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ABSTRACT

Fluorescent protein microscopy imaging is nowadays one of the
most important tools in biomedical research. However, the resulting
images present a low signal to noise ratio and a time intensity decay
due to the photobleaching effect. This phenomenon is a conse-
quence of the decreasing on the radiation emission efficiency of the
tagging protein. This occurs because the fluorophore permanently
loses its ability to fluoresce, due to photochemical reactions induced
by the incident light. The Poisson multiplicative noise that corrupts
these images, in addition with its quality degradation due to pho-
tobleaching, make long time biological observation processes very
difficult.

In this paper a denoising algorithm for Poisson data, where the
photobleaching effect is explicitly taken into account, is described.
The algorithm is designed in a Bayesian framework where the data
fidelity term models the Poisson noise generation process as well as
the exponential intensity decay caused by the photobleaching. The
prior term is conceived with Gibbs priors and log-Euclidean poten-
tial functions, suitable to cope with the positivity constrained nature
of the parameters to be estimated.

Monte Carlo tests with synthetic data are presented to character-
ize the performance of the algorithm. One example with real data is
included to illustrate its application.

Index Terms— Photobleaching, Poisson Denoising, Bayesian,
Total Variation, Log-Euclidean Potentials.

1. INTRODUCTION

Fluorescence microscopy imaging became a fundamental tool in bi-
ological, medical, pharmaceutical and chemical research since it al-
lows the study of the dynamics of living cells in an almost non-
invasive manner.

The phenomenon of fluorescence in certain specific substances
consists on the emission of radiation with a longer wavelength
than the one of the incident radiation, by excited molecules within
nanoseconds after the absorption of photons. The fluorophore is
the component of the molecule responsible for its capability to
fluoresce and it is able to maintain for a long time triplet excited
states that favour the occurrence of photochemical reactions that
irreversibly destroy its fluorescence and/or cause phototoxicity [1].
This phenomenon is called the photobleaching effect. Upon ex-
tended excitation all the fluorophores will eventually photobleach.
Since illumination is needed to excite and observe the tagging flu-
orescent proteins in the specimen, the acquisition of this type of
images becomes a hard task for long exposures. One way to obviate
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this effect is to reduce the intensity of the incident radiation. How-
ever, this strategy leads to a decreasing in the signal to noise ratio
of the acquired images. This is not the only difficulty one has to
deal with. The fluorescence microscopy images may be considered
of photon-limited type due to the small amount of detected radia-
tion and to the huge optical and electronic amplification they are
put through. Thus they are usually corrupted by a severe type of
multiplicative noise described by a Poisson distribution.

In this paper a denoising algorithm for Poisson data that explic-
itly takes into account the global photobleaching effect is presented.
The goal is to estimate the basic morphology and the rate of intensity
decay due to photobleaching of fluorescence microscopy images of
human cells.

Different types of photobleaching curves are considered in the
literature [2], [3] and among them the most commonly used are the
ones presenting an exponential decaying behaviour (mono- or multi-
negative exponentials). Here the intensity decrease along the time is
modeled using a mono-exponential decaying approach with a con-
stant rate which corresponds to the assumption of a homogeneous
fluorophore population. It is also assumed that the morphology of
the cell nucleus under observation is allowed to vary in space follow-
ing a pattern that consists of sets of homogeneous regions separated
by well defined boundaries, but not in time, so the overall intensity
decay in the set of images could be revealed through the exponential
term.

The algorithm is formulated in a Bayesian framework as an op-
timization task where a convex energy function is minimized. Max-
imum a posteriori (MAP) estimation is employed since it has been
successfully used and is well-suited to image restoration. Never-
theless the denoising of fluorescence microscopy images is in gen-
eral an ill-posed and an ill-conditioned problem [4] requiring some
sort of regularization that in the Bayesian framework is expressed
in the form of a prior distribution functions. Given the character-
istics of these images, the local Markovianity of the nucleus mor-
phology seams to be a reasonable assumption thus, according to the
Hammersley-Clifford theorem [5], a Gibbs distribution with appro-
priate potentials can be considered as a prior for the base morphol-
ogy. Several potentials have been proposed in the literature [6, 7].
One of the most popular of these functions is the quadratic, mainly
for the sake of mathematic simplicity. However this function over-
smooths the solution. An alternative is the use of edge preserving
priors such as total variation (TV) based Gibbs energy ones that
have been successfully used in several problems [7, 8, 9]. Very re-
cently a new type of potential functions was proposed in [10]. This
approach is based on log-Euclidean norms and instead of using dif-
ferences between neighbors, uses logarithms of their ratios which
means differences of logarithms, allowing the interpretation of dif-
ferences between neighbors in terms of the order of magnitude. This
new approach is suitable to be used here due to the positiveness of
the unknowns to be estimated.



Synthetic data were generated with a low level of signal to noise
ratio and a Monte Carlo experiment was carried on with these data
in order to evaluate the performance of the algorithm.

Real data of a HeLa immortal cell [11] nucleus, acquired by a
laser scanning fluorescence confocal microscope (LSFCM), are used
to illustrate the application of the algorithm.

2. PROBLEM FORMULATION

Each sequence of fluorescence microscopy N × M images under
analysis , Y, corresponds to L observations of a cell nucleus ac-
quired along the time. Data can be represented by a 3D tensor,
Y = {yi,j,t}, with 0 ≤ i, j, t ≤ N − 1, M − 1, L − 1. Each
data point, yi,j,t, is corrupted by Poisson noise and the time intensity
decrease due to the photobleaching effect is modeled by a decaying
exponential whose rate, denoted by λ, is supposed to be constant
along the time t and in space (i, j). The constancy of this rate in
space is a reasonable assumption in situations when the background
and the nucleus are identified, for instance through a segmentation
procedure using graph-cuts, and the population inside the nucleus is
considered as homogeneous. Each point of the noiseless cell nucleus
images, X, can then be written as

xi,j,t = fi,je
−λt (1)

where F = {fi,j}, with 0 ≤ i, j ≤ N − 1, M − 1 stands for
the underlying morphology of the cell nucleus. This morphology is
assumed to be a sole function of the position in the image, since the
purpose of this approach is that all the time variability in the intensity
of the images could be caught by the exponential term.

The ultimate goal of the proposed algorithms is to estimate the
cell nucleus underlying morphology, F, and the rate of decay, λ,
from these noisy data, Y, exhibiting a very low signal to noise ra-
tio (SNR). A Bayesian approach using the maximum a posteriori
(MAP) criterion is adopted to estimate F and λ. This problem may
be formulated as the following energy optimization task

(F̂, λ̂) = arg min
F,λ

E(F, λ,Y) (2)

where the energy function E(F, λ,Y) = EY (F, λ,Y)+EF (F) is
a sum of two terms, EY (F, λ,Y) called the data fidelity term and
EF (F) called the energy associated to the a prior distribution for F.
The a prior information for λ is merely its overall constancy. The
first term pushes the solution towards the observations according to
the type of noise corrupting the images and the a prior energy term
penalizes the solution in agreement with some previous knowledge
about F, in this case a stepwise function [12].

Assuming the independence of the observations, the data fidelity
term, which is the negative of the log-likelihood function, is defined
as

EY (F, λ,Y) = − log

[
N−1,M−1,L−1∏

i,j,t=0

p(yi,j,t|fi,j , λ)

]
, (3)

where p(y|f, λ) =
(fi,j exp(−λt))y

y!
e−(fi,j exp(−λt)) is the Poisson

distribution, yielding

EY (F, λ,Y)=
∑

i,j,t=0

[
fi,je

−λt − yi,j,t log
(
fi,je

−λt
)]

+C (4)

and C is a constant term.
The prior term regularizes the solution and helps to remove the

noise. By assuming F as Markov Random Field (MRF), p(F) can
be written as a Gibbs distribution, p(f) = 1

Z
exp[−∑

c∈C Vc(f)],

Fig. 1. Neighboring system.

where Z is the normalizing constant and Vc(.) are the clique po-
tentials [13]. The negative of the argument of the exponential
function is called energy and will be denoted by EF (F). The choice
of the potential functions to be used in each problem is a very
important step because they act upon the solution. In this paper log-
Euclidean [10] based potential functions are used. These functions,
that can be interpreted as log-total variation potentials, produce
edge-preserving priors which are the most convenient to preserve
the edges of the cell nucleus morphology. The energy function
related to the a priori distribution is given by:

EF (F ) = α
∑
i,j,t

√
log2

(
fi,j

fi−1,j

)
+ log2

(
fi,j

fi,j−1

)
(5)

Therefore the overall problem consists on the minimization of
the following function

E(F, λ,Y) =
∑
i,j,t

[
fi,je

−λt − yi,j,t(log(fi,j) − λt)
]

+ αL
∑
i,j

√
log2

(
fi,j

fi−1,j

)
+log2

(
fi,j

fi,j−1

)
(6)

This optimization task leads to a non-convex problem [14] since it in-
volves sums of convex functions with concave ones e.g.

√
log2(x),

rendering the use of gradient descendant or Newton-Raphson based
methods difficult. However, performing an appropriate change of
variable, z = g(f) = log(f), it is possible to turn it into convex.
The minimizers of E(F, λ,Y) in F and of E(Z, λ,Y) in Z are re-
lated by Z∗ = log(F∗) due to the monotonicity of function g(f).
The new objective function for this model is

E(Z,λ,Y) =
∑
i,j,t

[
ezi,j−λt−yi,j,t(−zi,j + λt)

]

+ αL
∑
i,j

√
(zi,j−zi−1,j)2+(zi,j−zi,j−1)2 (7)

The minimization of (7) is accomplished by finding its stationary
points, performing iteratively its optimization in Z with respect to
each component zi,j one at a time, considering all other components
as constants in each iteration. Let us now consider only the terms
involving a given node z = zi,j in the energy function (7),

E(z, λ, y) =
∑

t

(ez−λt − yz)+αL[
√

(z − za)2+(z − zb)2

+
√

(zc − z)2+(zc − z̃c)2+
√

(zd − z̃d)2+(zd − z)2]+C (8)

where za, zb, zc, zd are the neighbors of z and z̃c and z̃d are neigh-
bors of zc and zd respectively as shown in Fig.1; C is a term that
does not depend on z. The reweighted least squares (RWLS) method
[12, 15] is used to obviate the numerical difficulties introduced by the



non-quadratic TV terms. The minimizer of the convex energy func-
tion (8), z∗, is also the minimizer of the following energy function
with quadratic terms associated with the spatial interaction

Ẽ(z,λ,y,z∗)=ez−λt − yz+αL[w(z∗)((z−za)2+(z−zb)
2)

+wc(z
∗)((zc− z)2+(zc−z̃c)

2)+wd(z
∗)((zd−z̃d)

2+(zd−z)2)] (9)

where w(z) = 1√
(z−za)2+(z−zb)2

, wc(z) = 1√
(zc−z)2+(zc−z̃c)2

and wd(z) = 1√
(zd−z̃d)2+(zd−z)2

.

Since the weights w(z∗), wc(z
∗) and wd(z

∗) depend on z∗,
which is not known, an iterative procedure is used where in each
kth iteration the previous estimation of z∗, zk−1, is used to com-
pute them. Let us denote w(zk−1), wc(z

k−1) and wd(z
k−1), calcu-

lated at node (i, j), simply by w, wc and wd. The minimization of
the resulting energy function with respect to zi,j is accomplished by
finding its stationary point, which is equivalent to solve the equation∑

t

(ezi,j−λt − y) + hi,j = 0 (10)

where hi,j = 2αL[(2w + wc + wd)zi,j − w (zi−1,j + zi,j−1) −
wczi+1,j−wdzi,j+1]. The minimization of the energy function with
respect to λ (the rate of decay due to the photobleaching effect) is
performed by computing the zero of∑

t

(−tezi,j−λt − yi,j,tt) = 0 (11)

Using the Newton-Raphson method the solution of (10) and (11)
is obtained in each iteration by

z
(k+1)
i,j = z

(k)
i,j −

∑
t(e

zi,j−λt − yi,j,t) + hi,j∑
t(e

zi,j−λt) + 2αL(2w + wc + wd)
(12)

and

λ(k+1) = λ(k) −
∑

i,j,t(−tezi,j−λt + yi,j,tt)∑
i,j,t(t

2ezi,j−λt)
. (13)

Reversing the change of the variable Z, the final solution for the
underlying morphology is

F̂ = eẐ. (14)

3. EXPERIMENTAL RESULTS

In this section, results using synthetic and real data are presented.
The synthetic data is used to characterize the performance of the de-
noising algorithm. A real images sequence is employed to illustrate
the application of the algorithm to estimate the underlying morphol-
ogy of a HeLa cell nucleus.

3.1. Synthetic Data

Results of a Monte Carlo experiment are presented in order to access
the performance of the proposed algorithm. A 64 × 64 pixels syn-
thetic underlying morphology image was generated and an exponen-
tial decay along the time, t = (0, ..., 63), with rate λ = 0.01, was
applied upon it to simulate the global photobleaching. The Monte
Carlo experiment was then carried out in 500 runs with 500 iter-
ations each, which took a time of 18s per run in a Centrino Duo
2.00GHz, 1.99 GB RAM processor. In each run the sequence was
corrupted with Poisson noise. Since this type of noise is multiplica-
tive, the underlying morphology intensities were previously chosen
in order to achieve initial signal to noise ratio values in the range

[−1, 2] dB along the sequence. The derived synthetic data were
then processed using the algorithm described in the paper with reg-
ularization parameter α = 1. The reconstruction mean square error
(MSEX̂) and the Signal to noise ratio (SNR) were computed for
each image and run. The Csiszár’s I-divergence [16], used here to
measure the discrepancy of image U(t) with respect to X(t), is de-
fined as follows

I-div(X(t),U(t))=
∑
i,j

[
xi,j,t log

(
xi,j,t

ui,j,t

)
−xi,j,t+ui,j,t

]
(15)

where U(t) is the the noisy sequence Y(t) and the estimated de-
noised one X̂(t), to measure the improvement. The MSE for the
underlying morphology, MSEF, and for the rate of decay, MSEλ,
were also computed in each run. The mean values and the stan-
dard deviations of each figure of merit are computed from the 500
results of the Monte Carlo test and displayed. Plots of the initial
and final SNR and of the I-divergence together with the curve of
the MSEX̂ as a function of time (image) are represented in Fig.
2. The thinner lines above and below each curve of the computed
means of the figures of merit stand for error bounds obtained by ad-
dition and subtraction of the respective values of the standard devi-
ations. As shown in the plots, the SNR improvement attains values
of almost 30dB which is in perfect agreement with the decrease in
the I-div. The MSEX̂ exhibits low values, the same occurring for
MSEF = 0.0395 and MSEλ = 1.17 × 10−5. These results sug-
gest that the obtained estimates are very close to the originals. Fig.
3 shows the original (a),(d), the noisy (b),(e) and the reconstruction
(c),(f) versions of the first image of the synthetic sequence. In the
same Fig. are plotted the respective profiles of intensity (g). Fig. 3
corresponds in fact to the underlying morphology since for t = 0
(first image of the sequence) the exponential term is 1. The edge
preserving capabilities of the algorithm are noticeable in the mesh
representations and even better in the profile plots.
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Fig. 2. Result of the Monte Carlo experiment: (a) SNR curves before (ini-
tial) and after (final) applying the algorithm and respective error bounds. (b)
Csiszár’s I-divergence curves before (initial) and after (final) applying the
algorithm and respective error bounds.(c) Mean Square Error of the recon-
struction and respective error bounds.

3.2. Real Data

The sequence used to show the application of the algorithm de-
scribed in the paper to real data is the result of the acquisition of 100
images of the HeLa cell nucleus in a laser scanning fluorescence
confocal microscope through the green channel. This sequence is
represented by a 3-D tensor Y, as described in Section 2. On these
images a simple alignment procedure was performed to correct for
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Fig. 3. Image 1 of the sequence of synthetic data (underlying morphology):
(a),(d) Original. (b),(e) Noisy. (c),(f) Estimated. (g) Intensity profiles.

cell nucleus displacement during the acquisition process. The align-
ment consists in a set of rigid body transformations driven by the
maximization of the correlation between images, using a wavelet
based strategy. The results of the use of the presented denoising pro-
cedure are shown in Fig. 4 where (a), (c) stand for raw data image
50 (from a sequence of 100 images) and its mesh and (b), (d) show
the estimated underlying morphology and the respective mesh rep-
resentation. Image 50 is shown just to give the reader some insight
on the difficulty of using such a low quality image in a biological
research. Notice that with this method it is possible to recover with
a high quality an image of the underlying anatomy without using to
much radiation that could cause injuries or even death to the cell due
to the phototoxicity.

Fig. 4. Real data:(a),(c) Noisy image 50. (b),(d) Estimated underlying mor-
phology (λ̂ = 0.0077). Data provided by the Molecular Medicine Institute
of Lisbon, Portugal.

4. CONCLUDING REMARKS

In this paper a new denoising algorithm for Poisson data resulting
from fluorescence microscopy (FM) imaging is proposed. The se-
quences of images taken along the time, in this microscopy image
modality, are corrupted by a type of multiplicative noise described
by a Poisson distribution. Furthermore, the global intensity of the
images decreases along the time due to permanent fluorophore loss
of its ability to fluoresce, caused by photochemical reactions induced
by the incident light (photobleaching effect). The decreasing on the
image intensity leads to a decreasing on the signal to noise ratio of
the images, making the biological information recovery a difficult

task. In the proposed algorithm this effect is explicitly taken into
account.

This approach is conceived as an optimization task with the
maximum a posteriori (MAP) criterion. The energy functions are
designed to be convex and their minimizers are computed by us-
ing the Newtons’s algorithm to estimate the rate of decay, assuming
a negative mono-exponential to model the photobleaching and the
Newton’s algorithm and a reweighted least squares based method
in the estimation procedure of the morphology of the cell nucleus,
which allows continuous convergence toward the global minimum,
in a small number of iterations.

Monte Carlo tests with synthetic data were used to assess the
performance of the algorithm. These tests have shown the ability
of the algorithm to strongly reduce the Poisson multiplicative noise
and to estimate the underlying morphology. The main characteristic
of the algorithm is its ability to used all the information, even the
last images of the sequence with a very low SNR, to recover the cell
morphology.

Tests with real data from fluorescence confocal microscopy were
also performed where it is shown the effectiveness of the algorithm
to cope with this type of noise and low SNR. Its performance is re-
lated to the use of edge preserving a prior to model the prior knowl-
edge about the cell morphology that is assumed to be stepwise con-
stant.
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