
Bayesian optimization of perfusion and transit time estimation in

PASL-MRI

Nuno Santos, João Sanches and Patrı́cia Figueiredo

Abstract— Pulsed Arterial Spin Labeling (PASL) techniques
potentially allow the absolute, non-invasive quantification of
brain perfusion and arterial transit time. This can be achieved
by fitting a kinetic model to the data acquired at a number of
inversion time points (TI). The intrinsically low SNR of PASL
data, together with the uncertainty in the model parameters,
can hinder the estimation of the parameters of interest. Here,
a two-compartment kinetic model is used to estimate perfusion
and transit time, based on a Maximum a Posteriori (MAP)
criterion. A priori information concerning the physiological
variation of the multiple model parameters is used to guide the
solution. Monte Carlo simulations are performed to compare
the accuracy of our proposed Bayesian estimation method with
a conventional Least Squares (LS) approach, using four differ-
ent sets of TI points. Each set is obtained either with a uniform
distribution or an optimal sampling strategy designed based on
the same MAP criterion. We show that the estimation errors
are minimized when our proposed Bayesian estimation method
is employed in combination with an optimal set of sampling
points. In conclusion, our results indicate that PASL perfusion
and transit time measurements would benefit from a Bayesian
approach for the optimization of both the sampling strategy
and the estimation algorithm, whereby prior information on
the parameters is used.

I. INTRODUCTION

Perfusion measures the rate at which nutrients are deliv-

ered by the blood to the tissues in the capillary bed and its

accurate measurement is important in the diagnosis and mon-

itoring of different pathological conditions. Pulsed Arterial

Spin Labeling Magnetic Resonance Imaging (PASL-MRI)

techniques offer a non-invasive way of measuring perfusion,

by magnetically labeling the water protons in the arterial

blood through magnetization inversion and then measuring

the magnetization of the tissues after a certain period of time,

the inversion time (TI). The magnetization difference ∆M
between a labeled image and a control image, as a function

of TI, can be described by a general kinetic model [1]. Here,

we use an extension of this single-compartment model to a

two-compartment model, by accounting for the contributions

of labeled water molecules in the capillary blood, Hblood, as
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Fig. 1. PASL signal ∆M as a function of the inversion time TI , according
to the two compartment kinetic PASL model.

well as in the brain tissue, Htissue [2]

∆M(t,θ) = 2αf
λ

(Htissue(t,θ)

+Hblood(t,θ)e
−TE.D

(∗)
2 ) ,

(1)

where t = [t1, t2, ..., tN ] is the vector of TI, θ =
[f,∆t, τ, τex, T1t, T1b] is the vector of parameters: f is the

perfusion, ∆t is the arterial transit time (ATT), τ is the label

bolus time width, τex is the brain-blood water exchange time,

T1t is the tissue longitudinal relaxation time, T1b is the blood

longitudinal relaxation time, α is the labeling efficiency, λ
is the brain-blood partition coefficient of water, and
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with T
(∗)
2b and T

(∗)
2t being the blood and tissue transverse

relaxation times and TE the acquisition echo time. The

∆M curve as a function of TI is illustrated in Fig. 1. In

principle, if the values of the other model parameters are

available, then the acquisition of data at a single TI point

is sufficient for the estimation of perfusion. However, there

is considerable uncertainty regarding the values of various

model parameters, particularly in respect to the arterial transit

time and in some pathological conditions. Therefore, in order

to correctly estimate f , ∆t should also be estimated by fitting

the PASL model to ∆M data sampled at multiple TI points

[3]. On the other hand, the acquisition of more sampling

points can lead to undesirably long scanning times. This

is especially critical because PASL measurements require

substantial signal averaging as a consequence of their low

Signal to Noise Ratio (SNR). Therefore, a compromise

between the number of TI points and scanning time has to

be made. Previous studies have shown that the distribution

of the TI sampling points along time has a strong effect on

the accuracy of the estimation of the parameters. Optimal
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sampling strategies were designed based on the Fisher in-

formation matrix criterion , in order to minimize scanning

time while maximizing estimation accuracy [4]. A Bayesian

extension of this criterion has also been proposed to take into

account the variability of multiple model parameters [5].

In this paper, we implement a Bayesian algorithm based on

the Maximum a posteriori (MAP) criterion for the estimation

of perfusion, f , and transit time, ∆t, from PASL data. A

priori assumptions about the physiological variation of the

model parameters are incorporated in the framework to better

guide the algorithm to a more accurate solution. We then

test whether the proposed Bayesian estimation approach,

in combination with an optimal sampling strategy, provides

the most accurate measurements of perfusion and ATT,

relative to the standard Least Squares estimation method and

uniformly distributed sampling points.

II. PROBLEM FORMULATION

Let Y = [y1, y2, ..., yN ] be a set of observations

yi = ∆M(ti,θ) + ηi , i = 1...N , (3)

where ηi ∼ N(0, σ2
y) is assumed to be Additive White Noise

(AWGN) and ∆M(ti,θ) is the magnetization difference

predicted by the PASL model (1) at time i (both α, λ and

D
(∗)
2 are assumed constant). Because this model is highly

non-linear, it is necessary to use appropriate techniques to

solve this ill-posed problem. A common approach to estimate

the parameter vector θ is the Least Squares (LS) method,

formulated as the following optimization task

θ̂ = argmin
θ

E(Y , t,θ) , (4)

where E(Y , t,θ) is the following energy function

E(Y , t,θ) = ‖Y −∆M(t,θ)‖
2
2 . (5)

In this work, a second method is also considered. A Bayesian

framework is proposed to estimate the parameters using the

MAP criterion which is equivalent to minimize the following

energy function

E(Y , t,θ) = − log [p(Y |t,θ)p(θ)] , (6)

where p(Y |t,θ) represents the acquisition process (the

observations are assumed to be statistically independent) and

p(θ) models the a priori knowledge of the parameters to

be estimated. All the parameters of θ are assumed to be

independent and Gaussian distributed around a mean value

with different standard deviations according to the level of

uncertainty associated with each one. Then, the distribution

of θ is a multivariate Normal distribution N(θ,C) with

a diagonal covariance matrix C = diag({σ2
1 , σ

2
2 , ..., σ

2
P })

(where P is the number of parameters), and the energy

function (6) may be written as follows

E(Y , t,θ) =
1

2
‖Y −∆M(t,θ)‖

2
2

︸ ︷︷ ︸

Data Fidelity term

+
1

2
σ

2
y(θ − θ)TC−1(θ − θ)

︸ ︷︷ ︸

Prior term

.
(7)

Once again, to find the optimal parameters with the

Bayesian approach we need to determine the θ that minimize

the energy function (equivalently given by (4)).

In both estimation methods (LS and Bayesian), the opti-

mization is accomplished by using the Levenberg-Marquardt

(LM) algorithm [6]

θ
n+1 = θ

n +D
−1 .∇θE(Y , t,θn) , (8)

where ∇θE(Y , t,θ) is the gradient of E(Y , t,θ) with

respect to θ and D is given as

D = H(Y , t,θn) + µ . diag(H(Y , t,θn)) , (9)

where H(Y , t,θ) = ∂2E(Y ,t,θ)
∂θi∂θj

is the Hessian matrix and

µ is a damping factor of the LM algorithm.

When the iterative optimization LM algorithm does not

converge, a Continuous Variation Method [7] is used to en-

force a priori information about the parameters and regularize

the solution. In this strategy, a fudge factor greater than 1

is introduced in (7), multiplying the prior term. This factor

converges to 1 along the iterative process, guarantying the

convergence of (8) in the initial iterations. However the right

solution is reached at the end when the factor becomes 1.

In this work, using synthetic data, the parameters αi =
σ2
y/σ

2
i are computed and used in the estimation of θ with

the Bayesian approach. When using real data, an accurate

estimation of the amount of noise corrupting the data, σ2
y , is

used. The uncertainty associated with the parameters, σ2
i , is

assumed to be known.

III. MONTE CARLO SIMULATIONS

Monte Carlo simulations [8] were performed in order

to test the performance of the proposed algorithm in the

estimation of the parameters f and ∆t. For each noise

level, 1000 synthetic datasets were generated using the two-

compartment PASL kinetic model in Eq.(1) . Six different

noise levels were obtained as a fraction of the maximum

signal

σY = β ×max [∆M(t,θ)] , (10)

where β = {10, 50, 75, 100, 125, 150}[%].
For each set of TI points, the process of estimation of the

parameters was then performed using both a standard LS

method and our proposed Bayesian approach.

The a priori knowledge of the parameters was obtained

from the literature [4][9][10][11] where the parameters are

described with a Normal distribution. Typical gray matter

values at 3T drawn from their physiological variations were

considered (see Table I). This information was also used

to randomly generate the true values of the parameters for

each estimation. The remaining variables used in the two

compartment model were considered constant where α =

0.9, λ = 0.9 ml of blood per g of tissue, T
(∗)
2b = 0.1 s and

T
(∗)
2t = 0.05 s [2].

The simulations were performed with four different sets

of 100 inversion time points (TI), shown in Fig. 2:

(i) Uniform; TI points uniformly distributed in the interval

[100, 3000]ms;
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TABLE I

PRIOR INFORMATION. THE PARAMETERS ARE RULED BY NORMAL

DISTRIBUTIONS WITH DIFFERENT MEANS AND VARIANCES.

Parameter Mean Standard Deviation

f (s−1) 0.012 0.004

∆t (s) 0.7 0.3

τ (s) 0.7 0.1

τex (s) 0.7 0.35

T1t (s) 1.3 0.1

T1b (s) 1.6 0.1

Fig. 2. Accumulation curves for the different sets of TI points considered
in the simulations (with 125% of noise level): (i) Uniform (purple), (ii)
Uniform Sets (green), (iii) Optimal (red) and (iv) Clustered Optimal

(black).

(ii) Uniform Sets; 12 Sets of TI points uniformly dis-

tributed in the interval [200, 2400]ms, which was ob-

tained from the literature [12];

(iii) Optimal; TI points optimally distributed in the interval

[100, 3000]ms [5];

(iv) Clustered Optimal; TI points optimally organized in

5 clusters in the interval [100, 3000]ms.

The optimal sampling strategy (OSS) was obtained ac-

cording to the algorithm proposed in [5], using the two-

compartment model described here, the parameter distribu-

tions shown in Table I and the corresponding noise level.

A clustered optimal sampling strategy was designed in

order to fulfill the experimental requirements of ASL data

acquisition, imposed by the minimum temporal resolution

feasible and the minimum number of repetitions per TI to

achieve a reasonable SNR. A k-means clustering procedure

was applied to distribute the points in the optimal set among

a fixed number of mutually exclusive clusters [13][14]. For

comparison, a uniform sampling strategy based on the same

interval as the OSS was tested, as well as a slightly different

uniform sampling strategy according to the literature [12] in

which approximately the same number of inversion times are

divided in sets of 12 points in the interval [200, 2400]ms.

IV. RESULTS

For each Monte Carlo simulation, the parameter estima-

tion errors, ǫθ(i) , and the Signal to Noise Ratio of both

data (SNRinitial) and estimated curves (SNRfinal) were

calculated as follows

ǫθ(i) =

∣

∣

∣
θ
(i)
true−θ

(i)
est

∣

∣

∣

θ
(i)
true

SNRinitial = 10 log
{

‖∆M‖2

‖Y −∆M‖2

}

SNRfinal = 10 log

{

‖∆M‖2

‖Ŷ −∆M‖
2

}

,

(11)

where θ
(i)
true and θ

(i)
est are the true and estimated parameter

values, respectively, while ∆M is the theoretical curve

obtained with (1) for θtrue, Y is the noisy data obtained

with (3) and Ŷ is the estimated curve. An improved SNR

(ISNR) was determined as the difference between the final

and the initial mean values of the SNR.

A repeated measures Analysis of Variance (ANOVA) was

performed in order to test for any significant effects on these

measures of the factors estimation algorithm (LS, Bayesian),

sampling strategy (Uniform, Uniform Sets, Optimal, Clus-

tered Optimal) and noise. A significant main effect of the

three factors was observed for all measures (p < 0.001).

Moreover, the interactions between noise and both sampling

strategy and estimation algorithm were also significant (p <
0.001).

Specifically, the two optimal sampling strategies are more

accurate than the two uniform strategies, as expected. In

terms of the estimation algorithm, the Bayesian method

generally provides more accurate results than the LS. We

observe that the two uniform strategies were not significantly

different from each other, nor were the two optimal strate-

gies. In particular, it is interesting to notice that clustering

the optimal set of TI points around 5 values only does not

impair the accuracy of the results. Therefore, in order to

better understand the main effects of the estimation algorithm

and the sampling strategy, the results are shown only for the

data obtained with the clustered optimal and the uniform

sets strategies. The mean and the standard error (SE) of

the absolute values of the errors ǫf and ǫ∆t are shown in

Fig. 3(a) and Fig. 4(a) and those of the ISNR are shown in

Fig. 3(b) and Fig. 4(b).

As expected, the absolute values of the errors ǫf and ǫ∆t

in both parameters increase with the level of noise in the

data. Additionally, the improvement in accuracy observed

for Bayesian vs LS methods and for optimal vs uniform

strategies also increases with the noise level. For the lowest

noise level, the absolute values of the estimation errors are

relatively high. This is a consequence of the variability of the

fixed model parameters, which is evident for low noise levels

but becomes dominated by the noise in the data as the noise

level increases. For the same reason, the ISNR is considerably

smaller for the lowest noise level relative to higher noise

levels as a consequence of the decreased SNRfinal.

V. CONCLUSION

A Bayesian estimation algorithm was implemented and

validated for the measurement of perfusion and arterial

transit time, based on a two-compartment kinetic model of
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Fig. 3. (a) Absolute estimation errors (%) of f (top) and ∆t (bottom)
(mean ± SE) and (b) Improved SNR (mean ± SE), for Uniform Sets
(left/blue columns) and Clustered Optimal sets (right/red columns) of
TI sampling points, considering the LS (left) and the Bayesian (right)
estimation algorithms and for each level of noise.

PASL data and incorporating a priori knowledge about the

physiological variation of the parameters. Monte Carlo sim-

ulations were performed to compare the estimation accuracy

obtained with the Bayesian algorithm relative to a standard

LS method, using four different sets of TI points. We showed

that both the estimation algorithm and the sampling strategy

used have an effect on the results, particularly for high

noise levels. Most importantly, we found that the estimation

errors are minimized when optimization with a Bayesian

approach is used both in the estimation algorithm and in

the design of the sampling strategy. Interestingly, we also

showed that clustering the optimal sampling points around a

limited number of distinct TI values can be used in practice

without impairing the accuracy of the results.
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