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Abstract—Carotid atherosclerosis is the main cause of brain
stroke, which is the most common life-threatening neurological
disease. Nearly all methods aiming at assessing the risk of plaque
rupture are based on its characterization from 2-D ultrasound im-
ages, which depends on plaque geometry, degree of stenosis, and
echo morphology (intensity and texture). The computation of these
indicators is, however, usually affected by inaccuracy and sub-
jectivity associated with data acquisition and operator-dependent
image selection. To circumvent these limitations, a novel and simple
method based on 3-D freehand ultrasound is proposed that does not
require any expensive equipment except the common scanner. This
method comprises the 3-D reconstruction of carotids and plaques
to provide clinically meaningful parameters not available in 2-D
ultrasound imaging, namely diagnostic views not usually accessi-
ble via conventional techniques and local 3-D characterization of
plaque echo morphology. The labeling procedure, based on graph
cuts, allows us to identify, locate, and quantify potentially vul-
nerable foci within the plaque. Validation of the characterization
method was made with synthetic data. Results of plaque charac-
terization with real data are encouraging and consistent with the
results from conventional methods and after inspection of surgi-
cally removed plaques.

Index Terms—Carotid atherosclerosis, labeling with graph
cuts, plaque echo morphology, reconstruction, three-dimensional
ultrasound.

I. INTRODUCTION

IN WESTERN countries, atherosclerosis is the most preva-
lent and main cause of death and disability in adults. It is a

disease of the large- and medium-sized arteries, and its most im-
portant feature is plaque formation owing to progressive suben-
dothelial accumulation of lipid, protein, and cholesterol esters
in the blood vessel wall.

The degree of stenosis1 is targeted as one of the most impor-
tant physiological landmarks of stroke risk, and it was, until re-
cently, the main criterion used to decide about surgical interven-
tion [1], together with age, health, and patient’s clinical history.
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1Narrowing of the arterial lumen.

The benefit of endarterectomy is clearly demonstrated for pa-
tients presenting high degree of stenosis (more than 60%) [2].
It has also been shown, however, that patients on medical treat-
ment remained free of symptoms for a long period despite the
presence of considerable stenotic lesions. This suggests that the
degree of stenosis alone is not enough for assessment of plaque
risk and that other factors should be taken into account [3].

A significant effort is being made in the study of accurate
and reproducible techniques, and indicators to monitor plaque
progression and risk, namely by use of ultrasound, intravenous
digital subtraction angiography (IV-DSA), MRI, and computed
tomographic angiography (CTA) or 3-D-CTA. Ultrasound is
noninvasive, does not involve ionizing radiation, gives results in
real time, and is less expensive than other imaging modalities,
whereas its major limitations are the poor soft tissue contrast
compared with MRI or CT and high operator dependency. The
framework described in this paper is based on ultrasound, and
therefore, it is not expected to outperform other state-of-the-art
methods based on MRI or CT in terms of accuracy. The goal
is to provide significant improvements on the traditional and
widely performed diagnostic method based on freehand 2-D
ultrasound without compromising the technological simplicity,
nonexpenditure, and accessibility of this diagnostic procedure.

Plaque morphology is currently considered relevant for eval-
uation of stroke risk in carotid atherosclerosis [3]. The most
important parameters to characterize the plaque are its morphol-
ogy, echogenicity,2 and texture. Several studies have statistically
characterized the morphology and texture of carotid plaques in
2-D ultrasound images using a stratified GSM analysis and color
mapping of the plaque [4]. The GSM is used to classify plaques
as hypoechogenic (GSM < 32) or hyperechogenic (GSM >
32) [3], [5]. The total percentage of hypoechogenic pixels (P40 ,
also known as PEP), defined as the percentage of pixels with gray
levels below 40, is also an important measure for the character-
ization of plaque echogenicity [3]. Multiple regression analysis
has revealed that the GSM and the P40 are the most significant
variables related to the presence of disease symptoms. Recently,
an activity index [5] was proposed by one of the authors, which
can be defined as a quantitative index resulting from a weighted
sum of scores ascribed to the degree of stenosis, global GSM
and P40 , and location of hypoechogenic sites across the plaque.
This measure may have relevant clinical significance in thera-
peutic decision in patients with asymptomatic carotid lesions or
with symptomatic stenosis with moderate obstruction.

A vulnerable plaque is associated with thinning of the fibrous
cap and infiltration of inflammatory cells, consequently leading

2Degree to which sound waves are reflected by a tissue.
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to plaque rupture. Studies that correlate quantitative analysis
based on ultrasound B-mode images with histology have sug-
gested that hypoechogenic regions have more fatty contents
and hemorrhage, indicating inflammatory activity and potential
instability [6]. Therefore, the location and extension of these re-
gions within the plaque could be a sensitive and relevant marker
of stroke risk. Analysis of global information about plaque mor-
phology may not be accurate enough in many cases, namely
when plaques are heterogeneous or present significant hypoe-
chogenic regions. An averaged measure of echogenicity or tex-
ture is incomplete and does not reveal possible unstable foci
inside the plaque.

The risk assessment of plaque rupture through conventional
2-D techniques is limited to a subjective selection of a represen-
tative image of plaque structure and it is not reproducible. An
accurate diagnostic methodology based on 3-D is known to be
valuable but has not yet been adopted in clinical practice, mainly
because 3-D ultrasound technology is not usually available in
most medical facilities. Recently, less operator-dependent meth-
ods based on 3-D ultrasound have been proposed for better
assessment of plaque vulnerability [7]. These studies aim at
quantifying the plaque volume, the degree of stenosis [8], and
the level of surface ulceration [9].

The common carotids are the major arteries that supply the
brain and face tissues with blood. They are located on each side
of the neck along its longitudinal axis. Each one branches off
in external and internal carotids, behind the mandibular angle,
along the upward direction. The most frequent location of the
atherosclerotic lesion in the cerebrovascular sector is the carotid
bifurcation and in the junction between common and internal
carotids. Here, plaque formation tends to produce stenosis, re-
ducing the blood flow or, even worse, causing liberation of
thrombi that embolize downstream. The focus of this paper is
on the 3-D reconstruction of bifurcation plaques in order to
characterize their echo morphology and to evaluate their risk of
rupture. In this paper, three important novelties are introduced:
1) a simple acquisition protocol for plaque reconstruction that
does not need any additional equipment, such as spatial locators
or mechanical sweepers but only the common scanner; 2) a set of
new indicators of plaque echo morphology computed on a 3-D
basis; 3) a voxelwise characterization method where potentially
vulnerable foci inside the plaque are labeled and identified.

This paper is organized as follows. Section II formulates the
problem and describes the acquisition protocol. Section III de-
scribes the reconstruction method, including segmentation and
reconstruction. Section IV refers to plaque characterization and
Section V presents the experimental results. Section VI con-
cludes the paper.

II. MATERIALS AND METHODS

In 3-D ultrasound, a sequence of images corresponding to
different positions and orientations of the probe is used to ex-
tract anatomical details such as organ boundaries or contents
of a volume of interest (VOI) [7]. The simple geometry of the
carotid and its superficial location make it possible to acquire a
set of images corresponding to nearly parallel cross sections of

Fig. 1. Acquisition protocol. The ultrasound probe is placed transversally to
the neck and an image sequence is recorded by sweeping it over a known path
limited by specific landmarks.

the bifurcation without using any kind of spatial locators. The
acquisition protocol is critical to guarantee the quality of results.
Because no spatial locators are being used, this process must be
carefully handled since the true positions and orientations of the
planes are not accurately known. A PC-camera-based applica-
tion is provided to the medical doctor to help in monitoring the
velocity of the ultrasound probe during a preacquisition train-
ing stage. This information is used to improve the application
of the protocol that requires a constant orientation of the probe
and a nearly constant linear velocity along the carotid main axis
during image acquisition (see Appendix A).

Five carotid arteries were part of this study, one acquired from
a healthy person (hereafter called JS1N06) and the others from
asymptomatic patients (hereafter called FC2A06, CN1A07,
JF1A08, and JB1A08), obtained during routine medical exam-
inations. All these were examined on a standard, commercial
ultrasound duplex scanner (HDI 5000, Philips Medical Systems
Division, Bothell, WA) using an L12-5 scan probe (5–12 MHz
broadband linear array transducer), operating in B-mode. In a
typical acquisition session, 60 images (768 × 576 pixels) are
acquired during a period of 4 s and then stored in the scanner
frame buffer (cineloop). The acquisition procedure is illustrated
in Fig. 1, where the strips, separated by a known distance, are
rigorously placed in the patient’s neck to work as landmarks for
signaling the limits of the probe path.

The uncertainty about the true position and orientation of the
probe introduces geometric distortions that degrade the results.
A realistic theoretical model (see Appendix A) was derived to
describe the probe displacement and the theoretical errors were
also derived along the whole probe course. The comparison of
these theoretical errors with the experimental ones has shown
the adequacy of the model. This theoretical analysis is impor-
tant for choosing the optimal parameters to be used in a given
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TABLE I
GLOBAL CHARACTERIZATION OF CAROTID PLAQUES: DIAGNOSTIC

PARAMETERS OBTAINED WITH 2-D METHODS (AREA A, LONGITUDINAL

EXTENSION �, MEAN µ, MEDIAN υ, STANDARD DEVIATION σ, AND P40) AND

WITH 3-D METHOD (VOLUME V , LONGITUDINAL EXTENSION �, AVERAGED

VALUES OF f̂τ , WHERE τ = µ, υ, σ, AND P40 )

experiment: number of images, length of the course, frame rate,
and maximum position error expected. In order to evaluate the
magnitude of the acquisition errors, 50 tests using a spatial lo-
cator were carried out. These tests show that it is possible for
a trained operator to acquire images with small position errors
and orientation angle variations. These errors are even more
attenuated after alignment is performed in the data processing
stage.

The data structure used in the reconstruction step is as follows:
the interplane distance is given by δz = L/(N − 1), where L
is the known total length of the sweep path, limited by spe-
cific landmarks made of ultrasound echo absorption material
(see Fig. 1), and the position of each pixel is computed as
xp

i,j = (iδx , jδy , pδz ), where p is the image index. δx and δy are
the interpixel distances that are constant for all images and given
by the scanner. δx and δy depend on the image resolution and
δz is estimated along the sweep path. For a 768 × 576 pixel im-
age size, L = 80 ± 0.5 mm course length and N = 60 images,
δx = δy = 6.1 × 10−3 cm and δz = 1.3 × 10−1 cm.

Ultrasound images present a low SNR and are corrupted by a
particular type of multiplicative noise called speckle. Commer-
cial ecographs perform nonlinear image compression to reduce
the dynamic range of the RF signal in order to improve image
visualization. Moreover, the clinician may adjust other param-
eters, such as brightness, gain, and contrast. These operations
significantly change the statistical distribution of the original
RF raw data, which is assumed in a wide range of situations to
be Rayleigh-distributed [10].

Under the assumption of fully developed speckle, the com-
pressed ultrasound image is described by a Fisher–Tippett distri-
bution [11]. The fully developed speckle arises when the num-
ber of scatters per resolution cell is large, the echo complex
magnitude components in phase and quadrature are normally
distributed, and the complex phase is uniformly distributed. De-
viations from this model occur when strong specular reflections
associated with transitions are present in the images. In these
cases, other distributions should be used to describe the ob-
served data [12], [13]. Here, the fully developed speckle is not
insured; however, the comparison of the indicators shown in
Table I suggests that this assumption is acceptable for the pur-
pose of plaque characterization.

III. RECONSTRUCTION

Two approaches are generally considered in organ and tissue
reconstruction: surface and volume rendering. In this paper, a

surface rendering approach is used to reconstruct the bifurcation
walls and quantify the degree of stenosis and plaque volume.
A volume rendering approach is used to reconstruct the VOI
containing the plaque in order to perform its characterization.
Statistical measures derived from the reconstructed plaque are
then used to detect within the plaque unstable regions with
potential risk of rupture.

A. Modeling Log-Compressed Ultrasound Data

In this paper, an algorithm for the log-compressed observed
dataset (image) [14] was used to estimate the RF signal provided
by the ultrasound probe. It is important that the processing oper-
ations inherent in the acquisition equipment and settings could
be reverted in order to obtain estimates of the original Rayleigh-
distributed data. This step is crucial to guarantee objective,
realistic, and reproducible models for data reconstruction and
characterization.

The preprocessing procedure performed by the ultrasound
equipment is modeled as follows:

zij = α log(yij + 1) + β (1)

where the log function accounts for the compression, (α, β) are
unknown parameters that account for the contrast and bright-
ness, respectively, and zij is the intensity at the (i, j)th observed
pixel. These parameters can be estimated directly from the ob-
served images [14] as follows:

α̂ =

√
24
π2 σ2

z (2)

and

β̂ = µz −
α̂

2
(log(2ψ̂) − γ) (3)

where γ = 0.5772 . . . is the Euler–Mascheroni constant and
ψ can be obtained by the Newton–Raphson method ψt+1 =
ψt − F (ψ)/F ′(ψ), with F (ψ) = (α/2)log(2ψ) − (αγ/2) −
αA(ψ) − µz + min(z) = 0. By incorporation of the estimates
of α and β in (1) and inverse transformation of (1), the original
Rayleigh-distributed data y are recovered and used hereafter.

B. Segmentation of Carotid and Plaque Boundaries

Segmentation of carotid and plaque boundaries is performed
with a feature-based approach [7] on an image-by-image ba-
sis, where contours of both structures are extracted from each
image of the sequence. Other strategies may be used, such as
active surfaces [15] or level sets [16]. This strategy was adopted,
however, because it favors interaction with the clinician who is
familiar with the traditional 2-D ultrasound analysis. In fact, the
proposed algorithm is semiautomatic in the sense that the clin-
ician may intervene with the process every time he/she judges
the automatic segmentation is taking wrong decisions. The sur-
face meshes of the carotid and plaque are obtained by linking
of the contours. Extraction of carotid and plaque boundaries is
performed in five steps, which are listed and briefly described
as follows.
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Fig. 2. Denoising methods. (a) Original (noisy) and denoised images using
median and Gaussian filters. (b) Method based on the MAP criterion with a TV
edge-preserving prior at iterations (c) 1, (d) 5, (e) 15, and (f) 20.

1) Denoising: Several techniques have been proposed for
denoising ultrasound images without distorting the relevant clin-
ical details [17], [18]. Bayesian methods have been success-
fully used in several medical imaging modalities [19]. These
algorithms, however, are time-consuming and computationally
demanding.

In this paper, a denoising algorithm described in [20] is used.
The algorithm uses the maximum a posteriori (MAP) criterion
with a total variation (TV) edge-preserving Gibbs prior. The
method is formulated as an optimization task that is solved by the
Sylvester equation [20]. In order to speedup the processing time
of the sequence, the initialization of the iterative filter at each
image is performed by use of the previous denoised image in the
sequence. Fig. 2 displays an example of denoising results of a
280 × 280 pixel noisy image [Fig. 2(a)] using two methods: 1) a
common despeckling filter consisting of a combination of a 10 ×
10 window median filter with a σ = 3 Gaussian filter [Fig. 2(b)];
and 2) the MAP filter [Fig. 2(c)–(f)] at different stages of the
process. Denoising results using the MAP method clearly show
a better preservation of the clinically relevant anatomic details,
which is thereafter useful for segmentation.

2) Extraction of Boundaries With 2-D Active Contours: The
2-D gradient vector flow- (GVF) active contours algorithm [21]
is used to automatically segment the anatomic objects present
in the denoised images. An exception is made in the first im-
age of the sequence where the clinician must manually define
the centers of the carotids [Fig. 3(a)]. Under normal condi-
tions, the initial contour used by the GVF algorithm in a given
cross section is obtained from the segmentation of the previous
image, as displayed in Fig. 3(b). The clinician, however, may
intervene with the process by changing the initial contour or
the default parameters used by the algorithm. This functionality
is useful when the GVF algorithm converges to a wrong con-
tour due to bad initialization or when topological modifications
arise. Two important situations need a special consideration:
1) the bifurcation plane, where the two contours coming from
the plane above converge and merge into a single one, after re-
moval of the intersecting region [Fig. 3(c)–(f)]. The new single
contour is used as initialization to segment the carotid in the

Fig. 3. Segmentation results superimposed with the original images. (a) Ini-
tialization of the active contours. (b) In the following cross section, contours
from the previous segmentation (black) are used as initial estimations leading to
new contours (white). (c)–(f) Segmentation of the carotid artery at the bifurca-
tion. (g) and (h) Manual outlining in the first image where the plaque is visually
detected. The active contours algorithm produces close contours for both the
carotid and plaque, which are thereafter reconciled, preserving the carotid con-
tour and trimming the plaque contour. (i) Bifurcation linking. The contours
CI and CE derived from the previous plane merge in the bifurcation plane p,
creating two intersection points that are linked to define a “virtual line.” Both
contours are then reconciled with this virtual line, creating, after resampling,
two “virtual” contours CI * and CE *. These are then matched to the contours
in the plane p − 1.

bifurcation cross section [Fig. 3(f)]. 2) the first image where
the plaque is visually detected [Fig. 3(g) and (h)]. Because
the plaque is a complex structure, the clinician must manually
initialize its contour, whereas the other images containing the
plaque are semiautomatically segmented. The ability to con-
trol the automatic procedure in each step is useful, namely for
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detecting plaque contours, because they may present a complex
morphology [Fig. 3(g) and (h)]. This complexity may lead to
segmentation errors in a completely automatic algorithm; thus,
a semiautomatic procedure is more suitable. In about 10% of the
images, it is necessary to interfere in the segmentation process
and change the 2-D active contour parameters or initialization.

3) Resampling and Linking: The surface meshes represent-
ing the carotid and plaque are obtained by linking of the several
contours derived from the segmentation procedure. These con-
tours, described by a set of unevenly spaced control points,
are orderly and evenly resampled, thus allowing us to match
contours in consecutive planes.

The linking procedure establishes a pairing relation between
homologous control points in two consecutive contours. This
task is performed by use of the iterative closest point (ICP)
algorithm [22]. In this method, rotation and translation transfor-
mations are estimated to minimize the overall distance between
both sets of points. This strategy is repeated for each pair of con-
tours. The pairing process at the bifurcation requires a special
consideration because there is a relevant topological change. As
shown in Fig. 3(i), two additional contours, CI * and CE *, are
created in the bifurcation plane to link the two contours CI and
CE , respectively, from the plane above.

4) Alignment: In order to compensate for small lateral probe
displacements during acquisition, an alignment procedure of
the contours along the longitudinal direction is needed. The
alignment is performed on a pairwise basis, where each pair of
two consecutive contours is aligned one at a time.

This is done by minimizing an energy function involving
translation vectors associated with each image. In order to obtain
smooth surfaces, a regularization parameter is used. The energy
function to be minimized is

Ei =
L−1∑
k=0

[pi(k) − pi−1(k) − ti ]
2 + α ∆t2i (4)

where pi(k) is the kth control point of the ith contour, ti is
the misalignment compensation translation vector associated
with the ith image, ∆ti = ti − ti−1 are the differences
between consecutive vectors, and α is the regularization
parameter. The use of matrix notation leads to Ei = (Pi −
Pi−1 − θti)T (Pi − Pi−1 − θti) + α(ti − ti−1)T (ti − ti−1),
where Pi = [pix(0), piy (0), . . . , pix(L − 1), piy (L − 1)]T ,
ti = [tix , tiy ]T , and

θ =
(

1 0 1 · · · 0 1
0 1 0 · · · 1 0

)T

.

The vector that minimizes (4) is ti = (θT θ + αI)−1 [θT (Pi −
Pi−1) + αti−1 ].

The alignment result is shown in Fig. 4(a), where estimated
translation vectors are added to the positions of control points
for each plane. Fig. 4(c) shows the smoothed curve fitted to
the estimated translation vector components, representing its
space-varying mean. These smoothed curves are subtracted from
the estimated translation vector components to avoid alignment
compensation of real anatomical deviations between planes, not

Fig. 4. (a) Absolute alignment (gray) of original contours (black). (b) Cor-
rected alignment using dynamic mean. (c) Translation vectors components in
x and y (line) and smoothed version (dots). (d) Longitudinal interpolation and
smoothing.

originated during the acquisition process. Fig. 4(b) displays the
correct alignment of the contours with this mean compensation.

5) Generation of Surface Meshes: In a final step, the linked
contours are interpolated and smoothed along the longitudinal
axis, as shown in Fig. 4(d). The goal is to increase the resolu-
tion of the initial mesh and smooth its surface by creating new
contours from the ones obtained during the segmentation step.
Here, interpolation is performed along a longitudinal line, as
shown in Fig. 4(d).

C. Plaque Reconstruction

Plaque reconstruction is performed from the noisy pixel
observations extracted from its interior after log-compression
compensation. The reconstruction is performed in a Bayesian
framework, where the observations have Rayleigh statistics and
a TV-based Gibbs distribution is used to regularize the solution.
This prior distribution is suitable to fill the interplane gaps if they
exist and interpolate the observed data to attenuate the speckle
noise and the discontinuities that arise during image acquisition.
It must, however, be insured that a maximum sweeping speed
is not exceeded to avoid undersampling situations. This is not
difficult to achieve since the geometry to be reconstructed is
topologically simple. Therefore, the minimum number of im-
ages needed to avoid undersampling is Nmin = L/∆z , where
L is the total length of the course and ∆z is the length of the
point spread function (PSF) in the z-direction, orthogonal to the
plane XY of the image (see Fig. 1). In this paper, Nmin ≈ 100 is
shown to be adequate for L = 10 cm, which means ten images
per centimeter. For a frame rate Fs = 25 images per second,
this image density may be obtained with an acquisition time
T ≈ 4 s. In fact, the image density used is higher: for L = 8 cm
and T = 4 s, the image density is T · Fs/L = 12.5 images per
centimeter.

The plaque inner region is modeled as a continuous function
expressed as a linear combination of basis functions

f(x) =
∑

fkφk (x) (5)

where φk (x) are finite-support trilinear interpolating basis func-
tions. These functions are located at the nodes of a 3-D reg-
ular grid with which the fk coefficients to be estimated are
associated. Pixels observed inside the plaque are corrupted by
speckle noise. The estimation of f(x) is performed in a Bayesian
framework where the observation model for the compensated
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RF-estimated data y (Section III-A) is described by a Rayleigh
distribution given by

p(y|f) =
y

f(x)
e−y 2 /2f (x) (6)

and the prior function is the following:

p(F ) =
1
Z

e−α TV (7)

where Z is a partition function and α is a parameter used to
tune the smoothness of the solution. TV is

∑
gk , where gk is

the gradient magnitude of f(x), |∇f(x)|, computed at the kth
node. This gradient magnitude can be approximated as gk =√∑6

j=1 (fk − fkj
)2 , where fkj

are the six neighbors of fk .
The estimation problem used in this paper is based on the

method described in [23]. In this method, the reconstruction—
by using the MAP criterion—is formulated as the following
optimization task where an energy function is minimized:

F̂ = arg min
F

E(Y,X, F ). (8)

F = [f1 , f2 , . . . , fN ]T is a vector of coefficients, defining
f(x) [see (5)], to be estimated from a set of observations
Y = {yi} and corresponding positions X = {xi}. The energy
function is composed of two terms

E(Y,X, F ) = EY (Y,X, F ) + EF (F ) (9)

where EY (Y,X, F ) and EF (F ) are called data fidelity term
and prior term, respectively. The minimization of (9) is done
by finding its stationary point, i.e., ∇E(Y,X, F ) = 0 [23]. Us-
ing a Gauss–Seidel approach, the minimization of E(Y,X, F )
is performed by keeping all unknowns constant, but one at a
time. Each resulting unidimensional equation is solved by the
Newton–Raphson method. The overall solution is obtained by
solving the following set of equations:

∂EY (Y,X, F )
∂fk

+
∂EF (F )

∂fk
= 0 (10)

for 0 ≤ k ≤ N − 1, where N is the number of coefficients to
be estimated. This leads to

∂E(Y,X, F )
∂fk

=
1
2

∑ 2f(xi) − y2
i

f 2(xi)
φk (xi)+

6α

gk
[fk − fk ] = 0

(11)
where fk = (1/NV )

∑
τ fkτ is the average intensity of the

neighbors of fk , fkτ is the τ th neighbor of fk , Nv is the number
of neighbors of fk , and gk is the gradient magnitude at the kth
node. Approximating f(xi) ≈ fk leads to

1
fk

∑
φkxi −

1
2f 2

k

∑
y2

i φk (xi) +
6α

gk
(fk − fk ) = 0. (12)

The solution of this equation with the Newton–Raphson method
results in the following recursion:

ft+1
k = fk

6αfkf 2
k − 2fkbkgk + 3fML

k gk

6αfkf 3
k − bkfkgk + 2fML

k gk

. (13)

The initialization is performed with a maximum likelihood
(ML) estimation FML = [fML

k ]T

fML
k =

∑
i∈V (k) y2

i φk (xi)∑
i φk (xi)

(14)

where V (k) is the set of indexes of the observations located in
the support region of φk (x). Note that, as stated before, φk (x)
is a finite-support trilinear interpolating basis function, which
means that for the estimation of the corresponding coefficient
fk , only the observation inside its region of support must be
taken into account. The stopping criterion is the norm of the
error E = ‖F t − F t−1‖, which is the difference between two
consecutive estimations.

IV. CHARACTERIZATION OF PLAQUE ECHO MORPHOLOGY

AND LABELING

Characterization of plaque echo morphology is usually based
on statistics computed from the observed noisy images. In this
paper, the characterization is obtained from statistical estimators
(15) depending on the continuous function f(x) estimated in
Section III-C. The scalar function f(x) : R3 → R describes the
Rayleigh parameters within the plaque volume that are related
to the acoustic properties of the plaque components [24].

The proposed method is based on the automatic 3-D char-
acterization of the plaque by use of 3-D US tools [9]. Visual
assessment of carotid wall and plaque geometries as well as
quantitative analysis of important clinical parameters, such as
plaque volume, extension, maximum/mean stenosis, and its lo-
cation along the plaque is provided automatically from the es-
timated meshes. Volume reconstruction of the plaque interior
provides an overall characterization of its composition, which
is, in most cases, mentally built up by the clinician.

Our method provides a computational tool for automatic char-
acterization of plaque features, where the entire 3-D informa-
tion is used. The local characterization of the plaque is based
on the following statistical estimators for the mean fµ(x), me-
dian (GSM) fυ (x), standard deviation fσ (x), and percentile
40 fP4 0 (x) depending on f(x) and derived from the Rayleigh
distribution 



fµ(x) =

√
f̂(x)π

2

fυ (x) =
√

2 log(2)f̂(x)

fσ (x) =

√
4 − π

2
f̂(x)

fP4 0 (x) = 1 − e[−(402 )/2f̂ (x)].

(15)

Global measures of echogenicity and texture are computed
by averaging the values of local estimators from the esti-
mated continuous volume f̄τ = (1/V )

∫
V fτ (x) dx, where τ =

{µ, υ, σ, P40}. These averaged values, however, despite their
unquestionable usefulness, may not be enough for a correct as-
sessment of plaque vulnerability, especially in cases where the
plaque is significantly heterogeneous or is plagued by artifacts.
In this paper, a local-based labeling approach was developed.
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The goal is to use statistical estimators (15) to assess locally
the risk of plaque rupture. Using this method, we expect to
identify sites of the plaque whose features (hypoechogenicity
and heterogeneity) point toward potential foci of vulnerability.

The classification of the plaque at each location x is made by
comparison of the statistics for the mean, GSM, standard devi-
ation, and P 40 (15) with a threshold, defined by the clinician.
This is done for every voxel, resulting in 3-D maps of labels
ascribed for each one of the clinical indicators.

This thresholding algorithm is simple because it is performed
on a voxel-by-voxel basis, without taking into account the neigh-
boring nodes. Here, a more sophisticated and accurate method is
used where the labeling procedure considers the intensity value
of the statistical function at location x and also the values of its
neighboring nodes. The goal is to introduce spatial correlation
to reduce the misclassification rate by assuming that the plaque
is composed of homogeneous regions separated by abrupt tran-
sitions. This assumption is acceptable from an anatomical per-
spective and is usually adopted in the denoising and deblurring
of medical imaging.

Let fk , as before, be the estimated value of f(x) at the kth
node. The labeled maps Lτ , with τ = {µ, σ, υ, P40}, are per-
formed on a plane-by-plane basis, i.e., each plane is labeled
independently of the others. The segmentation is binary, which
means L(k) ∈ {0, 1}, where L(k) is the kth node of the labeled
volume. The labeling procedure of the whole volume is per-
formed in three steps: 1) all stacked planes along the vertical
direction are independently labeled; 2) all stacked planes along
the horizontal direction are independently labeled; and 3) both
volumes obtained in the previous steps, Lv (k) and Lh(k), are
fused by making L(k) = Lv (k) ⊗ Lh(k), where ⊗ denotes the
Boolean product.

The labeling process of each plane is performed by solving
the following optimization problem:

Lτ = arg min
L

E(F,L) (16)

where the energy function is

E(F,L) =
∑

k

(fthrs − fk )(2L(k) − 1)

+ α
∑

k

[V (L(k),L(kv )) + V (L(k),L(kh ))]
g̃k

.

(17)

In (17), L(k) ∈ {0, 1}, α is a parameter to tune the strength
of smoothness, fthrs is the threshold, g̃k is the normalized (ε ≤
g̃k ≤ 1) gradient of f(x) at the kth node, ε = 10−6 is a small
number to avoid division by zero, and L(kv ) and L(kh) are
the labels of the causal vertical and horizontal neighbors of fk .
V (l1 , l2) is a penalization function defined as follows:

V (l1 , l2) =
{

0, l1 = l2
1, l1 
= l2 .

(18)

The energy function (17) is composed of two terms: the first
called data term and the second called regularization term. The
first forces the classification to beL(k) = 1 when fk > fthrs be-

cause this leads to a decrease in the term (fthrs − fk )(2L(k) −
1) when compared with the alternative solution, L(k) = 0, and
the reverse when fk < fthrs . The second term forces the unifor-
mity of the solution because the cost associated with uniform
labels is smaller than with nonuniform ones (18). In order to
preserve the transitions, the terms are divided by the normalized
gradient magnitude of f(x), g̃k . Therefore, when the gradient
magnitude increases the regularization strength is reduced at
that location.

The minimization of (17) formulated in (16) is a huge opti-
mization task performed in the ΩN M high-dimensional space,
where Ω = {0, 1} is the set of labels, and N and M are the
dimensions of the image. The optimal solution of the energy
function (17) can be computed by using very fast and effi-
cient algorithms based on graph cuts [25], [26]. For example, a
200 × 300 pixel image is processed in 0.2 s in an Intel Core 2
CPU at 1.83 GHz with 2 GB RAM, which shows the efficiency
and the short processing time of the method.

V. EXPERIMENTAL RESULTS

In this section, experimental results including the reconstruc-
tion of surfaces from real carotids and plaques are first shown.
Then, the adequacy of 3-D reconstruction and characterization
methods are assessed with synthetic data, and afterward, results
using real medical data are presented.

A. Carotid and Plaque Surfaces

Surface reconstruction is displayed in a virtual reality mod-
eling language (VRML) environment where it is possible to
manipulate and magnify the 3-D models of carotids and plaques
for better inspection of their morphologies. This allows us to
evaluate the surface shape and extension of plaques and their
precise location inside the carotid. Fig. 5(a) shows results of a
normal carotid, where no plaque can be detected. On the other
hand, Fig. 5(b) shows a diseased carotid, where a plaque is vis-
ible inside its structure. Fig. 5(c) depicts four plaques showing
different sizes and shapes. On top, a real plaque is shown for
comparison. Surface rendering allows a first-stage assessment
of plaque risk in terms of extension, degree of stenosis, and
surface morphology.

B. 3-D Echo Morphology

The performance of the reconstruction and labeling algo-
rithms was evaluated with a “stack” of synthetically generated
noiseless images of the plaque (Fig. 6). Not only is the algo-
rithm able to attenuate the speckle noise, providing a clearer
reconstructed volume than the original one, but it also allows us
to identify the synthetically generated vulnerable regions across
the plaque. Moreover, the true (noiseless) intensity values asso-
ciated with these regions (GSM = 20) were correctly recovered.

A set of real data composed of N= 60 cross sections of a
carotid artery of a patient with atherosclerosis (CN1A07) was
used to illustrate the reconstruction procedure in more depth
[Fig. 7(a)–(d)]. A regularization effect as well as attenuation
of speckle noise is clearly observed from one image [Fig. 7(a)]
to another [Fig. 7(c)]. This is also evident in observation of
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Fig. 5. (a) Surface rendering of normal carotids. (b) Surface rendering of
diseased carotids. (c) Four plaques from different patients. (Top) Plaque after
being surgically removed.

Fig. 6. (a) Reconstruction and labeling using a synthetic carotid plaque. Po-
tentially vulnerable regions [two dark (GSM = 20) and one mid-gray (GSM =
50)] were created. (b) Carotid plaque after being corrupted with Rayleigh noise.
(c) Reconstructed plaque using the MAP method. (d) Vulnerable sites were
correctly labeled (using GSM 32).

the profiles of both images along a diagonal line in Fig. 7(d).
Fig. 7(e) displays a new generated cross section extracted
from the estimated volume. This is a useful ability for better
inspection of the morphology of the plaque without the presence
of the patient. Using a region-growing algorithm, the plaque
morphology is segmented and can easily be assessed, as shown
in Fig. 7(f).

Table I shows a good agreement between the indicators de-
termined by the clinician, using conventional 2-D methods, and
those obtained automatically with the proposed 3-D method,
namely the longitudinal extension of the plaque �, mean µ, me-

Fig. 7. Results of RF estimation and volume reconstruction. (a) Original of a
cross section. (b) RF estimate of a cross section. (c) MAP estimate of a cross
section. Grayscale intensity profile of the original and MAP estimate along
a diagonal line. (e) Virtual cross section of the plaque, showing its grayscale
composition. (f) Plaque morphology.

dian υ, standard deviation σ, and P 40 . Differences between the
characterization using the conventional method and the pro-
posed one are in almost all cases less than 10%. The similar-
ity between the results of the two methods being compared is
relevant because, from a clinical perspective, the medical in-
formation is considered to be the ground truth. The agreement
between 2-D and 3-D results was expected because the plaques
studied are quite homogeneous.

The analysis of plaque echo morphology, in particular, the
GSM and the P40 (percentage of hypoechogenic voxels), de-
termines whether (or not) the plaque is stable by using con-
sensual thresholds given in literature, such as GSM < 32 and
P 40 > 43 [5]. This binary classification is, however, very sim-
ple and incomplete because it can lead to wrong diagnostic and
clinical decisions. Furthermore, it does not give any information
about the extension of unstable foci within the plaque.

The average parameter P 40 obtained for all the studied
plaques is greater than 50%, which means that more than half of
their volumes present hypoechogenicity, but no information is
given about the distribution of these sites throughout the plaques.
Other important measures are the plaque volume and extension.
Even more important is the study of the progression of these
quantitative measures in time. This application is particularly
suitable for this type of prospective clinical approach because it
is much more accessible than other medical imaging modalities
like CT and MRI.

Local characterization is clinically relevant for obtaining
information about plaque local echo morphology that is not
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Fig. 8. Comparison of two labeling methods—thresholding and graph cuts—
computed with the local Rayleigh estimators of median fσ (x) and P 40 fP 40 (x)
for three carotid plaques. (a) FC2A06. (b) JF1A08. (c) JB1A08.

Fig. 9. Potential application of the algorithm. (a) Identification of hypoe-
chogenic sites using the local median parameter. (b) Grayscale mapping of
plaque texture using the local standard deviation parameter. (c) Inspection and
quantification of a representative vulnerable region detected inside the plaque.

provided by global measurements. As previously described, this
methodology is based on the computation of several statistical
indicators, namely the mean, median, standard deviation, and
P 40 within the plaques.

Fig. 8 displays the labeling of potentially unstable sites across
different plaques using two labeling methods: thresholding and
graph cuts. It is observed that the labeling using graph cuts is less
noisy and favors clustering, being more clinically meaningful
than simple thresholding.

Another example is shown in Fig. 9. Here, regions of hy-
poechogenicity are identified by use of the local median esti-

mator (GSM) [Fig. 9(a)]. Moreover, Fig. 9(b) shows results of
plaque texture, based on the standard deviation [6], providing a
grayscaled indicator of plaque heterogeneity. Regions resulting
from the combination of the previous results are thought to be
the most important foci of plaque rupture. Fig. 9(c) illustrates
a potential application of the characterization algorithm based
on the inspection of a region that was identified by the algo-
rithm as being more vulnerable. This region can be extracted,
its location inside the plaque can be tracked, and its volume can
be computed to assess the ratio of its occupation related to the
whole plaque.

VI. CONCLUSION

Plaque morphology and texture are considered to be powerful
criteria to be added to the atherosclerosis diagnostic procedure.
Two-dimensional ultrasound has so far been the preferred imag-
ing technique because it is noninvasive, inexpensive, and widely
used in most medical facilities.

The methodology proposed in this paper improves the char-
acterization of carotid plaques by using a more accurate 3-D
approach, together with new risk indicators and a local label-
ing of unstable foci within the plaque volume. Moreover, the
acquisition protocol for plaque reconstruction does not need
any equipment but the common scanner. This simplification
leads to less accuracy than the one achieved with more complex
techniques such as MRI. The proposed methodology, however,
presents a novelty with respect to the traditional 2-D ultrasound
methods while keeping the operating simplicity and accessi-
bility. This framework allows a more complete and objective
characterization than the traditional one because it considers
all the information on carotid and plaque anatomies without
depending on a subjective selection of a particular image for
diagnosis.

Our approach allows a complete medical exam in less than
1 h, including image acquisition, reconstruction, segmentation,
and classification. This performance is achieved because the
segmentation is semiautomatic, which means that the carotid
and plaque are usually segmented automatically without the
need for medical intervention.

Results of the reconstruction and characterization were vali-
dated with synthetic data. Surface reconstruction was also vali-
dated by visual inspection made by an experimented clinician.
Traditionally, the clinician makes a mental reconstruction and
integration of the carotid and plaque anatomies. The results
presented in this paper were validated on this basis by both
qualitative opinion, according to the cutting planes used in re-
construction and representative longitudinal images (cross val-
idation), and quantitative comparison with results obtained by
using common 2-D analysis. In the future, comparison with re-
sults obtained with other medical imaging modalities, e.g., MRI,
will be performed.

Furthermore, the method allows an accurate assessment of
plaque composition on a local basis. This local characterization
is crucial from a clinical perspective. The labeling procedure
uses an efficient method based on graph cuts that allows us to
identify sources of plaque rupture.
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In summary, a 3-D ultrasound-based framework was intro-
duced, which provides a complete and objective characterization
of carotid plaques, with encouraging results in terms of plaque
inspection, quantification, and both global and local characteri-
zation of echo morphology.

APPENDIX

POSITION ERRORS ANALYSIS

In this section, a displacement model for the ultrasound
probe is derived and validated with real data acquired with
an electromagnetic spatial locator (Fastrak, Pholemus, Colch-
ester, VT). These data are used to characterize and quantify
the errors between the true positions of the probe measured
by the spatial locator and the estimated ones used by the
algorithm.

The spatial locator provides three position and three ori-
entation parameters of the sensor coupled to the probe. The
distance between the transmitter (static referential) and the re-
ceptor (moving sensor) was kept small, less than 30 cm, to
reduce measurement errors of the device (position accuracy of
0.08 cm rms).

Fig. 10(a) shows ten of these error signals computed as the
difference between the real position measured by the spatial
locator and the estimated one

e(n) = x(n) − x(N − 1) − x(0)
N

n − x(0), 0 ≤ n ≤ N − 1
(19)

where N = 400, x(0) = 0, x(N − 1) = L with L correspond-
ing to the distance between landmarks. Fig. 10(b) displays the
mean of the absolute position error and orientation parameters
computed over the 50 experimental sample signals. The aver-
aged absolute error is less than 0.12 cm and the orientation
angles are always constant to less than 1◦. The standard devia-
tion is also less than 1◦ for the orientation parameters and less
than 0.25 cm for the position error.

Let the probe displacement be modeled as follows:

x(n) = x(n − 1) + T v(n) (20)

where T is the sampling period, v(n) = v(n − 1) + η(n), and
η(n) is a zero mean additive white Gaussian noise (AWGN).

The true and estimated positions, respectively, x(n) and y(n),
are given by

x(n) = x(0) + nTv(0) + T

n∑
k=1

(n − k + 1)η(k) (21)

y(n) = x(0) +
x(N) − x(0)

N
n

= x(0) + nTv(0) +
nT

N

N −1∑
k=1

(N − k + 1)η(k) (22)

Fig. 10. (a) Experimental probe error signals computed as the difference
between real and estimated positions. (b) Mean of position absolute errors
and orientation parameters. (c) Standard deviation of errors in X, Azymuth,
elevation, and roll.

where v(0) is the initial velocity. Thus, the position error is

e(n) = x(n) − y(n) = T
n∑

k=1

[(
n

N
− 1

)
k −

(
n

N
− 1

)]
η(k)

− nT

N

N −1∑
k=n+1

(N − k + 1)η(k). (23)

Assuming stationarity and independency for η(n), its vari-
ance is

σ2
e (n) = T 2σ2

η g(n) (24)

where σ2
η is the unknown noise energy and

g(n) =
( n

N
− 1

)2 n∑
k=1

(k − 1)2 +
( n

N

)2 N −1∑
k=n+1

(N−k + 1)2 .

(25)
The estimation of ση is obtained by use of the minimum

square error (MSE) method from the observations

σ̂η = arg minση

N∑
n=0

[
σ2

exp(n) − T 2 g(n)σ2
η

]2
(26)

where σexp(n) is the experimental curve represented in
Fig. 10(b), which was obtained by computation of the stan-
dard deviation over the 50 observations performed at the nth
instant. The solution of (26) is

σ̂η
2 =

1
T 2

∑N
n=0 σ2

exp

g
(n)

N∑
n=0

g(n). (27)
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Let us now compute the relative measure of the standard
deviation w.r.t. the average velocity. If the standard deviation of
η(n), ση = pV̄ , is a fraction of the average velocity, p may be
estimated from the experimental data as follows:

ση = pV̄ ⇒ p

L︷ ︸︸ ︷
x(N) − x(0)

NT︸ ︷︷ ︸
V̄

= ση ⇒ p =
NT

L
ση . (28)

Typical values for N and L are 60 and 8 cm, respectively.
The maximum standard deviation, occurring at the middle of
the course [see Fig. 10(c)], which may be computed by (24), is
σe(N/2) = 0.17 cm. The computation of p using (28) leads to
p = 0.01, i.e., the velocity deviation estimated from the exper-
imental data w.r.t. to its average value is only about 1% during
the whole course. Therefore, it is concluded that the errors ow-
ing to variations on sweep velocity are small when compared
with the total length of probe course.

It is observed that the standard deviation of the error is larger at
the middle of the course and zero in its limits. This is an expected
behavior, since we know its beginning, x(1), and its ending,
x(N), so the major uncertainty is at the middle of the course. The
theoretical curves, obtained from the model, are superimposed
with experimental data and displayed in Fig. 10(c).
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