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Abstract— The relation between neural electrical activity and
oxygen consumption is the key issue in almost all brain image
modalities based on perfusion. Despite the large amount of
physiological information available in the literature about the
processes involved in neural activation, a practical, tractable
and simultaneously accurate mathematical model to describe
this relation is needed.

The sodium-potassium pump (Na,K-ATPase) and its adenosine
triphosphate (ATP) consumption seems to play a central role in
this process. The Na,K-ATPase activity is deeply related with
the spike density and this pump is the main consumer of the
energy used in the brain, particularly, within the neuron.

In this paper we present a mathematical model relating the
temporal spike density across the neuron, which reflects the
electrical activity, with the corresponding ATP consumption
rate. The expenditure of ATP stimulate the metabolic pathways
responsible for the ATP synthesis, for instance, the aerobic
pathway via the Krebs cycle. The main motivation to derive this
model is its inclusion in a larger model of the Haemodynamic
Response Function (HRF) for functional Magnetic Resonance
Imaging (fMRI) analysis.

The model, depending on several parameters, is linear and
was tunned with physiological information obtained from the
literature.

I. INTRODUCTION

fMRI is becoming a widely used tool for brain map-

ping and studying the neural basis of human cognition.

The blood-oxygen-level dependent (BOLD) signal measures

local changes in the haemodynamic response that indirectly

reflects the neural activity [1], [2]. Although knowledge is

expanding rapidly, the physiological basis underlying this

coupling remains unclear, since the biological and neuro-

physiological processes occurring within the brain cells and

their microvasculature are complex [3].

In the last years, the contribution of both spike and synap-

tic activity to the BOLD signal has been studied. Currently,

it is admitted that functional activation is associated to both

processes [1], since they are strongly correlated in many

cases, specially in sensory cortices [2]. Neuronal signaling,

which concerns spike and synaptic activity, involves ionic

flow through specific channels present in the neuronal mem-

brane. These ionic currents are restored by the Na,K-ATPase

[4]. It was shown that blocking this enzyme reduces the

energy consumption for less than half, for the whole brain,

leaving a residual energy expenditure which likely sustains

basic cellular activities that are not deeply correlated with
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signaling [5]. Thus, the ATP metabolism is due mainly, if

not entirely, to the Na,K-ATPase activity [1].

In this paper, it is proposed a linear mathematical model to

describe the coupling between the electrical activity and the

energy consumption in a single neuron. Further, this model

can be easily extended to a neuron mass model. The aim is to

describe the dynamics of the ionic intracellular concentration

and its effects on the Na,K-ATPase activity, particularly, its

ATP expenditure. ATP is regenerated mainly via the Krebs

cycle, that occurs within the neuron, leading to a localized

increase of the cerebral metabolic rate of oxygen, which

is measured by the BOLD signal. This metabolic process

will be incorporated, in future work, as well as the features

related to the regional increase of the blood flow, to build a

mathematical model linking the haemodynamic response to

the correspondent neural electrical activity.

A. Physiological background

The neuron is the basic structural unit of the nervous

system. It is highly specialized for the processing and trans-

mission of signals since its membrane is capable to pro-

duce electrochemical impulses and conduct them along the

membrane [6]. This cell has a characteristic negative resting

voltage with respect to its outer surface, which results from

the differences in ion concentration (namely Na+, K+, Cl−)

on opposite sides of the membrane [4]. Under normal resting

conditions, the ion flow, by means of leakage channels, is

permanent and determined by the isostatic balance between

the electrostatic force and ion diffusion [6].

The action potential is used for long-distance information

transmission. It has been shown that it is generated by

ionic current through nonlinear ionic channels [7]. Once a

nerve cell is activated, the sodium conductance increases

sharply and there is an influx of Na+, causing membrane

depolarization. Afterward, the rapid increase of potassium

conductance allows the efflux of K+, reestablishing the

intracellular potential. The open-close mechanism of the

voltage-gated channels happens in a fraction of a millisecond

and the duration of the nerve impulse is around 1ms [4].

Once activation occurs, the membrane is insensitive to new

stimuli. This phase, called the absolute refractory period, has

a duration that nearly matches with the entire time course of

the action potential [6].

The ions uptake and extrusion constantly modifies the

ionic concentrations of the intracellular and extracellular

space. The ionic composition is maintained by the Na,K-

ATPase, which transfers, against the concentration gradient,

the Na+ back outside the membrane and K+ back inside the

32nd Annual International Conference of the IEEE EMBS
Buenos Aires, Argentina, August 31 - September 4, 2010

978-1-4244-4124-2/10/$25.00 ©2010 IEEE 5480



membrane with a stoichiometric ratio of 3Na+:2K+:1ATP

[4]. The ionic flow associated with action potentials are here

considered instantaneous events, since their time constants

are much smaller than the long-term Na,K-ATPase activity,

which is the key issue of this paper.

II. MODEL DESCRIPTION

The proposed mathematical model considers the signif-

icant ionic currents (Na+ and K+) flowing through the

membrane channels by means of both passive and active

transport. The following balance equations governs the rate

of change of intracellular ionic concentration of sodium, Na,

and potassium, K

dNa

dt
= α∇Na+ β∇V − 3νpump + ǫNr(t), (1)

dK

dt
= γ∇K + δ∇V + 2νpump + ǫKr(t), (2)

where ∇Na = (Nae − Na)/x and ∇K = (Ke − K)/x
denote the concentration gradients of Na+ and K+, respec-

tively. Nae and Ke are the extracellular concentrations of

Na+ and K+, x is the membrane thickness and νpump

describes the Na,K-ATPase activity. The neuronal activity

is given by r(t). Furthermore, by multiplying r(t) by the

parameters ǫN or ǫK , it is obtained the rate, per volume unit,

of Na+ inflow or K+ outflow, respectively, in response to

the neuron stimulation. Therefore, this represents the ionic

exchanges between the intracellular and extracellular spaces

that occurs either during action potential firing or when

excitatory synapses are activated.

This model describes the ion passive transport across the

membrane similarly to the Nernst-Planck Equation [6]. The

first term in the right hand side of equations (1) and (2)

represents the ion diffusion led by the concentration gradient,

while the second terms takes into account the influence of

the electric field in its diffusion. This term depends linearly

on the differences of ionic concentrations at each side of the

neuronal membrane

∇V =
Ve − Vi
x

= −ξ
(Nae −Na+Ke −K)

x
, (3)

where Ve is the extracellular potential and is assumed the

reference (Ve = 0V ), Vi is the intracellular potential and ξ
is the constant of proportionality.

According to the literature [4], [8], the Na,K-ATPase

activity rate, νpump, is proportional to Na,

νpump = ρNa (4)

where ρ is the constant of proportionality. In equations (1)

and (2), the Na,K-ATPase stoichiometry is considered: each

ATP molecule is used to pump in 2K+ and pump out 3Na+.

The Na,K-ATPase needs energy to transport the ions

against their concentration gradient. However, under normal

conditions, it is expected that the ATP synthesis is adapted

to the cell energy demands. Thus, it is assumed enough ATP

concentration within the neuron for a properly working of the

Na,K-ATPase, which means, the pump activity only depends

on the Na and not on the ATP availability.

Table I lists the physiological constants, obtained from the

literature, used to calculate some parameters of the model.

The parameters α and γ are proportional to the diffusion

coefficients of Na, DNa, and K, DK , whereas β and δ
are proportional to the ion mobility of Na, µNa, and K,

µK . Nae and Ke are assumed to be constant. Sm denotes

the cell membrane area and Vin is the intracellular volume,

kP is the kinetic constant of Na,K-ATPase, Km,P denotes

the Michaelis constant of Na,K-ATPase for ATP uptake and

ATPc is the concentration of ATP that is constantly available

in the neuron.

TABLE I

PHYSIOLOGICAL PARAMETERS VALUES [4], [6] [9], [8].

Parameter Values

α′ = α
x

= DNa

x
.χ1 Nae = 150 mM

Ke = 5.5 mM

γ′ = γ
x
= DK

x
.χ1 x = 5×10−7cm

DNa = 1.33×10−5cm2s−1

β′ = β
x
.ξ = µNa

x
.ξ.χ2 DK = 1.96×10−5cm2s−1

µNa=5.19×10−4cm2V −1s−1

δ′ = δ
x
.ξ = µK

x
.ξ.χ2 µK=7.62×10−4cm2V −1s−1

Sm/Vin= 9×104cm−1

ρ = Sm/Vin.kP .λ kP = 0.29×10−6cm mM−1s−1

λ = ATPc(1 + ATPc

Km,P
)−1 ATPc = 2.2 mM

Km,P = 0.5 mM

The parameters ξ, χ1 and χ2 are calculated assuming the

following stationary conditions, d/dt = 0, of equations (1)

and (2): i) the membrane potential is Vi = −0.080 V and ii)

the intracellular ionic concentrations are Na = 15 mM and

K = 140 mM [4], [6].

The parameter ξ converts the differences of concentration

on potential and is calculated using equation (3):

ξ =
Vi

Nae −Na+Ke −K
= −0.16V.mM−1. (5)

Regarding the parameters χ1 and χ2, they are used to
adjust the unities of the first and second terms on equations
(1) and (2), respectively (see Table I). Considering the
steady-state, χ1 and χ2 rest the only unknowns of equations
(1) and (2) and they are calculated with the following system
of two equations, written in the matrix form:
[

DNa

x
(Nae −Na) −

µNa

x
Vi

DK

x
(Ke −K) −

µK

x
Vi

]

.

[

χ1

χ2

]

=

[

3ρNa
−2ρNa

]

. (6)

The solution of the system (6) is χ1 = 9.5 × 10−5cm−1

and χ2 = 1.5× 10−3cm−1.mM2.

An action potential sequence can be characterized by a list

of spike occurrence times. In a continuous time model, each

spike is represented by ideal Dirac pulses [10]. Therefore,

r(t), is modeled as a train of pulses with frequency f (period

T = 1/f ) and magnitude A. Since the magnitude of the

pulses for a given neuron is assumed constant, r(t) (see Fig.

1 (a)) is characterized by the pulse density, or equivalently,

by its frequency. As referred before, the sudden variation

in Na and K, associated with action potentials, is fast

enough (about 1 ms) to be approximated by a step function.

Consequently, the train of pulses are converted into ideal step
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ionic entrances or extrusions by integration, as shown in Fig.

1 (b) for the case of Na+ ions.

Fig. 1. (a) Sequence of pulses with a time pulse τ = 1ms, frequency
f = 200Hz and amplitude A = 1.15V, to stimulate the neuronal membrane.
(b) Change in Na after the stimulus. The initial value for Na is 15mM.
The positive direction is that from extracellular fluid to the intracellular one.
Each spike is associated with the increase of Na, which is followed by a
slightly decrease in Na. This is due to the Na,K-ATPase activity, whose
time constant is not sufficient to reestablish ion concentration to its resting
value, before the next spike.

The parameters ǫN and ǫK , are equal to 1 mMs−1V−1,

since it is considered [5] that action potential involve an equal

influx and efflux of Na+ and K+, respectively, to bring the

membrane potential essentially back to its resting value.

The transfer function of this MIMO (multi-input, multi-

output) system can be obtained by applying the Laplace

transform to both equations (1) and (2). After some straight-

forward simplifications and arrangements the following

second-order Transfer Functions is obtained,

Na(s) = GNae
(s)Nae +GKe

(s)Ke +Gr(t)(s)R(s) (7)

K(s) = HNae
(s)Nae +HKe

(s)Ke +Hr(t)(s)R(s) (8)

where the functions GNae
(s), GKe

(s), Gr(t)(s), HNae
(s),

HKe
(s) and Hr(t)(s) are second order systems (two poles)

with a zero.

As stated above, the Na,K-ATPase is the major consumer

of ATP within the neuron. Further, given the stoichiometry

of the pump, its ATP consumption rate (ATPr) is given

by the Na,K-ATPase activity rate, νpump. Consequently it

is proportional to Na, APTr(t) = ρNa(t). Therefore the

relation between ATPr with the neuronal electrical activity

can be derived directly from equation (7), being a second

order system (two poles) with a zero

ATPr(s) = ρ
η1s+ η2

s2 + ψ1s+ ψ2
R(s), (9)

where

η1 = ǫN , (10)

η2 = ǫKβ
′ + ǫN (γ′ + δ′), (11)

ψ1 = α′ + β′ + γ′ + δ′ + 3ρ, (12)

ψ2 = (α′ + 3ρ)(γ′ + δ′) + β′γ′ + 2ρβ′. (13)

III. RESULTS AND DISCUSSION

A MatLab/Simulink model, displayed in Fig. 2, is used

to simulate the equations (1) and (2) and compare the

results with real ones obtained from the literature. In a

Fig. 2. (a) The proposed model divided into different blocks: Na and K

compute Na and K; Na,K-ATPase represents the pump; Vm computes the
sum of the concentration gradients of Na+ and K+ that, multiplied by ξ
(see equation (3) and Table I), represents the intracellular potential. (b) The
Na block. (c) The Na,K-ATPase block.

first experiment the dynamics of Na, K and ATPr was

computed when the neuronal membrane is stimulated by

a spike train (see Fig. 4.a)). In a second experiment it is

shown that the same response is obtained if the input is a

sustained activation (square pulse) with magnitude equal to

the mean value of the previous applied pulse train, (see Fig.

4.b)), which confirms that the metabolic dynamics mainly

depends on the spike density [5]. Finally, the neuronal

membrane is stimulated by a repetitive activation (see Fig.

4.c)). These last two experiments have a good agreement with

the results published in [8] (see Fig. 3) that are consistent

with experimental results, namely in human primary visual

cortex.

In all experiments a 360 sec period of stimulations is

followed by a 360 sec period without simulation, as shown

in Fig.4.

Fig. 3. Nai (intracellular concentration of sodium) dynamics when the
neuronal membrane is stimulated by a sustained activation (left) and a
repetitive activation (right) for 0s<t<360s, followed by a control period
of the same duration. The initial value for Nai is 15mM. The positive
direction is that from extracellular fluid to the intracellular one (in [8]).

In Fig. 4 (a) the neuronal membrane is stimulated with a

train of pulses, each one with a typical time width of τ =
1ms, frequency f = 200Hz and magnitude A = 1.15V with

a mean value at the input of 0.23V [8].

The second-order system described in (9) presents a typ-

ical response of a first order systems. The analysis of the

pole-zero map, displayed in Fig. 5 supports this observation.

In fact, by using the parameters with physiological meaning
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Fig. 4. Dynamics of Na, K and ATPr in the case of (a) a spike train

activation (sequence of Dirac pulses) for 0s < t < 360s. f = 200Hz,
τ = 1ms and A = 1.15V; (b) a sustained activation for 0s < t < 360s
with A = 0.23V; and (c) a repetitive activation for 0s < t < 360s: 6
cycles of 60s time period, time pulse of 20s and A = 0.53V.

the zero almost cancel one of the poles, leading to a configu-

ration of dominant pole, p = −0.029 rad.s−1, corresponding

to a time constant of 1/0.029 ≃ 35 s which is consistent with

the values published in the literature for the time constant

of Na for mammalian CNS neurons [8]. Since the Na,K-

ATPase activity depends on the Na [4], [8] and the pump

is the main ATP consumer [1], the computed time constant

for Na is also a consistent time constant value for ATPr

dynamics.

Fig. 5. Pole-Zero Map of the Transfer Functions of equation (9). The
zero is z ≃ −0.637rads−1 and the poles are p1 ≃ −0.029rads−1,
p2 ≃ −0.641rads−1.

Figure 4 (b) presents the evolution of Na, K and ATPr

for a sustained activation of the neuron, when r(t) = 0.23
V. The results are similar to those obtained in the first

experiment, when stimulating with a train of pulses with a

mean value < r(t) >= 0.23 V. Hence, the dynamic of the

variables is actually dependent on the spike density.

In figure 4 (c) the input consists in a repetitive activation.

The stimulus, r(t) = 0.53 V, is given within 20 sec in 6

cycles with a period of 60 sec. During the 40 sec of control

the ionic concentrations approaches their resting values, due

to the Na,K-ATPase activity. However, its time rate is not

sufficient to reestablish these values.

The aim of experiments (b) and (c) is to reproduce the

same simulations found in the literature [8]. The results

obtained for Na with the proposed linear model are con-

sistent with those obtained by these authors (compare Fig.3

with the Na dynamics of Fig.4 (b) and (c)). Regarding the

results for ATPr, it is not possible to compare them directly,

nevertheless, the physiological-based assumption regarding

the dependence on Na of the Na,K-ATPase activity, as well

as knowing its stoichiometry, suggest the goodness of the

model to describe the relation of the electrical activity with

the ATP consumption rate.

IV. CONCLUSIONS

In this paper a physiological-based model to describe

the relation between the neural electrical activity with the

corresponding ATP consumption rate is presented. The linear

model, tunned with parameters with physiological meaning

extracted from the literature, shows considerable agreement

with data obtained from in vivo specimens.

The overall transfer function (TF) relating the ATP con-

sumption rate with the electrical activity, mainly described

by the spike density, is a second order system with a zero.

However, the zero cancels the effect of one of the poles,

leading to a dominant pole condition. Therefore, the resulting

TF is equivalent to a first order linear system with a time

constant of 1/0.029 ≃ 35 s which is consistent with the

values published in the literature for the time constant of

Na for mammalian CNS neurons.

This model will be included in a more general parametric

one, aiming at describe the Haemodynamic Response Func-

tion (HRF) used in functional Resonance Magnetic Imaging

(fMRI).
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