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Abstract— Fluorescence confocal microscopy images present
a low signal to noise ratio and a time intensity decay due to the
so called photoblinking and photobleaching effects. These effects,
together with the Poisson multiplicative noise that corrupts the
images, make long time biological observation processes very
difficult.

In this paper a Bayesian denoising algorithm for Poisson data
is presented where two different a priori distributions, one in
the time domain and the other in the space domain, are used
together to regularize the solution. These distributions, used
to describe the spatio-temporal correlation among neighboring
pixels, along the time, allow to greatly improve the SNR of the
denoised solution, mainly, in the last images on the sequence
that present worst SNR.

In the observation model the photoblinking and photo-
bleaching effects are explicitly taken into account where the
theoretical foundations for the corresponding intensity decay
model, outlined here, were recently proposed by the authors.

Monte Carlo experiments and validation with other models,
using synthetic data, are presented to characterize the per-
formance of the algorithm. Also an example with a real data
sequence is included to illustrate its application.

Index Terms— Photobleaching, Poisson Denoising, convex,
Bayesian, Total Variation, Log-Euclidean Potentials.

I. INTRODUCTION

Fluorescence microscopy imaging became a common tool

in biomedical research since it allows the study of the

dynamics of living cells in an almost non-invasive manner.

The phenomenon of fluorescence consists on the emission

of light with a longer wavelength than the one of the incident

radiation, by excited molecules within nanoseconds after the

absorption of photons. The fluorophore is the component of

the molecule responsible for its capability to fluoresce.

The photoblinking/photobleaching (PBPB) effects lead to

an intensity fading of a fluorescent probe along the time. This

effect is caused by quantum phenomena associated with the

electronic excitation and photochemical reactions among the

fluorescent and the surrounding molecules induced by the in-

cident radiation that temporarily or irreversibly destroy their

ability to fluoresce. Since illumination is needed to excite

and observe the tagging fluorescent proteins in the specimen

and all the fluorophores will eventually photobleach upon

extended excitation, the acquisition of this type of images

becomes a hard task for long exposures. The reduction of

This work was supported by project the FCT (ISR/IST plurianual funding)
through the PIDDAC Program funds.

Isabel Rodrigues (irodrigues@deetc.isel.ipl.pt) is
with Institute for Systems and Robotics and with Instituto Superior de
Engenharia de Lisboa

J. Miguel Sanches (jmrs@ist.utl.pt) is with Institute for
Systems and Robotics at the Instituto Superior Técnico, 1049-001 Lisbon,
Portugal.

the intensity of the incident radiation can attenuate this effect

but leads to a decreasing in the signal to noise ratio (SNR)

of the acquired images. Due to the small amount of detected

radiation and to the huge optical and electronic amplification

needed in the experiments, the resulting images are corrupted

with a severe type of multiplicative noise typically described

by a Poisson distribution.

In this paper a denoising algorithm for Poisson data that

explicitly takes into account the global PBPB effects is

presented. The goal is to estimate the non-constant basic

nucleus morphology and the rates of intensity decay due to

PBPB, from laser scanning fluorescence confocal microscope

(LSFCM) images of cells.

Different types of PBPB image intensity decay laws are

considered in the literature [1] being the most common

the single and multi decaying exponentials. Here the global

intensity decrease along the time is modeled by using a

weighted sum of two negative exponentials with constant

rates. Theoretical foundations for this model, outlined in

section II, were described in [2] for the first time.

The algorithm is formulated in the Bayesian framework

as an optimization task where a convex energy function

is minimized by using the maximum a posteriori (MAP)

criterion and a Poisson data fidelity term.

The local Markovianity of the cell morphology to be

estimated is a reasonable assumption that leads to a Gibbs a

prior distribution where suitable potential functions should

be considered. Quadratic potentials are extensively used,

but they produce over-smoothed solutions. Edge preserving

priors including non quadratic potentials such as total vari-

ation (TV) have been successfully applied to several image

denoising problems. Very recently a new type of potential

functions was proposed in [3]. This approach, based on log-

Euclidean norms, is suitable to be used here due to the

positiveness nature of the unknowns to be estimated and

to the mathematical easiness it introduces in the resulting

objective function.

This work is a novel evolution of previous work published

by the authors [4] where a new PBPB model, presented in

[2], is explicitly included in the observation model.

In section II a brief description of the adopted photo-

blinking/photobleaching model is presented and in section

III the denoising problem is formulated. In section IV the

performance of the algorithm is evaluated by means of a

Monte Carlo experiment carried on generated synthetic data

with a low SNR (4dB-12dB). Also a validation of the pro-

posed model with other state-of-the-art models is presented.

Real data of a HeLa immortal cell [5] nucleus, acquired
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in a laser scanning fluorescence confocal microscope, are

used to illustrate the application of the algorithm. Section V

concludes the paper.

II. Photoblinking/Photobleaching MODEL

In an LSFCM images sequence, the intensity at each pixel

is related with the non-uniform distribution of the fluorescent

protein molecules across the cell nucleus. However, the

fading effect observed in these image sequences due to the

photoblinking and photobleaching phenomena, related with a

temporarily or permanently loose ability of the fluorophores

to fluoresce, may be modeled in a global basis without

considering local variations due to transport or diffusion

processes occurring inside the cell.

It is assumed that the fluorescent molecules can be in three

main states: active ON-state, active OFF-state and inactive

BLEACHED-state [6]. When they are at the ON-state they

are able to fluoresce and be observed. In the active OFF-state

they are not emitting fluorescent radiation and therefore they

are not visible although they are able to recover and fluoresce

again. Finally in the inactive BLEACHED-state they become

permanently unable to fluoresce. A model describing the

dynamics associated with the transitions among these states

was proposed in [2]. In the model, the number of molecules

at the ON-state, that is proportional to the mean intensity of

the image at the instant t, y(t) ∝ nON , can be described by

the following second order differential equation

d2nON

dt2
+ (υ + ξ(I))

dnON

dt
+ βONξ(I)nON = 0 (1)

where υ, ξ, υ and βON are parameter associated with the

concentrations and state transition dynamics of the molecules

within the cell and I is the amount of incident radiation.

The solution to this equation is

nON (t) = γ1e
−λ1t + γ2e

−λ2t, t ≥ 0 (2)

where γ1 and γ2 are constants computed using the initial con-

ditions. Given the physical constraints of the problem it can

be proved that λ1 and λ2 are always positive real constants

[2]. This result is in accordance with most used model in

the literature obtained from experimental evidences. Here,

however, the two decaying exponentials model describing

the PBPB effects is based on the physical quantum process

involved.

III. PROBLEM FORMULATION

Each fluorescence microscopy sequence of images is de-

noted by a 3D tensor, Y = {yi,j,t}, with 0 ≤ i, j, t ≤
N−1,M−1, L−1, where each data point, yi,j,t, is corrupted

with Poisson noise with parameter xi,j,t that decrease along

the time due to the PBPB effects according to (2). Therefore,

each point of the noiseless cell nucleus images, X, can

be written as xi,j,t = fi,j,tnON (t), where F = {fi,j,t}
stands for the time varying underlying morphology of the

cell nucleus, γ1, γ2, λ1 and λ2 in nON (t) are constants to

be estimated by fitting (2) to the mean of the noisy images

along the time y(t).

Let us denote by Θ the set of estimated parameters

{λ̂1, λ̂2, γ̂1γ̂2}. The ultimate goal of the proposed algorithm

is to estimate the cell nucleus underlying morphology, F,

from these noisy data, Y, exhibiting a low SNR. The

Bayesian approach using the MAP criterion is adopted to

estimate F. This problem may be formulated as the energy

optimization task (F̂) = argminF E(F,Θ,Y), where the

energy function E(F,Θ,Y) = EY (F,Θ,Y) + EF (F) is

a sum of two terms, EY (F,Θ,Y) = − log(p(Y,F|Θ)),
called data fidelity term, and EF (F) = − log(p(F)), called

a prior term. The a prior information on Θ is merely its

overall constancy.
Assuming the independence of the observations, and a

Poisson model for the noise, the data fidelity term, is

EY (F,Θ,Y) =
∑

i,j,t

[fi,j,tn̂ON (t)− yi,j,t log (fi,j,tn̂ON (t))]

+ K (3)

where K is a constant and n̂ON (t) is given by (2).

By assuming F as a Markov Random Field (MRF), p(F)
can be written as a Gibbs distribution,

p(F) =
1

T
exp[−

∑

c∈C

Vc(F)],

where T is the normalizing constant and Vc(.) are the

potential functions. The selection of the most convenient

potential functions to each problem is crucial since they

act upon the solution. In this paper log-Euclidean [3] based

potential functions are used,

Vc =

√

log2(
f

fa
) + log2(

f

fb
) (4)

where fa and fb are neighbors of f in a second order clique

(see Fig.1). These functions, that can be interpreted as log-

total variation potentials, produce edge-preserving a priori

terms which are suitable to keep the details of the cell nucleus

morphology and simultaneously to remove the noise in the

homogeneous regions. Therefore, the a prior term is

EF (F) = α
∑

i,j,t

√

log2(
fi,j,t

fi−1,j,t

) + log2(
fi,j,t

fi,j−1,t

)

+ β
∑

i,j,t

√

log2(
fi,j,t

fi,j,t−1

) (5)

where α and β are strictly positive hand tunning parameters

to reduce or increase the strength of the regularization in

the space and time dimensions respectively. This anisotropic

filtering approach, where different regularization parameters

(or even different potential functions) are used in time and

space, is described in detail in [7].
The formulated optimization problem is non-convex. How-

ever, performing the change of variable, zi,j,t = log(fi,j,t),
it is possible to turn it into convex. The minimizers of
E(F,Θ,Y) in F and of E(Z,Θ,Y) in Z are related by
Z

∗ = log(F∗) due to the monotonicity of the logarithmic
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function. The new convex objective function for this model
is

E(Z,Θ,Y) =
∑

i,j,t

[ezi,j,t n̂ON (t)− yi,j,tzi,j,t − yi,j,t log(n̂ON (t))]

+ α
∑

i,j,t

√

(zi,j,t − zi−1,j,t)2 + (zi,j,t − zi,j−1,t)2

+ β
∑

i,j,t

√

(zi,j,t − zi,j,t−1)2 (6)

The minimization of (6), accomplished by finding its sta-

tionary point in a point-wise basis, is performed by using

the iterative reweighed least squares (IRWLS) method [8].

The final solution is obtained from Ẑ by reversing the change

of the variable, F̂ = eẐ.

The convergence analysis of this method is long and out of

the scope of this paper. Nevertheless a detailed convergence

proof for a related algorithm is given in [8]. However, a

relative error per iteration curve is presented in section IV

illustrating the convergence ability of the proposed algorithm.
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Fig. 1. Neighboring system, S, involving the spatial and temporal
neighbors.

IV. EXPERIMENTAL RESULTS

In this section, results using synthetic and real data are

presented. The synthetic data are used to characterize the

performance of the denoising algorithm. A real images

sequence is employed to illustrate the application of the

algorithm to estimate the underlying morphology of a HeLa

cell nucleus.

A. Synthetic Data

Results of a Monte Carlo (MC) experiment in 500 runs

with 300 iterations each are presented in order to access the

performance of the proposed algorithm. A moving pyramidal

shape, 64×64×64 pixels, synthetic morphology, was gener-

ated and an exponential decay term, nON (t), t = (0, ..., 63),
with rates λ1 = 0.04 image−1 and λ2 = 0.0025 image−1,

was applied upon it to simulate the global PBPB effects.

The sequence was then corrupted with Poisson noise in each

run. The α and β regularization parameters were manually

tunned. The mean square error (MSE) and the SNR of the

estimated morphology were computed for each image and

run. The averages of the referred quality metrics computed

over the 500 runs of the MC experiment, are displayed in

Fig. 2 a) and b), where the dotted and the solid lines stand

respectively for the situations before and after applying the

denoising algorithm. The plot in Fig. 2 a) shows an SNR

improvement of the morphology images between 10dB and

15dB. Also the MSE corroborates the assertions on the

quality of the proposed denoising algorithm. Fig. 3 shows

denoising results for the morphology corresponding to image

Fig. 2. Results of the Monte Carlo experiment for the morphology: (a)
and (b) SNR curves and MSE curves for the morphology, before and after
applying the proposed algorithm. (c) relative error based metrics (RE) per

iteration, for the proposed algorithm.

Fig. 3. Image 62 of the sequence of synthetic data: a) and b) true,
c) and d) noisy, e) and f) estimated morphologies and respective surface
representations.

62 of the synthetic sequence. It is notorious the ability of the

algorithm to recover the degraded information in the noisy

image. The profile plots in Fig. 4, taken along the diagonal

of the image, correspond to the morphologies in images 2

and 62 of the synthetic sequence and show the ability of this

denoising methodology to preserve the edges of the morphol-

ogy. A relative error based measure (RE) was computed in

Fig. 4. Morphology profile plots corresponding to images 2-a) and 62-b)
of the synthetic sequence (black lines - true, dark yellow lines - noisy, green
lines - denoised). Green and black lines are hard to distinguish because the
algorithm almost recovers the true images.

each iterative step as RE =
‖z(k)

−z(k−1)‖
‖z(k)‖

, its average was

calculated over the 500 runs of the MC experiment and the

plot is shown in Fig. 2 c) to illustrate the convergence ability

of the algorithm. The proposed algorithm, denoted by LTV-

LTV, was compared to Non-Local Means (NLM) algorithm

[9], to a platelets (PLAT) and to a translation invariant

Haar wavelet (TI-Haar) methodologies conceived for Poisson

denoising [10]. The synthetic sequence was processed with

the proposed LTV-LTV and with the other three algorithms.

The SNR is used to evaluate the denoising results presented

in Fig. 5. It is noticeable in these plots the good performance

of the proposed LTV-LTV algorithm in what concerns the

SNR quality metrics. The SNR curve presents higher values

than the other algorithms, although PLAT also performs very

good. The CPU time is also an important feature to take into

account when selecting a denoising algorithm.The CPU time
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to process the whole sequence with PLAT, NLM, LTV-LTV

and TI-Haar was respectively 1319.2 s, 147.9 s, 17.2 s and

2.2 s, which means that the proposed algorithm is fast.

Fig. 5. Model Validation SNR results.

B. Real Data

The real data sequence used to show the application of

the proposed algorithm consists of 100 LSFCM images of a

HeLa cell nucleus acquired at a rate of 23.1 s using very

low intensity light. The results of applying the presented

denoising procedure are shown in Fig. 6 where a), b) stand

for images 1 and 60 of the real sequence, c) and d) show

the corresponding estimated underlying morphologies and e)

and f) the respective profile plots along the diagonal of the

images. Image 60 makes clear how difficult is to identify any

details in the nucleus morphology. It is noticeable that this

denoising methodology allows the recovery of the underlying

morphology of a cell nucleus with a very low SNR.

Fig. 6. HeLa cell nucleus. Sampling rate: 23.1s. Scale: 0.03µm/pixel.
a) and (b) Noisy images 1 and 30. (c) and (d) respective estimated
underlying morphology, e) and f) respective noisy (black) and estimated
(gray) morphology profiles. Data provided by the Molecular Medicine
Institute of Lisbon, Portugal.

V. CONCLUDING REMARKS

In this paper a 2D+time denoising algorithm for LSFCM

imaging is proposed. In this modality the images are cor-

rupted with a type multiplicative noise assumed to follow

a Poisson distribution. Furthermore, the global intensity of

the images decreases along the time due to temporally

(photoblinking) or permanently (photobleaching), ability loss

of the fluorophore to fluoresce caused by quantum phenom-

ena and photochemical reactions induced by the incident

light. The global decreasing of the image intensity leads

to a decreasing of the signal to noise ratio of the images,

making the biological information recovery a difficult task.

In the proposed algorithm this effect is explicitly taken into

account and modeled by using a two decaying exponential

function. Theoretical foundations for the use of this model

are outlined.

The proposed approach is conceived as an optimization

task with the maximum a posteriori (MAP) criterion where

log − Euclidean potential functions are used in the reg-

ularization terms. The energy function is designed to be

convex and its minimizer is computed by using the Newton’s

algorithm and an iterative reweighed least squares based

strategy to estimate the morphology of a cell nucleus.

A Monte Carlo experiment with synthetic data is used to

assess the performance of the algorithm. This experiment

shows the ability of the algorithm to strongly reduce the

Poisson noise and to estimate the underlying morphology.

The main characteristic of the algorithm is its ability to used

all the information, even the last images of the sequence with

a very low SNR, to recover the cell nucleus morphology.

Validation with other models shows the good performance

of the proposed algorithm.

Results of applying the proposed algorithm to a real data

sequence show its effectiveness to cope with this type of

noise and low SNR. Its performance is related to the use of

edge preserving a prior distribution to model the statistical

behavior of the cell morphology and to the use of an explicit

photobleaching model.
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