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ABSTRACT
Dynamic-Contrast Enhanced MRI (DCE-MRI) is used in clinical
practice to assess liver tumor malignancy. An algorithm to get infor-
mation for automatic classification of tumors is presented. TheMax-
imum value and WashIn and WashOut rates, obtained from the per-
fusion curves measured from the DCE-MRI images, are used in the
classification process. The perfusion curves are described by a linear
discrete pharmacokinetic (PK) model, based on multi-compartment
paradigm where the input is the bolus injection. The arterial input
function (AIF) that is usually estimated in the closest artery is as-
sumed here to be the response of a second order linear system to the
bolus injection. Therefore, the complete chain is modeled as a third
order system with a single zero.

The alignment procedure is performed by using the Mutual In-
formation (MI) criterion with a non-rigid transformation to compen-
sate the displacements occurred during the acquisition process.

It is shown that the Maximum values and the WashIn and
WashOut rates of the perfusion curves in malignant tumors are
higher than in healthy tissues. This fact is used to classify them.
Furthermore, it is also shown, that inside the tumor, the parameters
associated with the perfusion curves for each pixel (time courses)
present a higher variance than in the healthy tissues, which may also
be used to increase the accuracy of the classifier.

Examples using real data are presented.

Index Terms— DCE-MRI, Pharmacokinetic Model, Perfusion
Curve, Registration

1. INTRODUCTION

Dynamic-Contrast Enhanced MRI (DCE-MRI) is used in clinical
practice to get information about the malignancy of tumors. Ma-
lignant tumors are known to have an active angiogenesis around
them. So wider, more permeable and higher number of vessels can
be found around malignant tumors when compared with healthy tis-
sue or non malignant ones. In this case an increased contrast agent
uptake is observed. Therefore, the revealed contrast kinetics param-
eters may be used to characterize the tumors as malignant or be-
nign [1]. Malignant tissues generally have an earlier contrast up-
take, with rapid and large increasing when compared with benign
tissues, which in general show a slower uptake. Cancer demonstrate
rapid and high amplitude agent uptake, meaning large WashIn, fol-
lowed by relatively rapid decreasing agent concentration, meaning
large WashOut, while benign or normal tissue have smaller WashIn
and WashOut. The maximum of the uptake is also higher in malign
tumors than in benign. Therefore, the estimation of the perfusion
curves may be used to classify the tumors.
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The traditional procedure to classify liver tumors uses liver func-
tion tests and liver biopsy. This last one is an invasive procedure
presenting the risk of spreading the cancer along the biopsy needle
pathway.

DCE-MRI is the preferred technique to assess tumor vascular
characteristics because it is non invasive. However this is usually
computationally intensive due to the huge amount of data generated
by the MRI equipment which make them not appropriated in clinical
practice.

The processing time may be reduced by decreasing the volume
of the ROI containing the tumor in the DCE-MRI data without de-
creasing the spatial resolution, as shown in Fig. 1). A small ROI with
small temporal resolution dataset is used in this work. This reduc-
tion speeds up the alignment and analysis algorithms but increases
the difficulty in the registration because less detail landmarks are
available.

Fig. 1. Selection of a ROI

The signal intensity profile enhancement, after and before the
contrast administration, along the time is used to estimate the perfu-
sion curves. There are two ways to quantify perfusion. The first is
based on the analysis of signal intensity changes, called tissue relax-
ivity or semiquantitative. The second is based on the contrast agent
concentration change using pharmacokinetics (PK) models. Semi-
quantitative are straight forward to calculate but it is not completely
supported on physiological reasons. PK models are therefore pre-
ferred [2].

However, first, the patient motion occurred during the acqui-
sition due to respiratory and cardiac activity must be compensated
[3, 4].

In clinical practice, the evaluation of tumor is done mostly by
human observation specially in the liver where several types of le-
sions can occur. Highly vascularized tumors, having several arteries
around them, are very visible in the arterial phase, during the first
30 seconds after injection [5]. The arterial phase is the most impor-
tant to assess the malignancy and therefore is the phase that experts
observe with more detail. The ultimate goal of this to develop an
automatic tool to help the medical doctor in the diagnosis of liver
tumors.

In this paper, a PK model is estimated from the observed inten-
sity profiles in a Statistical framework in order to deal with the noise
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corrupting the observations. The estimated PK models are used to
compute a noiseless perfusion curves whose maximum, washIn and
washOut parameters are used in a classifier to classify the tumor ma-
lignancy.

The paper is organized as follows. Section 2 describes the acqui-
sition protocol and section 3 the registration procedure. In section 4
the PK model used is described as well the respective parameter es-
timation algorithm. Section 5 shows the results using real data and
section 6 concludes the paper.

2. ACQUISITION
A total of 3 patients underwent DCE-MRI with contrast agent
Gadolinium (Gd) imaged with a Siemens Sonata scanner using
the ”Vibe FS tra BH post iPat” protocol. The quantity of contrast
media, automatically injected intravenously in the arm, is around
20-25 ml. Contrast agents such as Gd are paramagnetic leading
to inhomogeneities in the magnetic field and therefore the signal
will be brighter. There are two types of bolus injection: rapid
(5-10 sec) and slow (20-30 sec). The contrast agent is injected
seconds before the the first pos-contrast image acquisition. Each
dataset is composed by a sequence of six volumes (maximum size
589× 413). The first is pre-contrast and the rest is pos-contrast with
30 seconds between them. The time delay between pre-contrast and
pos-contrast images is around 120 seconds. The voxel size varies
from 0.456 × 0.456 × 2 mm3 to 0.78 × 0.78 × 3 mm3. The data
used in this paper, provided in DICOM format, was provided by
the Department of Radiology at the Erasmus MC in Rotterdam. A
scheme is displayed in Figure 2.

Fig. 2. Acquisition protocol.

The same rectangular ROI, containing the tumor, is used in all
sequence images. The cropped size is about 50× 40× 10 (Data Set
1 and 2) for small tumors and 80× 90× 16 for the larger ones.

To minimize organ motion, breath-hold is asked during acquisi-
tions and patients “catch their breath” between acquisitions.

3. REGISTRATION
The registration procedure performed in the volumes is needed to
compensate organ and tissue displacements occurred during acquisi-
tion. The motion of the patient due to respiratory and cardiac activity
may invalidate the results, because in a pixel by pixel analysis each
single time course associated with each pixel along the acquisition
time must be completely individualized.

In order to reduce the processing time, a small ROI is selected
from the whole volume. The small dimensions of these volumes
makes practical the use of non-rigid transformations which are usu-
ally more demanding from a computational point of view than the
rigid ones, because intensive interpolation operations are involved.

The interpolation method is B-splines based [6] and the optimiza-
tion method is the regular step gradient descent. The alignment pro-
cedure is based on theMattes MI criterion and the number of spatial
samples used to estimate the marginal and joint histograms, as well
the number of its bins, are manually defined. Here, the MI [7] cri-
terion is maximized by geometrically transforming each volume in a
pairwise basis

T̂p,q = arg max
T

MI [fp(x), fq(T (x))] (1)

where fp(x) = f(x, tp) and fq(x) = f(x, tq) are two volumes
from the data sequence. This process is the main source of the com-
putational burden associated to the whole algorithm. The MI, used
as alignment criterion, is defined as follows:

MI(u, v) = h(u) + h(v)− h(u, v) (2)

where h(z) = −Ez(ln p(z)) is the entropy of z and Ez() is the
expectation operator.

The strategy used in the alignment procedure is relevant for the
final result and depends on the type and dimensions of the volumes.
Here the simple strategy of align all volumes with a reference one,
e.g., the middle one, is used. More complex strategies were tested
with better results, e.g., large number of alignments between ran-
dom selected pairs of volumes until convergence is achieved. The
comparison between several strategies is not presented here by limi-
tations of space and for sake of simplicity.

4. ESTIMATION
PK models make assumptions about the contrast agent perfusion
process and the water exchange rates between prescribed tissue com-
partments. The PK models developed for DCE-MRI are compart-
mental models, that is, they assume that the tissue comprises several
distinct compartments. These models assume that the contrast agent
is distributed between two main tissue compartments: the intra-
vascular plasma volume space and the extravascular extracelular
space (EES) as displayed in Figure 3.

Fig. 3. PK compartmental model

The generalized kinetic model describing the evolution of con-
trast agent concentration with time by the following differential
equation [7]

dCtumor/dt = KtransCp −KepCtumor (3)

where Ctumor and Cp are the concentration of the contrast agent in
EES and plasma space, respectively. Ktrans and Kep are constants
that may be use to classify tumors. However, usually the Wash rates
among others are the preferred parameters in clinical practice for
sake of simplicity [8].
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Several PK models have been proposed for DCE-MRI and the
specific model depends on the contrast agent physicochemical and
pharmacological properties. Gadolinium based contrast agents (type
2) cannot cross the cell membrane and enter the cells, but pass out
the capillaries, because they have a low-molecular weight [7].

The PK model is estimated from the arterial input function, AIF
(Ĉtumor), and the observed contrast agent concentration (Ĉp). This
last one is not usually available. Therefore, a relation between in-
tensity values, which are available, and concentrations is needed.
In the case of a low-molecular weight contrast agent this relation
is simple, s(t) = s(0)(1 + gC(t)) where s(t) is the signal in-
tensity, C(t) is the correspondent concentration value, s(0) is the
baseline intensity before the contrast agent injection and g is a pa-
rameter depending on the tissue and contrast agent. Since measure-
ments of the g parameter are not available, the following signal is
used y(t) = gC(t) = s(t)/s(0)− 1 which linearly depends on the
concentration C(t) [9].

The way the AIF is determined is different frommodel to model.
The early Tofts and Kermode model assumes an AIF bi-exponential
fuction which may be described by a second order linear time invari-
ant (LTI) system. The AIF is usually estimated from measures of
one of the arteries around the tumor [9], but this can provide wrong
information since it can be quite far from the tumor.

The overalll PK model used in this paper [7], relating the agent
concentration with the bolus injection, is a third order LTI system
with three real poles and a real zero, where the equation (3) and the
AIF transfer function displayed in Figure 4 are incorporated.

Fig. 4. Overall system.

The transfer function of the discrete time PK model is

H(z) =
Y (z)

X(z)
=

K(1− dz−1)

(1− az−1)(1− bz−1)(1− cz−1)
(4)

The correspondent difference equation is

y(n) = Kx(n)−Bx(n− 1)−

3∑
k=1

Aky(n− k) (5)

where 0 ≤ n ≤ N − 1, A1 = 1 − a − b − c, A2 = ab + ac + bc
and A3 = −abc.

Let Z = {z(0), z(1), ..., z(N − 1)}T be the N dimensional
vector with the noisy observations of the signal y(t), expanded by a
polynomial fitting method, U = {u(0), u(1), ..., u(N − 1)}T is the
bolus injection signal and θ = {K, B, A1, A2, A3}

T is the vector
of parameter to be estimated by minimizing the following energy
function E(Y, U, θ) = ‖Z − Y ‖22 where Y is the response of the
system described by the difference equation (5).

The estimation of the model parameters, K, B and Ak is per-
formed with the Shanks’ method [10]. These parameters θ are used
to compute the agent concentration as response to the bolus injection
by using the equation (5).

The bolus injection u(n) is not completely known and therefore
must be also estimated. It is assumed that

u(n) =

{
1, d0 ≤ n ≤ d1

0, otherwise
(6)

where d0 and d1 are unknown to be estimated. There are two
restrictions: the bolus injection started before the acquisition of the

first pos-contrast image and the duration of the injection has to be
reasonable (≤ 40s). For each perfusion curve several values of d0

and d1 are tested and the solution is the one that lead to the minimum
mean square error (MSE),

[d0, d1] = arg min
d0,d1

E(Y, U(d0, d1), θ̂) (7)

where it was assumed that y(n) = 0, 0 ≤ n < d0. It is also forced
that the y(n) will approximate zero around 960 seconds after the
beginning of the acquisition when the Gd contrast agent is taught to
be going out of the body.

5. EXPERIMENTAL RESULTS
The perfusion curves of the three datasets were obtained in 36 vox-
els around the center of the image/tumor. The results using the data
sets 1, 2 and 3 are displayed in Figures 5, 6 and 7 respectively. The
medical validation in these very few examples have classify the tu-
mors associated with the data set 1 and 3 as malign and the tumor
associated with the data set 2 as benign. In these images are repre-
sented the estimated bolus signal(yellow), the expanded observation
(green) obtained by interpolation of the real observations (red) and
the perfusion curves (blue) for all the 36 pixels processed.
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Fig. 5. Perfusion Curves Data Set 1: Observations(red), experimen-
tal points (green), bolus injection (yellow) and estimated perfusion
curves (blue)
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Fig. 6. Perfusion Curves Data Set 2: Observations(red), experimen-
tal points (green), bolus injection (yellow) and estimated perfusion
curves (blue)

The Maximum value and WashIn and WashOut rates of the per-
fusion curves for each pixel were computed. It is known that malign
tumors are more heterogeneous than benign ones. The computed
features can be seen in Figure 8 and different clusters can be seen
which can show that these features can be useful in classification.

The mean and variance values of the estimated features for each
dataset are also computed and listed in Table 1. These values allow
to infer the heterogeneity of the tumor. Dataset 2 presents smaller
variances in the three features and the mean values are also smaller.
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Fig. 7. Perfusion Curves Data Set 3: Observations(red), experimen-
tal points (green), bolus injection (yellow) and estimated perfusion
curves (blue)
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Fig. 8. Features: Data Set 1 (Green), Data Set 2 (Red) and Data Set
3 (Blue)

Image Set 1 50× 40× 10 size 12 bins, 1000 samples
Mean Var

WashIn 0.1394 0.0054
WashOut −0.0178 1.26E − 04
Maximum 4.0655 5.2753
Image Set 2 40× 30× 10 size 12 bins, 1000 samples

Mean Var
WashIn 0.0166 1.57E − 05
WashOut −0.0024 3.60E − 07
Maximum 0.7024 0.0161
Image Set 3 80× 90× 16 size 32 bins, 7000 samples

Mean Var
WashIn 0.0602 0.0017
WashOut −0.0083 1.67E − 05
Maximum 2.0631 1.5174

Table 1. Mean and standard deviation of the estimated features for
the three data sets tested. Notice the smaller variance and mean val-
ues of data set 2 associated with the benign tumor.

The goal in the future is to extend these tests to a larger number
of data sets to design robust classifiers to classify tumors as malign
or benign based on this image technique. This goal is extremely
important from a clinical point of view.

6. CONCLUSIONS

In this paper, an algorithm to extract features to classify tumors as
benign and malign is proposed. The classifier is based on the Max-
imum and WashIn and WashOut rates obtained from the perfusion

curves estimated from the DCE-MRI images. These three features
as well their variances, computed over the pixels inside the tumor,
have shown the ability to be used in the classification of the tumors.

A MI based registration algorithm was developed using non-
rigid transformations for DCE-MRI datasets. The aligned data is
used to estimate the parameters of a PK model from which the per-
fusion curves are estimated and from which the features used in the
classification are computed.

Tests with real data, validated by medical doctors, have been
used and shown the ability of the proposed method to classify the
liver tumors as being primary malign, called hepatoma, or not.

These results are very relevant from a clinical point of view since
no automatic established method exist to classify tumors, as already
happens for the breast lesions.

In the near future more intensive tests using more data will be
used to design a robust classifier.
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