dataset where 100% classification rates were obtained. It should
be stressed, however, that even though the algorithm performed
better on the Grisan et al. dataset, the final result could be
improved even more if the images from this dataset had better
resolution.

In the results presented here, the mean classification rate
(MCR) corresponds to the average of the ratio between the
number of correctly paired chromosomes and N/2 (the total
number of pairs of chromosomes considered). Table III presents
the comparison of the MCRs for all the performed experiments,
which also allow us to conclude that the introduction of this
new MI feature, indeed, leads to an increase in the correctly
paired chromosomes rate, namely, when the pairing difficulty
level is high. Additionally, the proposed method outperforms
the standard NN, SVM, and ED algorithms that do not achieve
a classification rate higher than 50.50%.

The classification time is dependent on the distance matrix D,
but in all tests performed here, it ranges from few milliseconds
(four classes test sets) up to few tenth of a second for the 22
classes test sets. This is a major improvement against much
higher execution times of the previously used classification
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method by Khmelinskii et al. [27], [28] that could reach up
to minutes when performed on the 22 classes test sets.

A 70.10% mean classification rate, reached when using the
MI feature for the most realistic dataset D3 , with the 22 classes
of chromosomes, is particularly relevant. These results, although
below the 90.10% classification rate presented by Wu et al. [24],
[25] are very optimistic and promising, given the poor quality
of the images and the reduced amount of features used with this
type of chromosomes.

V. CONCLUSION

In this paper, a new metric is proposed to measure the distance
between chromosomes to be used in the automatic chromosome
pairing procedure, in the scope of karyotyping process used in
cytogentic analysis. The proposed algorithm is based on the tra-
ditional features extracted from the karyogram, such as, dimen-
sions and banding profiles, plus a new one, based on the MI, to
improve the discriminative power of the pairing algorithm with
respect to the the G-banding pattern.

The main goal of this paper is to provide useful contributions
toward the design of a fully automatic chromosomes pairing
algorithm of bone marrow cells to be used in the diagnosis of
leukemia. The images of these chromosomes present less quality
and level of detail than the ones usually used in traditional
genetic analysis using datasets such as Edinburgh, Copenhagen,
and Philadelphia.

The algorithm is composed by four main steps: 1) image
processing of the karyograms provided by the technicians;
2) feature extraction from the processed images characteriz-
ing the size, shape and band pattern; 3) training of a classi-
fier (performed once) where similarity among chromosomes
are characterized; and finally, 4) pairing.

In the image processing step, the chromosome images, ex-
tracted from the unordered karyogram, are processed in order to
compensate for geometrical and intensity distortions, and to nor-
malize their dimensions. This normalization is needed to make
it possible the band pattern comparison between chromosomes.
The features extracted from the processed images discriminate
each pair with respect to their size, shape, and band pattern.

Here, a novel metric distance is proposed to be used in the
pairing procedure that linearly combines the distances associ-
ated with each feature. The coefficients of the linear combina-
tion are obtained through a training step using chromosomes
paired manually by experts. Vectors of coefficients associated
with each one of the 22 classes are computed and the distance
between two arbitrary chromosomes is the minimum one among
all distances obtained with these 22 vectors.

The training process consists in the estimation of each vector
of coefficients, from the chromosomes in the training set, by
minimizing the overall distances between chromosomes of the
same class (intraclass) and by maximizing the distances between
chromosomes when at least one of them does not belong to that
class (interclass).

The pairing process is performed by efficiently solving a
combinatorial problem where a permutation matrix is obtained
from the distance matrix computed with the extracted features
associated with each pair of chromosomes in the karyogram.

Tests using 19 karyograms based on bone marrow cells, work-
ing with 22 classes of chromosomes and a LOOCV strategy al-
low us to conclude that the proposed pairing algorithms, working
within an 8-D feature space, achieves a 70.10% mean classifi-
cation rate. The addition of the MI feature to the traditional
geometrical and band profile features described in the literature
leads to a clear improvement in the performance of the classifier.
Executing the algorithm on a higher quality dataset, a 76.10%
classification rate was obtained. Using 27 karyograms and work-
ing with a limited number of classes (≤ 8), a mean classification
rate larger than 93% was obtained in all experiments.

Qualitative comparisons with the results obtained with the
Leica CW 4000 Karyopairing software using the same data
were performed and have shown relevant improvements.

In addition, a new chromosome dataset with 9200 chromo-
somes from bone marrow cells, called LK1 , was built to provide
a ground truth to test classification and pairing algorithms for
this type of “low” image quality chromosomes. This dataset was
made publicly available [29].

The results presented in this paper are promising. In fact,
despite the low quality of this type of chromosomes, it was
shown that it is possible to achieve comparable classification
rates to the ones obtained with the classical chromosome dataset,
such as Edinburgh, Copenhagen, or Philadelphia, whose images
are of significantly higher quality, presenting a uniform level of
condensation, and from which it is possible to extract additional
features, e.g., centromere position.

ACKNOWLEDGMENT

The authors would like to thank the clinical staff of the Cyto-
genetics/Virology Laboratory, Institute of Molecular Medicine
(IMM)—GenoMed of Lisbon (namely, S. Santos, C. Sousa, and
P. Costa) for providing us with the karyograms much needed for
the testing of the implemented algorithms and Prof. M. do C.
Fonseca (IMM), for providing us with this challenging task and
all the support needed. They would also like to thank J. Xavier
(ISR-IST) for helping us formulating the pairing as an integer
programming problem.

REFERENCES

[1] C. M. Price, “Fluorescence in situ hybridization,” Blood Rev., vol. 7, no. 2,
pp. 127–134, 1993.

[2] J. C. Tan, J. J. Patel, A. Tan, C. J. Blain, T. J. Albert, N. F. Lobo, and
M. T. Ferdig, “Optimizing comparative genomic hybridization probes for
genotyping and SNP detection in plasmodium falciparum,” Genomics,
vol. 93, no. 6, pp. 543–550, Jun. 2009.

[3] D. E. Rooney and B. H. Czepulkowski, Human Cytogenetics, A Practical
Approach, vol. II, 2nd ed. Ithaca, NY: IRL Press, 1992.

[4] J. Swansbury, Cancer Cytogenetics: Methods and Protocols (Methods in
Molecular Biology). Totowa, NJ: Humana Press, 2003.

[5] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and
J. E. Darnell, Molecular Cell Biology, 4th ed. San Francisco, CA:
Freeman, 2004.

[6] B. Czepulkowski, Analyzing Chromosomes. Abingdon, U.K.: BIOS
Scientific Publishing, 2001.

[7] L. G. Shaffer and N. Tommerup, Eds., An International System for Human
Cytogenetic Nomenclature (ISCN), 2005. Basel, Switzerland: Karger
and Cytogenetic and Genome Research, 2004, 130 pp. ISBN 3-8055-
8019-3.

[8] J. Piper and E. Granum, “On fully automatic feature measurement for
banded chromosome classification,” Cytometry, vol. 10, pp. 242–255,
1989.



KHMELINSKII et al.: NOVEL METRIC FOR BONE MARROW CELLS CHROMOSOME PAIRING 1429

[9] J. R. Stanley, M. J. Keller, P. Gader, and W. C. Caldwell, “Data-driven
homologue matching for chromosome identification,” IEEE Trans. Med.
Imag., vol. 17, no. 3, pp. 451–462, Jun. 1998.

[10] M. Zardoshti-Kermani and A. Afshordi, “Classification of chromosomes
using higher-order neural networks,” in Proc. IEEE Int. Conf. Neural
Netw., Nov./Dec., 1995, vol. 5, pp. 2587–2591.

[11] Q. Wu and K. R. Castleman, “Automated chromosome classification us-
ing wavelet-based band pattern descriptors,” in Proc. 13th IEEE Symp.
Comput.-Based Med. Syst., Jun. 2000, pp. 189–194.

[12] N. Sweeney, R. L. Becker, and B. Sweeney, “A comparison of wavelet
and Fourier descriptors for a neural network chromosome classifier,” in
Proc. 19th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Oct. 1997, vol. 3,
pp. 1359–1362.

[13] L. V. Guimaraes, A. Schuck, and A. Elbern, “Chromosome classification
for karyotype composing applying shape representation on wavelet packet
transform,” in Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Sep.
2003, vol. 1, pp. 941–943.

[14] B. Lerner, H. Guterman, I. Dinstein, and Y. Romem, “A comparison of
multilayer perceptron neural network and bayes piecewise classifier for
chromosome classification,” in Proc. IEEE World Congr. Neural Netw.,
IEEE Int. Conf. Comput. Intell., Jun./Jul. 1994, vol. 6, pp. 3472–3477.

[15] B. Lerner, M. Levinstein, B. Rosenberg, H. Guterman, L. Dinstein, and
Y. Romem, “Feature selection and chromosome classification using a mul-
tilayer perceptron neural network,” in Proc. IEEE World Congr. Comput.
Intell., IEEE Int. Conf. Neural Netw., Jun./Jul. 1994, vol. 6, pp. 3540–3545.

[16] B. Lerner, “Toward a completely automatic neural-network-based human
chromosome analysis,” IEEE Trans. Syst., Man Cybern. B, Cybern.,
vol. 28, no. 4, pp. 544–552, Aug. 1998.

[17] J. M. Cho, “Chromosome classification using backpropagation neural
networks,” IEEE Eng. Med. Biol. Mag., vol. 19, no. 1, pp. 28–33, Jan./Feb.
2000.

[18] J. M. Conroy, R. L. Becker, Jr, W. Lefkowitz, K. L. Christopher, R. B.
Surana, T. O’Leary, D. P. O’Leary, and T. G. Kolda, “Hidden Markov mod-
els for chromosome identification,” in Proc. 14th IEEE Symp. Comput.-
Based Med. Syst., Jul. 2001, pp. 473–477.

[19] A. M. Badawi, K. G. Hasan, E. A. Aly, and R. A. Messiha, “Chromosomes
classification based on neural networks, fuzzy rule based, and template
matching classifiers,” in Proc. 46th IEEE Int. Midwest Symp. Circuits
Syst., Dec. 2003, vol. 1, pp. 383–387.

[20] Q. Wu, Z. Liu, T. Chen, Z. Xiong, and K. R. Castleman, “Subspace-
based prototyping and classification of chromosome images,” IEEE Trans.
Image Process., vol. 14, no. 9, pp. 1277–1287, Sep. 2005.

[21] Y. Wang, Q. Wu, K. R. Castleman, and Z. Xiong, “Chromosome image
enhancement using multiscale differential operators,” IEEE Trans. Med.
Imag., vol. 22, no. 5, pp. 685–693, May 2003.

[22] P. S. Karvelis, A. T. Tzallas, D. I. Fotiadis, and I. Georgiou, “A multichan-
nel watershed-based segmentation method for multispectral chromosome
classification,” IEEE Trans. Med. Imag., vol. 27, no. 5, pp. 697–708, May
2008.

[23] S. Beucher, “Watershed, hierarchical segmentation and waterfall algo-
rithm,” in Mathematical Morphology and its Applications to Image Pro-
cessing, E. Dougherty, Ed. Boston, MA: Kluwer, 1994.

[24] X. Wu, P. Biyani, S. Dumitrescu, and Q. Wu, “Globally optimal classifica-
tion and pairing of human chromosomes,” in Proc. 26th Annu. Int. Conf.
IEEE EMBS, Sep. 2004, pp. 2789–2792.

[25] P. Biyani, X. Wu, and A. Sinha, “Joint classification and pairing of human
chromosomes,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 2, no. 2,
pp. 102–109, Apr./Jun. 2005.

[26] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-information-
based registration of medical images: A survey,” IEEE Trans. Med. Imag.,
vol. 22, no. 8, pp. 986–1004, Aug. 2003.

[27] A. Khmelinskii, R. Ventura, and J. Sanches, “Chromosome pairing for
karyotyping purposes using mutual information,” in Proc. 5th IEEE Int.
Symp. Biomed. Imag.: Nano Macro, May 2008, pp. 484–487.

[28] A. Khmelinskii, R. Ventura, and J. Sanches, “Automatic chromosome
pairing using mutual information,” in Proc. IEEE 30th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC 2008), Aug., pp. 1918–1921.

[29] Lisbon K1—Chromosome Dataset. (2010). [Online]. Available:
http://mediawiki.isr.ist.utl.pt/wiki/Lisbon-K_Chromosome_Dataset

[30] E. Grisan, E. Poletti, and A. Ruggeri, “Automatic segmentation and disen-
tangling of chromosome in Q-band prometaphase images,” IEEE Trans.
Inf. Technol. Biomed., vol. 13, no. 4, pp. 575–581, 2009.

[31] A. K. Jain, Fundamentals of Digital Image Processing. Upper Saddle
River, NJ: Prentice-Hall, 1989.

[32] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms
for Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 2000.

[33] C. C. Chang and C. J. Lin. (2001). LIBSVM: A library for support vector
machines [Online]. Available: http://www.csie.ntu.edu.tw/cjlin/libsvm

Artem Khmelinskii received the M.Sc. degree in
biomedical engineering from the Instituto Superior
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