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Abstract— Human activity can be measured with actimetry
sensors used by the subjects in several locations such as the
wrists or legs. Actigraphy data is used in different contexts such
as sports training or tele-medicine monitoring. In the diagnosis
of sleep disorders, the actimetry sensor, which is basically
a 3D axis accelerometer, is used by the patient in the non
dominant wrist typically during an entire week. In this paper
the actigraphy data is described by a weighted mixture of two
distributions where the weight evolves along the day according
to the patient circadian cycle. Thus, one of the distributions is
mainly associated with the wakefulness state while the other is
associated with the sleep state. Actigraphy data, acquired from
20 healthy patients and manually segmented by trained techni-
cians, is used to characterize the acceleration magnitude during
sleep and wakefulness states. Several mixture combinations are
tested and statistically validated with conformity measures. It
is shown that both distributions can co-exist at a certain time
with varying importance along the circadian cycle.

I. INTRODUCTION

Accurate diagnosis of sleep disorders is usually only pos-
sible in clinical facilities, where a polysomnography (PSG)
exam is performed. Due to the complex setup associated
to the PSG, the procedure strongly constraints the natural
behavior of the patients and prevents long term monitoring
of the processes needed for an accurate analysis of the sleep
cycle. The wrist activity can be obtained with an actimetry
sensor, also known as actigraph, the acquired data is an
important tool in the assessment of the circadian cycle.
Several disorders, characterized by abnormal patterns of
activity and movement, can be diagnosed by the actigraphy
data.

This low-cost and non-invasive method can be used to
estimate the sleep/wakefulness (SW) state but with less ac-
curacy than the PSG. Other important indicators are however
impossible to obtain only from actigraphy data such as the
detection of sleep stages [2], [3].

The main component of the actimetry sensor is a 3D axis
accelerometer and the recorded data is usually the magnitude
of the acceleration registered in a continuous basis during
several days, e.g. an entire week. This small and portable
device typically includes a microprocessor, an analog to
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digital converter, internal memory and a low energy wireless
communication module. The acquisition rate, that can be
adjusted, is typically set to 32 Hz.
In a common configuration the device outputs the number of
movements during a given time interval, called epoch [7], [6].
However, this method does not capture relevant information
such as movement intensity and dynamics.
In other configuration, the maximum acceleration magnitude
during each epoch is registered. This configuration is very
sensitive to noise, and non maximum, but relevant, peaks are
not considered [5].
In the most common configuration the mean magnitude (or
digital integration) of the activity is computed during each
epoch [5].

The actimetry sensor is usually placed in the limbs. The
most common location in long term monitoring procedures is
the non-dominant wrist of the patient. Although the used de-
vice also registers the light and position of the patient along
the time, in this work, the proposed mixture-distributions
only take into account the actigraphy data.

The different pattern of movements observed during the
circadian cycle can be easily used to roughly distinguish
wakefulness and sleep states [2]. During the day (typically
wakefulness state) the movements are usually very hetero-
geneous and dense. On the other hand, during the night
(sleep state) the movements are more impulsive and sparse
[4]. The difference resides not only in the intensity of the
actigraphy signal but also in its statistical characterization.
The differences on the actigraphy data in these two different
states is related with the different purpose natures of them.
During the day there is usually a goal and the corresponding
movements have specific coherent and consistent purposes.
On the other hand, during the sleep state the movements
are involuntary and usually purposeless which make them
impulsive non coherent and sparse.

In this paper the actigraphy data is described by a weighted
mixture of two distributions where the weight evolves along
the circadian cycle. One of the distributions of the mixture
is mainly associated with the wakefulness state and the
other is associated with sleep state. The difference between
these two distributions is related with the characteristics
associated to the different pattern of movements observed
during wakefulness and sleep states. Real data in raw format,
from 20 healthy subjects, is used to statistically characterize
the actimetry signal and propose a mixture distribution model
to describe it.

A common approach in the analysis of actigraphy is
the description of data as a function of the number of
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recorded movements along each epoch. In [7] this analysis
led to an exponential probability distribution to describe data
during sleep state, and an activity dependent distribution for
wakefulness state data. While activities such as running or
walking can be described with a normal distribution, standing
or laying is best described by Poisson or exponential distri-
butions [8]. In [1], actigraphy data has been characterized
using the magnitude for each epoch, in this work a Maxwell -
Boltzan distribution was suggested to describe wakefulness
state and poisson distribution for sleep state.

This paper is organized as follows. In section I, a small
introduction is made about the techniques used to estimate
the Sleep/Wakefulness state, the state of the art is revised
and the paper organization described. In section II of the
Methods, detailed information is given about the data sets
and the analysis procedures for actigrahy data. Results are
presented and discussed in section III and conclusions are
drawn in section IV.

II. METHODS

In this study 20 healthy patients wore an actimeter in
the non dominant wrist for a period of approximately 14
days/nights in normal quotidian life. Light intensity and
position were also acquired and stored by the actimeter.
The epoch length was set to 60 seconds, the sampling rate
32Hz and the resolution 12 bits. Light intensity and position
were stored in an adaptive sampling rate basis, according
to a variation criterion, with a maximum period rate of one
minute. This additional information, together with patient’s
position and a sleep e-Diary [1] was used in the segmentation
process of the actigraphy data. This process was supervised
by trained technicians. Fig. 1 shows an example of segmented
actigraphy data.

Fig. 1. Sleep and wakefulness states are characterized by different patterns
of movements

For each patient, the segmented actigraphy was grouped
according to the corresponding state, wakefulness or sleep,
thus two large data arrays were obtained per patient. The
histograms of these two arrays were computed and several
different distributions were fitted to assess the best represen-
tation for each data type, according to

θ̂k = argmin‖pk(x,θ)−hk(x)‖2 (1)

where pk(x,θ) is the distribution used to fit the real his-
togram hk(x) obtained from the kth subject.

The fitting error was computed according to

ek =
∑ |pk(x,θ)−hk(x)|

∑ pk(x,θ)
(2)

where k is the subject index, p(x,θ) is the distribution to be
fitted and h(x) is the histogram.

It was shown that, while some single distributions can fit
the data with acceptable error, a mixture of two distributions
fits better the actigraphy data. Thus, several mixtures of two
different distributions were tested in order to identify the
combination that best describe the actigraphy data during
the two states. The probability distribution functions of the
mixture distribution is the following

p(x) = α · ps +(1−α) · pw (3)

where α is a weight coefficient and ps, pw are the probability
function for sleep and wakefulness states respectively. In
order to estimate the optimal values for the parameters of the
distribution functions, nonlinear curve-fitting problems were
solved by using the function lsqcurvefit from Matlab. From
the initial histogram fitting process, four distributions were
chosen, two for the sleep state and two for the wakefulness
state. The optimal mixture was then found by combining
these distributions, as shown in Table I.

TABLE I
TABLE OF MIXTURE DISTRIBUTIONS

pw ps

Maxwell distribution Gamma distribution
Maxwell distribution Inverse Gaussian distribution
Rician distribution Gamma distribution
Rician distribution Inverse Gaussian distribution

The assessment of the fitting process was done through the
fitting error, by the Kolmogorov-Smirnov p-value test (KS)
and by the Kullback-Leibler distance (KL).

Finally, to infer the performance of the algorithm in non-
segmented data, the evolution of α was observed along
the circadian cycle for several days. Assuming that the
actigraphy data can be modeled by a mixture distribution
and that each distribution has a variable weight, depending
on the period of the circadian cycle, then α from (3) should
increase during the night and decrease during the day. This
can be used to infer Sleep/Wakefulness state.

Due to the large size of the data sets, the algorithms
were implemented using overlapping sliding windows. The
window size was set to 100 samples (1 sample = 1 minute)
and with a sliding step of 100 samples. The histograms were
computed for each window and the parameters of distribution
functions were estimated.

III. RESULTS

Tests performed with the 20 actigraphy data sets and
several distributions have shown that the Gamma distribution
(G) and the Inverse Gaussian distribution (IG) are the most
appropriated to describe the actigraphy data during sleep.
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Fig. 2. Histogram for sleep state data fitted with different distribution

The Rician (R) distribution and the Maxwell - Boltzan
distribution (M) are the more appropriated to describe the
data during the wakefulness state. Fig. 2 and Fig. 3 plot the
obtained results, when modeling the actigraphy data as a
single distribution.

Fig. 3. Histogram for wakefulness state data fitted with different distribution

The mean and standard deviation values displayed in all
tables were computed by using whole data from all subjects.
On the contrary, the histograms displayed in all Figs in this
section were computed from a single subject for illustration
purposes only.

Fig. 2 shows the histogram obtained for the segmented
sleep data. From the main part of the histogram it can be
seen a small lobe which suggests the presence of other
distribution. The same situation occurs in the wakefulness
state histogram, plotted in Fig. 3, where before the main
lobe there is a less pronounced peak.

TABLE II
MIXTURE DISTRIBUTION DURING wakefulness STATE

Wake f ulness
Mix. dist. e σ KL σ KS σ

M&G 0.112 0.032 0.236 0.101 0.012 0.034
M&IG 0.17 0.031 0.35 0.1 10−5 10−5

R&G 0.095 0.033 0.182 0.059 0.027 0.038
R&IG 0.134 0.04 0.313 0.175 0.004 0.011

TABLE III
MIXTURE DISTRIBUTION DURING sleep STATE

Sleep
Mix. dist. e σ KL σ KS σ

M&G 0.19 0.05 0.067 0.403 0.005 0.02
M&IG 0.22 0.06 0.10 0.35 0.001 0.004
R&G 0.188 0.055 0.016 0.343 0.019 0.085
R&IG 0.226 0.093 0.151 0.362 0.001 0.006

The mixture distributions shown in Table I were tested
with Sleep and Wakefulness data. During wakefulness state
the minimum mean fitting error obtained with the Rician
and Gamma distributions is e = 0.095 and the corresponding
standard deviation is σ = 0.033. For Maxwell and Gamma
distribution mixture the minimum mean error is 0.112 with
standard deviation 0.032, as shown in Table II.

For sleep state, the minimum mean fit error is e = 0.188
with standard deviation σ = 0.055 for Rician and Gamma
mixture distributions as shown in Table III.

The obtained results are supported by the Kolmogorov-
Smirnov p-value test (KS) and the Kullback-Leibler distance
(KL).

Fig. 4 and Fig. 5 show the histograms obtained for sleep
and wakefulness data and the respective fit using two dif-
ferent mixture distributions. The data represented in the two
histograms correspond to one single patient and all the data
corresponding to sleep and wakefulness states respectively.

The mixture that lead to a smaller mean fitting
error (0.265), Kullback-Leibler divergence (0.022) and
Kolmogorov-Smirnov test p-value (0.044), is formed by
the Gamma distribution for the sleep state and the Rician
distribution for the wakefulness state (see table IV.).

The algorithm was finally tested with non-segmented data,
according to (3), in order to observe the evolution of α

through the circadian cycle. Fig. 6 plots the actigraphy
data and the corresponding evolution of α during a period

TABLE IV
MIXTURE DISTRIBUTIONS ALONG THE CIRCADIAN CYCLE

Along the circadian rhythm
Mix. dist. e σ KL σ KS σ

M&G 0.289 0.08 0.018 0.012 0.039 0.066
M&IG 0.281 0.057 0.034 0.018 0.023 0.025
R&G 0.265 0.061 0.022 0.009 0.044 0.068
R&IG 0.268 0.039 0.029 0.016 0.035 0.042
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Fig. 4. The mixture distribution and the sleep histogram.

Fig. 5. The mixture distribution and the wakefulness histogram

Fig. 6. Evaluation of α along the Circadian Cycle

of approximately 26 hours. As expected, the weight of
the two distributions evolves according the circadian cycle.
While during sleep, the dominant distribution is the Gamma
distribution and the value of α is close to 1, during the day
the dominant distribution is the Rician distribution with α

presenting smaller values, as expected.

IV. CONCLUSION

This paper proposes a new statistical distribution to de-
scribe the different statistical characteristics of the wrist
actigraphy during sleep and wakefulness states. It is shown
that the global activity can be described by a mixture of two
distributions; one associated with movements during sleep
state and other associated with movements during wakeful-
ness state. The main reason for the differences observed
between both types of activities resides in the purposeless
nature of the movements during sleep state.

During sleep state the movements are mainly described by
the Gamma component of the mixture while for wakefulness
state the Rician distribution is dominant. These two distri-
butions co-exist with varying importance during the whole
circadian cycle. The weight coefficient of the mixture, α ,
evolves along the circadian cycle and may be used to help
in the estimation of the Sleep/Wakefulness state.

In the next steps of this work other physiological param-
eters and data will be used, jointly with the α parameter,
to accurately estimated the SW state, characterize the sleep
behavior and diagnosis some sleep disorders.
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