
Classifier-assisted metric for chromosome pairing

Rodrigo Ventura∗, Artem Khmelinskii and J. Miguel Sanches

Abstract— Cytogenetics plays a central role in the detection
of chromosomal abnormalities and in the diagnosis of genetic
diseases. A karyogram is an image representation of human
chromosomes arranged in order of decreasing size and paired
in 23 classes. In this paper we propose an approach to
automatically pair the chromosomes into a karyogram, using the
information obtained in a rough SVM-based classification step,
to help the pairing process mainly based on similarity metrics
between the chromosomes. Using a set of geometric and band
pattern features extracted from the chromosome images, the
algorithm is formulated on a Bayesian framework, combining
the similarity metric with the results from the classifier. The
solution is obtained solving a mixed integer program. Two
datasets with contrasting quality levels and 836 chromosomes
each were used to test and validate the algorithm. Relevant
improvements with respect to the algorithm described by the
authors in [1] were obtained with average paring rates above
92%, close to the rates obtained by human operators.

Index Terms— Chromosome, Pairing, Classification, Mixed
Integer Programming, Image processing, Optical Microscopy,
Support Vector Machines

I. INTRODUCTION

Karyotyping is a set of procedures, in the scope of the

cytogenetics, that produces a visual representation of the

46 chromosomes, arranged in decreasing order of size and

paired in 22 classes of homologous elements plus two sex-

determinative chromosomes. This sorting and pairing process

of chromosomes, extracted from the metaphase plate, is

difficult, time consuming and most of the times performed

manually. An automatic procedure is still needed.

A significant number of approaches have been proposed

and used in the design of classifiers, e.g.: neural network

and multilayer perceptron [2], [3], [4], [5], Bayes [6], hid-

den Markov models (HMM) [7], template matching [8],

wavelet [9] and fuzzy [8].

However, when the quality of the images is very poor,

which is the case of the chromosomes extracted from bone

marrow cells used in the diagnosis of leukemia, or the geo-

metrical distortions are too severe, the available classification

strategies do not work properly and the classification rates

obtained with automatic classifiers, typically in the range of

70%-80%, are still far from the performance reached by the

human operator, typically with an approximate classification

rate of 99.70% [4]. To overcome those issues, in [1] the
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authors have proposed a different method where the pairing

is performed without classification and the pairing criteria

are similarity measures computed over all possible pair-

combinations of chromosomes. Since the application of the

G-banding [10] procedure to the chromosomes generates

a distinct transverse banding pattern characteristic of each

class, that pattern is the utmost important feature for chro-

mosome classification and pairing. To fully utilize the band

profile of each chromosome, the mutual information feature

was used together with other geometrical and band pattern

features extracted from the chromosome images from a given

metaphase plate.

In this paper, one step further is proposed to improve

the accuracy of the algorithm described in [1]. A rough

classification, performed with a support vector machine

(SVM) classifier [11] is used to help the pairing procedure.

The result of this classification is then combined with the

similarity measures presented in [1], using a Bayesian frame-

work. This results in a mixed integer program (MIP) that can

easily be solved using a standard MIP solver.

The contributions of this paper are threefold:

• The chromosome pairing method presented in [1], based

on an energy minimization principle is recast as a

maximum likelihood problem, thus paving the way to

the extension here presented

• A novel, two step classifier-assisted metric for automatic

chromosome paring is presented, using a Bayesian

framework

• The presented method further improves (≈ 16 percent-

age points) the approach first introduced in [1] (where

the best mean classification rate (MCR) obtained was

76.10%) achieving a MCR of 92.8%

II. CHROMOSOME DATA

To test and validate the proposed algorithm two chromo-

some datasets with different quality levels were used: Grisan

et al. [12] and Lisbon-K1 chromosome dataset (LK1) [1],

[13]. The difference in quality is related to the centromere

position, band profile description/discrimination and level of

condensation of the chromosome. The first one is of the same

nature and “high” quality as the classic Philadelphia, Edin-

burgh and Copenhagen datasets [14], [3], [15] because the

images are based on cells extracted from the amniotic fluid

and choroidal villi (pre-natal cytogenetics). LK1 is a dataset

of “low” quality since it is based on bone marrow cells

used for leukemia diagnosis. It presents much less quality

than the former ones, used in the traditional cytogenetics.

From each dataset, 19 karyograms, each one composed by
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2N chromosomes images where N = 22 is the number of

homologous pairs/classes, are used. In total, each test set

consists of 836 chromosomes (Table I). All chromosomes

were manually segmented, correctly oriented, ordered and

annotated by the clinical staff to be used as ground truth data.

The sex chromosomes were put aside and only karyograms

that present no numerical or structural abnormalities were

used at this stage of the work. Figure 1 presents a karyogram

example for each dataset.

Dataset Lisbon-K1 [1], [13] Grisan et al. [12]

Tissue bone marrow amniotic fluid,
choroidal villi

# Classes 22 22

# Chromosomes 836 836

TABLE I

CHROMOSOME DATASETS USED TO TEST AND VALIDATE THE PROPOSED

ALGORITHM: LK1 [1], [13] AND GRISAN et al. [12]

(a) Lisbon-K1 chromosome dataset [1], [13]

(b) Grisan et al. chromosome dataset [12]

Fig. 1. Karyogram examples for 2 chromosome datasets with different
levels of quality: Lisbon-K1 [1], [13]-“low” & Grisan et al. [12]-“high”

III. PROBLEM FORMULATION

This paper addresses the problem of automating the chro-

mosome pairing procedure, by extracting a set of features

from each chromosome found in the karyogram image.

Given a feature vector extracted from each individual chro-

mosome, the pairing problem consists in identifying the

pairs of homologous chromosomes. We consider here 44

chromosomes, forming 22 pairs.

The classification problem identifies the correct type of

each one of the 44 chromosome from a set of 22 classes.

Each class contains homologous chromosomes that are sup-

posed to be grouped. In a normal karyotype it is expected to

exist exactly two chromosomes for each class.

At first sight, if all chromosomes were correctly classified

into one of the 22 possible types, the pairing result would fol-

low trivially, since there would be exactly two chromosomes

classified in each type. However, automatic classification of

chromosomes is still an open problem, and thus, errors in

classification prevent a correct pairing. This is the motivation

behind looking to the pairing of chromosomes as a separate

problem, since their exact classification into classes is of no

importance, as far as pairing is concerned.

IV. CLASSIFICATION AND PAIRING

In [1], a chromosome pairing method was proposed based

on a matrix D of distances between chromosomes of a

karyogram. The entries dij of this matrix are computed from

a metric function that yields a distance measure between any

given pair of chromosomes i and j (for i 6= j). Each distance

is obtained by minimizing a weighted sum of features w.r.t.

a set of weight vectors {wr, r = 1, ..., 22}

dij = min
r∈{1,...,22}

f(i, j;wr), (1)

where f(i, j;w) =
L
∑

k=1

w(k)dk(i, j) (2)

The weight vectors are obtained by minimizing an energy

function over a training set of manually paired chromosomes

(ground truth). While most of these distances dk(i, j) are

euclidean distances between features of individual chro-

mosomes (area, perimeter, normalized area, bounding box

dimensions, chromosome length proportion, band profile),

one of them, the mutual information, is a pairwise feature [1].

Given the distance matrix D, the resulting pairing is

obtained by solving an integer programming problem [1],

using a standard solver. The solution corresponds to the

pairing that minimizes the sum of the distances of each one

of the pairs found

C(P) =
∑

(i,j)∈P

dij , (3)

where P is the set of chromosome pairs.

This approach can be re-formulated using a probabilistic

framework in the following way: any valid pairing solution

can be represented by a binary symmetric matrix, denoted X,

with entries xij where xij = xji = 1 if chromosome i pairs

with j, and xij = xji = 0 otherwise. Each binary matrix X

represents a valid pairing if and only if the following (linear)

constraints are satisfied:

X = X
T

∀i xii = 0
∀i

∑

j xij = 1
(4)
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because a chromosome cannot be paired with itself, and each

chromosome (line in matrix D) can only be paired with

other single chromosome. The optimal pairing configuration

solution is the maximum likelihood estimation problem for-

mulated as

X̂ = argmax
X

P (D|X), (5)

where the range of variation of X is the space of binary

matrices satisfying (4). Assuming conditional independence

of each distance dij given a pairing X, the distribution

P (D|X) can be expanded into the product
∏

(i,j) P (dij |X).
This product can be factored into two sets, depending on the

value 0 or 1 of the corresponding xij . Here we disregard the

terms for xij = 0, considering that the useful information

for maximizing P (D|X) comes mostly from the distances

for which xij = 1. Thus,

P (D|X) = η
∏

(i,j)|xij=1

P (dij |xij = 1), (6)

where η is a normalizing constant. Adopting an exponential

distribution for the distance for each pair of chromosomes

P (dij |xij = 1) = λe−λdij , for dij ≥ 0 (7)

parametrized by λ and taking the negative logarithm of

expression (6) the following maximum likelihood estimator

is obtained

X̂ = argmin
X

∑

(i,j)|xij=1

dij . (8)

This expression provides a formal justification to the pairing

method based on the minimization of the pair distances

published in [1].

Consider now that an individual classification algorithm

obtained a tentative classification, expressed as a 44 × 22
matrix Ĉ, where each entry ĉik is one if chromosome i was

classified in class k ∈ {1 . . . , 22} and zero otherwise. Thus,

the following maximum a posteriori estimator can be written:

X̂ = argmax
X

P (X|D, Ĉ)

= argmax
X

P (D|X, Ĉ)P (X|Ĉ)/P (D|Ĉ)

= argmax
X

P (D|X)P (X|Ĉ),

(9)

where it was considered that the distances matrix distribution

given the true pairing does not depend on the classification

results, i.e., P (D|X, Ĉ) = P (D|X). That is to say that, for

each combination of two chromosomes, its distribution only

depends on whether they form a pair or not. Now, note that

the P (D|X) is the same as the one in (5), and therefore it can

be computed using (6). The term P (X|Ĉ), which can be seen

as a prior on the distribution of X after classification, is here

estimated in the following way: first, P (X|Ĉ) is factorized,

assuming conditional independence for each pair proposed

in X (i.e., the (i, j) pairs such that xij = 1)

P (X|Ĉ) =
∏

(i,j) | xij=1

P (xij = 1 | Ĉ), (10)

Dataset SVM LCD CaLCD p-value

Lisbon-K1 58.6 41.4 70.8 < 0.008
Grisan et al. 67.9 76.1 92.8 < 10−15

TABLE II

COMPARATIVE RESULTS OF THE PAIRING METHODS EVALUATED

(L = 0.17), EXPRESSED IN TERMS OF THE MEAN PAIRING RATES

(AVERAGE OF THE RATIO BETWEEN THE NUMBER OF CORRECTLY

PAIRED CHROMOSOMES AND THE TOTAL NUMBER OF PAIRS OF

CHROMOSOMES CONSIDERED (22), IN PERCENTAGE). THE LAST

COLUMN CONTAINS THE ONE-SIDED P-VALUE OF STATISTICAL

SIGNIFICANCE

where P (xij = 1 | Ĉ) is the probability of chromosomes

i and j forming a pair, given a classification output Ĉ.

Taking the negative log probability of the argmax argument

in (9) and assuming an exponential distribution (7), the final

estimator is derived:

X̂ = argmin
X

∑

(i,j) | xij=1

(

dij − l
ij|Ĉ

)

, (11)

where l
ij|Ĉ = 1

λ
logP (xij = 1 | Ĉ). Note that the summa-

tions in (11) have a fixed amount of terms and the result is

invariant to summing a constant to l
ij|Ĉ. Thus, for the l

ij|Ĉ

this simple approach is considered:

l
ij|Ĉ =

{

L if ĉik = ĉjk 6= ĉmk for i 6= m 6= j,

0 otherwise,
(12)

meaning that a constant non-zero value is used whenever two

and only two chromosomes are classified in the same class.

V. EXPERIMENTAL RESULTS

Experiments1 comprised a comparative study of the fol-

lowing pairing methods:

• Linear Combination of Distances (LCD), the pair-

ing method based on distance matrices, previously de-

scribed in [1], using estimator (8);

• Support Vector Machines (SVM), the pairing method

based on the individual classification of features using

the SVM classifier alone;

• Classification-assisted LCD (CaLCD), the pairing

method proposed in this paper, that uses the estima-

tor (11).

Table II summarises the results obtained for the two datasets

described in section II. The results are expressed in terms

of percentage of correctly identified pairs, using a leave-

one-out cross validation (LOOCV) approach2. The results

were obtained by setting the L parameter to 0.17 (manually

selected by trial-and-error, at this stage of the work). The

statistical significance concerns the rejection of the null

hypothesis that the amount of errors of the proposed CaLCD

method is greater or equal than the one of LCD, for the same

1The MIP solver used was the GNU Linear Programming Kit (GLPK),
and the SVM classifier was the LIBSVM.

2For each karyogram in the dataset, the test set includes that karyogram,
while the training set includes all of the others.
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Fig. 2. Sensitivity of the error ratio with respect to the parameter L

test karyogram. From these results one can conclude that

the new method CaLCD here proposed effectively improves

the pairing performance, when compared with the previously

presented LCD.

Note that when L = 0, the pairing results are insensitive

to the prior classification, the estimators (8) and (11) become

equivalent. Figure 2 shows the obtained results in terms of

the error ratio for each one of the datasets considered, in

function of L. This error ratio was computed by dividing

the number of incorrect pairs with CaLCD by the one with

LCD. It expresses the fraction of the error obtained by the

proposed method, with respect to the LCD pairing method.

From these results we observe that all plots show a roughly

convex behaviour, with a minimum for L in the vicinity

of 0.17. This suggests the existence of an optimal value

for L, maximizing pairing performance. The difference in

the classification rates between the LK1 and Grisan et al.

datasets is due to the large quality difference between both

datasets described in section II.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new chromosome pairing method,

consisting of two steps: a classification step, using a SVM

classifier with the goal of identifying chromosome pairs, and

a pairing step, based on distance measures between chro-

mosomes, which combines information from the classifier

output with the pairwise features. The classifier output is only

partially used, i.e., restricted to the cases where two and only

two chromosomes are classified into the same class. Experi-

mental results using two datasets from different origins were

performed, and the results show a significative improvement

of this method over the (previously published) pairing step

alone, and over a pure classification-based approach with a

maximum average paring rate of 92.8%. The influence of

the L parameter, specifying the degree of influence of the

classification step on the pairwise chromosome distances,

was also evaluated. Empirical evidence points towards a

convex behaviour of the pairing performance with respect

to this parameter.

For future work, we intend to further explore this com-

bined classification and pairing approach. Outstanding ques-

tions include: (1) what is the theoretical reason behind the

observed improvement, since both classification and pairing

make use of essentially the same features extracted from

individual chromosomes; (2) if partial classification results

improves pairing, can partial pairing results improve classi-

fication? Finally, the issue of selecting the L parameter has

to be addressed. We believe that the answer to question (1)

above will shed some light on this problem.
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