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Abstract— Carotid plaques are the main cause of neurological
symptoms due to distal embolization or flow reduction. An
objective classification of such lesions into symptomatic or
asymptomatic is crucial for optimal treatment planning.

The paper proposes a diagnostic framework to tackle this
problem which consists of image processing, plaque detection,
feature extraction and classification using AdaBoost in B-mode
ultrasound (BUS) images. Image processing includes grey-
level normalization, envelope Radio-Frequency (eRF) image
retrieval, de-speckling and speckle extraction early proposed
by the authors. The estimated images are used to extract a set
of echo-morphology and texture features which are fused with
clinical information provided by the physician.

The classification performance, assessed by means of the
Leave-One-Patient-Out (LOPO) cross-validation technique ap-
plied to a population of 44 symptomatic and 102 asymptomatic
plaques, yields 99.2% overall accuracy and 100% sensitivity
in classifying symptomatic vs. asymptomatic plaques. Feature
analysis and comparison of classification results obtained with
different feature sets suggest the usefulness of an extended
feature set here proposed for the identification of symptomatic
plaques among the traditional ones used in the literature.

I. INTRODUCTION

Carotid plaques represent the primary cause of stroke

which is the third leading cause of death in most industrial-

ized countries. Among patients with such lesions, only a few

show warning events, whereas the majority present cerebral

events associated with previously asymptomatic plaques.

Several trials reported the significance of the degree of

stenosis as a major indicator of stroke in both symptomatic

and asymptomatic groups. Moreover, these studies have

shown that surgical removal of plaques (endarterectomy)

associated with a degree of stenosis of more than 70%

resulted in an absolute reduction of 17% in the risk of

ipsilateral stroke after 2 years and 11.6% at 3 years [1,2].

These observations indicate that not all the carotid plaques

showing significant degree of stenosis are harmful and as

carotid endarterectomy carries a considerable risk for the

patient, an optimized characterization and identification of

symptomatic plaques must be carried out. As suggested

by histopathological studies, other factors such as plaque

structure and echo-morphology (information on plaque grey-

scale intensities) have shown to correlate with neurological

symptoms [3,4]. In [5], surface disruption, severe stenosis,
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Fig. 1. Plaque classification framework.

plaque heterogeneity and presence of juxta-luminal echolu-

cent area were parameters associated with high morbidity.

Studies aiming at quantitatively characterize carotid plaques

include the computation of the grey scale median (GSM)

from BUS images [5], the use of first and second order

statistics [6], Fourier power spectrum [6] and Law’s texture

energy [7]. Moreover, the importance of the speckle present

in BUS images as well as its statistical modeling for tissue

characterization has been reported [8]. Here, a recently

proposed algorithm [9] is used to estimate the de-speckled

(speckle-free) and speckle images while it is argued that

such fields are, respectively, sources of echo-morphology and

texture information useful for plaque characterization.

The purpose of the paper is two-fold: (i) to build a plaque

classification framework which uses a wide set of features,

gathering clinical information as well as echo-morphology

and texture parameters extracted after application of the de-

speckling algorithm, and (ii) to determine the relative signif-

icance of the computed features in identifying symptoms in

carotid plaques.

II. METHODS
In this section we describe the plaque classification frame-

work (Fig. 1) which requires image normalization, estimation

of the eRF image, de-speckling and speckle extraction. Using

the computed images, a wide set of features is extracted from

a region of interest (ROI) - plaque - outlined by the physician

and used to train a classifier.

Data include 146 carotid bifurcation plaques from 99

patients, 75 males and 24 females. Mean age was 68 years

old (41-88). Patients were observed consecutively through

neurological consultation which included non-invasive exam-

ination with color-flow duplex scan of one or both carotids. A

plaque was considered symptomatic when Amaurosis fugax

or focal transitory, reversible or established neurological

symptoms in the ipsilateral carotid territory, were observed
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Fig. 2. Image processing consisting of normalization, eRF image estimation
and computation of de-speckled and speckle images.

in the previous 6 months. 102 plaques were identified as

asymptomatic while 44 have shown symptoms.

Image normalization is an important step to guarantee

that images acquired under different conditions yield com-

parable and reproducible features and classification results.

Image normalization was achieved as previously reported [4];

hence, the image intensities were linearly scaled so that the

adventitia and blood intensities would be in the range of

190-195 and 0-5, respectively (Fig. 2).

The normalized image is used to segment existing

plaque(s) in the image. Each plaque is delineated by drawing

around its structure and the obtained contour is evenly re-

sampled and smoothed using spline interpolation.

De-speckled and Speckle images, needed to compute

the echo-morphology and texture features, are computed

from the normalized BUS images. In a first step, the eRF

image is estimated from the normalized BUS according to

[10]. In a second step, the estimated eRF image is used to

compute the speckle-free and speckle components, displayed

in Fig. 2. This second step uses a Bayesian framework with

the Maximum a Posteriori (MAP) criterion where the pixels

are considered independent random variables with Rayleigh

distribution, as described in [9].

Feature extraction is required to train the classifier.

Features are obtained from clinical information provided by

the physician and objective echo-morphology and texture

parameters automatically computed from the normalized

BUS, eRF, de-speckled and speckle images.

1) Clinical features: given by an experimented physician

during consultation. The 4-element vector of clinical features

include: (i) evidence of plaque disruption, defined by an

interruption in the echogenic surface of the plaque; (ii)

presence of fibrous cap, identified as an echogenic line

over the structure of the plaque; (iii) the degree of steno-
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Fig. 3. RMM applied to plaque intensities in the eRF image: the RMM PDF
is obtained as in (1) using the estimated weights and Rayleigh parameters.

sis, quantified using cross-section area measurement com-

bined with hemodynamic assessment, and (iv) plaque echo-

structure appearance, where uniform plaques are defined as

homogeneous while plaques presenting significant areas of

echolucency are defined as heterogeneous.

2) Histogram features: extracted from the histogram of

normalized pixel intensities inside the plaque. Hence, 13

histogram features are estimated, including the mean grey

value, median grey value, percentage of pixels with grey

value lower than 40, standard deviation of grey values,

kurtosis, skewness, energy, entropy, 10-, 25-, 50-, 75- and

90- percentiles.

3) RMM features: plaque echo-morphology may present

different regions of echogenicity. In a recent publication

[11], the authors proposed to use a mixture of Rayleigh

distributions, known as Rayleigh Mixture Model (RMM) for

modeling the plaque echo-morphology. The application of

RMM is made on the eRF image, which can be approximated

by Rayleigh statistics. Pixel intensities inside the plaque

are considered random variables described by the following

mixture of K distributions:

p(yi|Ψ) =
K

∑

k=1

θkp(yi|σk), (1)

where p(yi|σk) is the Rayleigh probability density function

(PDF). θk and σk are the weights and Rayleigh parameters

of the mixture, respectively, which are estimated using the

Expectation-Maximization method and K = 6 (see Fig. 3).

Hence, we get a 13-element feature vector, consisting of

6 mixture weights, 6 Rayleigh parameters and the effective

number of RMM components, determined by the number of

mixture components with non-zero weight.

4) Rayleigh features: the de-speckled image is used to

compute average theoretical estimators of the Rayleigh dis-

tribution inside the plaque region, including the mean, σµ =
σi,j

√

π
2

, median, συ = σi,j

√

2 log(2), variance, σσ =

σi,j

√

4−π
2

of Rayleigh values and percentage of pixels with

Rayleigh value lower than 40, σPP40 = 100 − e−40
2/2σi,j

2

.

5) Texture features: involves the study of the spatial

distribution of grey levels inside the plaque region extracted

from the speckle image. These features are estimated from

grey level co-occurrence matrices (GLCM), Autoregressive

models (ARM) and Wavelet models. GLCMs are constructed

using the relative frequencies P (i, j, d, θ) with which two

neighboring pixels with grey levels i and j at a given
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distance d and orientation θ occur on the image. The

distances used are d = {1, 2, 3, 4} pixels and the angles

θ = {0, 45, 90, 135}o, thus creating 16 different GLCMs.

From each computed GLCM we estimate the Contrast,

Correlation, Energy and Homogeneity thus producing a 64-

element feature vector. Furthermore, to investigate a possible

relation between each pixel and its neighborhood, the ARM

is used on the speckle image. This model assumes ηi,j to

be a 2D random variable where each pixel depends on its

causal neighbors according to [12]:

ηi,j =

p,q
∑

n,m

an,mηi−m,j−n + ui,j (2)

where an,m are the ARM coefficients to be estimated and

ui,j are the residues. Considering a 1st order model such

that (p, q) = (1, 1), we estimate 3 ARM coefficients. Alter-

natively, plaque texture can be studied using multi-level 2D

wavelet decomposition. This technique consists in using low

and high pass filters onto the approximation coefficients at

level l in order to obtain the approximation at level l + 1,

and the details in three orientations (horizontal, vertical,

and diagonal). Here, decomposition is made along l = 4
levels. For each level, the percentage of energy for the

approximation EA as well as horizontal EH , vertical EV

and diagonal ED details is computed. Hence, a 13-element

wavelet-based feature vector is obtained composed of 4 (EH )

+ 4 (EV ) + 4 (ED) + EA.

Finally, each plaque is described by a feature vector x of

4 (Clinical) + 13 (Histogram) + 13 (RMM) + 4 (Rayleigh)

+ 80 (Texture) = 114 features.

A. Classification
In this paper, the AdaBoost (Adaptive Boosting) binary

classifier [13] was used. AdaBoost designs a strong classifier

by linearly combining a set of weak classifiers. The weak

classifier used in this work is decision stumps, which has

shown high performance for plaque classification [14]. At

each round of the boosting algorithm, the classification error

in classifying the training data set is minimized by selecting

the best discriminative value of one feature in the vector x.

In addition, AdaBoost assigns at each round a weight to the

selected feature which results in an automatic selection of the

most discriminant features, given by the relative weight they

assume at each round. Note that each feature can be selected

more than one time: in that case, the sum of each weight for

a specific feature is considered. Let us define NP the number

of plaques, NF the number of features, f = 1, . . . , NF the

index of each feature, NR the number of rounds by whose

the computation has been repeated and αf
p,r the weight

assigned to the f th feature. The normalized weight assigned

by AdaBoost to each feature can be computed as:

wf =
1

NP NR

NP
∑

p=1

NR
∑

r=1

αf
p,r

max{α1
p,r, . . . , α

NF
p,r }

(3)

This feature selection process can be applied to perform

an a-posteriori analysis on the relevance and usefulness of

the features used for plaque classification.

The classifier performance is assessed by means of the

LOPO cross-validation technique, where the training set is

built taking at each time all patients’ data, except one,

used for testing. Performance results are given in terms

of Sensitivity: Sens = TP
TP+FN , Specificity: Spec =

TN
TN+FP , Precision: Prec = TP

TP+FP and Accuracy: Acc =
TP+TN

TP+TN+FP+FN , where TP = True Positive, TN = True

Negative, FP = False Positive and FN = False Negative.

III. EXPERIMENTAL RESULTS
In this section we present two types of results: (i) the

classification performance using the proposed framework and

(ii) analysis of the relevance of the features used for discrim-

inating between symptomatic and asymptomatic plaques.

A. Classifiers Performance
In order to study the classification performance under

different conditions, the classifier is trained with 5 different

feature sets, considering: clinical information (F.1), clinical

information and histogram features (F.2), all features ex-

cept clinical information (F.4) and finally considering all

the features (F.5). Moreover, we define a feature set F.3
which results from the computation of histogram and texture

features from normalized BUS images, thus discarding the

information contained on the de-speckled and speckle im-

ages. The 5 feature sets are used to classify the plaques of

the database according to the LOPO technique. Classification

performance is shown in Fig. 4 while a detailed description

is given in Table I.

The following observations can be made: first, the clinical

information (F.1) used is not enough per se for discrimi-

nating between symptomatic and asymptomatic plaques; the

combination of F.1 with histogram features extracted from

the normalized image (F.2) in general improves classifi-

cation, although the identification of symptomatic plaques

(Sens) is still relatively weak. Moreover, in order to investi-

gate the usefulness of other sources of information, such as

the de-speckled and speckle images for plaque classification,

we compare the classification results obtained with F.3
and F.5: accuracy and sensitivity results are substantially

improved from F.3 to F.5 showing that it is preferable to use

echo-morphology and texture parameters extracted from the

speckle-free and speckle images, rather than computing such

features on the normalized image. In addition, the classifier

F.4, which exclusively considers ”image” features outper-

forms the classifier F.1, which does not states that clinical

parameters are not important but that increasing relevance

should be given to features obtained from image processing.

Finally, the classification performance obtained with the total

feature set (F.5) is the best among the studied cases, with

100% sensitivity for detecting symptomatic plaques.

B. Feature Analysis
In Fig. 5 the normalized weights assigned by AdaBoost

during classification are shown when the feature sets F.4
and F.5 are used. Considering the feature set which pro-

duces the best classification results (F.5), it is observed

that more relevance is given to clinical information, such

as evidence of plaque disruption (feature #1), the degree
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Fig. 4. Plaque classification using different feature sets.

TABLE I

LOPO (%) F.1 F.2 F.3 F.4 F.5

Acc 82.54 95.08 95.94 98.36 99.18
Sens 72.09 88.37 90.91 97.67 100.00
Spec 87.95 98.73 98.73 98.73 98.73
Prec 75.61 97.44 97.56 97.67 97.73

of stenosis (#3), plaque echo-structure appearance (#4) and

histogram features, such as mean of grey values (#5) and

kurtosis (#9); surprisingly, the median (#6), which is used

in several studies, is not selected by this classifier. Addition-

ally, significant weights are assigned specifically to RMM

features, mean of Rayleigh values, GLCM-based and Wavelet

-based features, which strongly motivate their use for plaque

classification. Moreover, a similar analysis is made when

the feature set F.4 was applied for training the classifier.

This analysis is justified by the fact that this feature set only

considers features which were automatically extracted from

the processed images. As expected, there is a re-distribution

of the feature weights, where the relevance of the features

increases in general. Note that, in this case, the ARM-based

features are also considered relevant for classification. This

fact determines that the increased importance given by the

classifier to other image-based parameters compensates the

lack of clinical information (F.1), providing even better

classification results (cf. Table I).

IV. CONCLUSIONS

In this paper it was proposed a plaque classification

framework for identifying symptomatic plaques. This method

adds to the typical clinical information available, a set of

features extracted from normalized, eRF, de-speckled and

speckle estimated images of the plaque.

It has been shown that the use of such features improves

the classification performance obtained when using uniquely

clinical and histogram information, up to 99.18% accuracy

and 100% sensitivity. Moreover, the speckle image, obtained

after de-speckling, is a suitable source for texture information

since the features extracted from this source (F.4) yield

better classification performance when compared to the same

features extracted from the normalized image (F.3).

Feature analysis reinforce the importance of fusing clinical

information with echo-morphology and texture parameters

for an accurate identification of symptoms in plaques.
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