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ABSTRACT
Functional Magnetic Resonance Imaging (MRI) is today one of
the most important non-invasive tools to study the brain from a
functional point of view. The blood-oxygenation-level-dependent
(BOLD) signal is used to detect the activated regions based on the
assumption that in these regions the metabolic activity increases.
The normal procedure is the application of known sequences of
stimulus and find out the brain regions whose activation sequence is
correlated with the applied stimulus.

This inference problem is difficult because the BOLD signal is
very week and noisy. The underlying information is embedded in a
large number of other signal related with the normal brain activity
and in the noise introduced by the MRI scanner. Furthermore, the
hemodynamic impulse response function (HRF), needed to know the
expected BOLD response to a given stimulus, is usually unknown
and is not constant across the whole brain.

In this paper a robust Bayesian algorithm is proposed to detect
regions where the activation patterns are correlated with the applied
stimulus. The activation process is modeled by using binary explica-
tive variables and the HRF is estimated at each location according to
a physiological model proposed by the authors in [1].

Monte Carlo tests using synthetic data are performed to evaluate
the performance of the algorithm and results with real data are com-
pared with the ones obtained by a neurologist with the commercial
package BrainVoyager.

Index Terms— Functional MRI, Bayesian, Estimation.

1. INTRODUCTION
Functional Magnetic Resonance Imaging (fMRI) is an emergent
and powerful technique used in several clinical scopes. One of the
most important applications is in the brain imaging field to detect
brain regions involved in particular tasks. This modality is based on
the assumption that in the activated regions the metabolic activity
increases, leading to a change on the amount and oxygenation of
the blood on that region. This change may be indirectly measured
from the blood-oxygenation-level-dependent (BOLD) signal, that
measures the endogenous magnetic contrast(ratio) between oxy-
haemoglobin (diamagnetic) and deoxyhaemoglobin (paramagnetic).
Hence, increased blood volume reduces the local concentration
of deoxygenated hemoglobin causing an increase in the magnetic
resonance (MR) signal on a T2 or T2*-weighted image [2].

During the acquisition a set of MRI volumes are acquired at con-
stant time intervals, synchronized with the stimulus signal. The goal
is to locate the regions where the respective times courses (1D sig-
nal associated with the temporal evolution of each voxel intensity)
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present temporal activation patterns correlated with the applied stim-
ulus, called paradigm in the fMRI scope.

This task is usually difficult because the BOLD signal has a low
signal-to-noise-ratio (SNR), is corrupted by noise introduced by the
MRI scanner, the images may be misaligned due motions occured
during the acquisition and the underlying information to be esti-
mated is embeded in a large number of other signal related with the
normal brain activity. Furthermore, the hemodynamic impulse re-
sponse function (HRF), needed to correctly deconvolve the BOLD
signal, is usually unknown and is not constant across the whole
brain [3]. The most common algorithms described in the literature
to detect the activated regions is based on the general linear model
(GLM). The general approach is to express the observed response
variable in terms of a linear combination of explanatory variables
(EVs) [4], and make use of classical statistics (T or F tests) to in-
fer activity, using e.g. a p-value threshold where the HRF is first
estimated and used for all voxels. The HRF may be modeled in a
pure heuristic basis or in a physiological basis. In this last approach
the some of the underlying physiological processes involved in the
BOLD signal generation are modeled, e.g. the Balloon Model [5]
which is often used and augmented [6]. These last models are com-
plex, with several parameters and difficult to tune. In this paper we
make use of the linear, infinite impulse response (IIR) physiolog-
ically based hemodynamic (PBH) model proposed by the authors,
that presents an appealing trade-off between complexity and accu-
racy as shown in [1].

In this paper an algorithm is proposed where the EV’s and the
HRF are jointly estimated in a Bayesian framework using the maxi-
mum a posteriori (MAP) criterion in a local basis. This means that
the HRF is not assumed constant across the whole brain. Only two
assumptions are performed about the HRF to be estimated at each lo-
cation: i) it is smooth and ii) it is an admissible response of the PBH
model for an unknown set of parameters that must be estimated.

Monte Carlo tests are presented for synthetic data and the er-
ror probabilities obtained with the proposed method are compared
with the standard classical procedures used in several software, e.g.
the Statistical Parametric Mapping (SPM), FMRIB Software Library
and BrainVoyager. Results using real data are compared with the
ones obtained by an experimented neurologist with the commercial
software package BrainVoyager.

The results obtained with real data are consistent with the ones
obtained by the medical doctor and, as it will be shown later, the
proposed method manages to detect regions that are not detected by
the SPM-GLM method.

The rest of the paper is organized as follows. Section 2 formu-
lates the problem and describes the detection algorithm. Section 3
presents the experimental results and Section 4 concludes the paper.



2. PROBLEM FORMULATION AND DETECTION
The data is formed by a set of L volumes acquired at constant time
intervals. The evolution of the signal BOLD, associated with a sin-
gle voxel, along the time, is called time course and in this paper the
time courses are processed independently. The following observa-
tion model is used,

y(n) = h(n) ∗
N∑

k=1

βkpk(n) + η(n) (1)

where η(n) is additive white Gaussian noise (AWGN), h(n) is the
HRF of the brain tissues, pk(n) are the stimulus signals along time
and βk are unknown binary variables to model the activation of the
voxel by the kth stimulus.

Each voxel, after the application of a given paradigm may be ac-
tivated by one or more applied stimulus (∃k : βk = 1) or may not be
activated at all (∀k : βk = 0). Therefore, each time course is the re-
sponse of H(z) to the following input signal, x(n) =

∑
k βkpk(n)

where the binary EV’s βk must be estimated.
In this paper we describe a Bayesian Statistical Parametric Map-

ping algorithm (SPM) based on the maximum a posteriori (MAP)
criterion called SPM-MAP. The proposed algorithm jointly estimates
the vector b = {β1, β2, ..., βN}T , associated with each voxel and
the corresponding hemodynamic response, h(n), which can be de-
noted in vectorial form, h = {h(1), h(2), ..., h(N)}T .

The hemodynamic signal is assumed to be the response of an
IIR linear time invariant system proposed in [1] and described by
the following third order transfer function

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 + a3z−3
(2)

where the coefficients bk and ak must be estimated.
The estimation process is performed by minimizing an energy

function depending on the binary unknowns βk, on the hemody-
namic response h(n) and on the observations y(n). The direct co-
efficient estimation of the H(z) is a difficult task because it is not
easy to define simple priors for these coefficients based on the de-
sired time response h(n). Therefore, to overcome this difficulty,
instead of estimating the ak and bk coefficients, a L length FIR is
estimated, g = {g(1), g(2), ..., g(L)}T . In each iteration this esti-
mated response is projected into the H(z) space, i.e., a set of coeffi-
cients ak and bk are estimated in order to minimize ‖g(n) − h(n)‖
by estimating the coefficients ak and bk. The PBH ak and bk esti-
mated coefficients are then used to compute a new estimation of h,
ht+1(n) = g(n) for 1 ≤ n ≤ L, which is used to obtain a new
estimate of the binary unknowns βt+1

k .
The maximum a posteriori (MAP) estimation is obtained by

minimizing the following energy function

E(y,x(b),h) = Ey(y,x(b),h) + Eb(b) + Eh(x(b)) (3)

where x(b) is the input signal depending on b, the data fidelity
term is Ey(y,x(b),h) = − log p(y|x(b)) and the prior terms
associated to the unknowns to be estimated, b = {β1, ...βN} and
h = {h(1), ..., h(L)} are Eb(b) = − log(p(b)) and Eh(x(b)) =
− log(p(h)) respectively. These priors incorporate the a priori
knowledge about the unknowns to be estimated: i) βk are binary and
ii) h(n) is smooth.

The estimation process is performed in the following three steps,

bt = arg min
β

E(y,x(bt−1),ht−1) (4)

g = arg min
h

E(y,x(bt),ht−1) (5)

ht = ProjF IR [ProjIIR(g)] (6)

where ()t means estimation at tth iteration and Proj stands for the
projection operation by using the minimum square error (MSE) cri-
terion and implemented with the Shanks algorithm [7].

Assuming independence of the observations and adopting the
additive white Gaussian noise (AWGN) model, p(y|x(b),h) =∏L

i=1 p(y(i)|(x ∗ h)(i)) where p(y(i)|(x ∗ h)(i)) = N ((x ∗
h)(i), σ2

y) and σy
2 is the variance of the noise. The parameters

βk to be estimated are also assumed independent, which means,
p(b) =

∏N
i=1 p(βk) where p(βk) is a bi-modal distribution defined

as a sum of two Gaussian distributions centered at zero and one,
with variance σβ

2, p(βk) = 1
2

[
N(0, σ2

β) + N(1, σ2
β)
]

because βk

are binary variables, βk ∈ {0, 1}. In order to better approximate the
binary answer, the σβ parameter should be as small as possible but
numerical stability reasons prevent the adoption of too small values.
The prior term Eb(b) may therefore be written as

Eb(b) =
N∑

k=1

[
2β2

k − 2βk + 1

4σ2
β

− log

(
cosh

[
2βk − 1

4σ2
β

])]
.

To impose smoothness on the estimated hemodynamic response,
h(n) is assumed to be a Markov Random Field (MRF), which means,

that p(h) is a Gibbs distribution, p(h) = 1
Zh

e−α
∑N

n=2 (h(n)−h(n−1))2

where α is a parameter that tunes the smoothing degree for h(n)
and Zh is a partition function. The energy function (3) is therefore

E(y,x,h) =
1

2σ2
y

L∑
n=1

[
y(n) −

N∑
k=1

βk (h ∗ pk) (n)

]2

+

N∑
k=1

[
2β2

k − 2βk + 1

4σ2
β

− log cosh

[
2βk − 1

4σ2
β

]]
+

α
L∑

n=2

(h(n) − h(n − 1))2 (7)

The minimization of the equation (7) is performed in three steps

∇bE(y,x(b),ht) = 0 → bt+1 (8)

∇hE(y,x(bt+1),h) = 0 → g (9)

ht+1 = ProjF IR [ProjIIR(g)] (10)

where ∇b and ∇h are the gradient vectors of E(y,x(b),h) with
respect to b and h respectively. ProjF IR denotes the extraction of
the first L samples of the infinite response h(n) and ProjIIR the esti-
mation of the parameters ak and bk of H(z) from the finite response
g. These three steps are repeated until convergence is achieved. To
accomplish the desired binary nature of b̂, at the end, the following
threshold is applied to β̂k

b̂k =

{
0 β̂k < 0.5

1 otherwise.
(11)

and this is the final activation estimation that provides information
on whether the brain area represented in the corresponding voxel was
activated by each of the paradigm stimulus or not.

3. EXPERIMENTAL RESULTS

In this section, results using synthetic and real data are presented to
illustrate the application of the algorithm.



3.1. Monte Carlo tests with synthetic data
In this section Monte Carlo tests are presented in order to evaluate
the performance of the algorithm. Two synthetic binary images of
128x128 pixels where generated, which represent a single BOLD
slice signal, as can be seen overlapped in Fig. 1-a). In it, colored
voxels (red, yellow and white) where activated by, at least, a stimulus
paradigm and the black pixels where not activated at all. So accord-
ing to the mathematical notation presented above, red: b = {1, 0}T ;
yellow: b = {0, 1}T ; white: b = {1, 1}T and black: b = {0, 0}T ,
which is the activation ground truth to be estimated for each voxel.

(a) (b) (c)

Fig. 1. (a) Synthetic image representing a single BOLD slice with
brain areas activated by two paradigms (red and yellow), with a func-
tional overlapping region (white) and non activated areas (black).
SPM-MAP activation detection results for (b) σy = 0.5 and (c)
σy = 1.

The BOLD signal, y(n), is generated by using the model de-
scribed by the equation (1). A reasonable two stimuli block-design
paradigm, p1(n) and p2(n), of 10 seconds task duration followed by
a 30 second rest period each in 5 epochs, were used in order to ob-
tain a non superposition of p1(n) and p2(n) while allowing for the
BOLD signal to decay to rest. The true impulse HRF signal, h(n),
was generated from a representative IIR, selected from the PBH esti-
mation on real single-event data [1], and the following noise energies
were used: σy = {0.2, 0.5, 0.7, 0.8, 1}.

This generated synthetic data is equivalent to 2 × 128 × 128 =
32768 independent y(n) time-courses, containing all possible com-
binations for the b vector. These are used on Monte Carlo tests to
compute the Pe. The results obtained are graphically presented in
Fig. 1 and in Table 1. These values were computed as the ratio
of the total number of wrong estimations over the total number of
Monte Carlo tests (32768).

σy 0.2 0.5 0.7 0.8 1

Pe(%) 0.0427 0.0916 0.168 0.260 4.27
Ṗe(%) 0 0 0.0244 0.0245 1.51
P̈e(%) 0 0 0.0073 0.0061 0.513

Table 1. Monte Carlo Pe of SPM-MAP for several values of σy.
Spatial correlation correction is exemplified in Ṗe and P̈e where one
and two isolated pixels were dismissed, respectively.

It is important to point-out that realistic σy noise values would
be situated between 0.2 and 0.5, for the data used. In this range the
method achieves values of Pe < 0.1%. Furthermore, for the very
high noise amount of σy = 1 the Pe stays below 5%, resulting in
the bottom image in Fig. 1 (notice that when looking at Fig. 1, the
intuitive notion on the error probability might seem higher because
the two images are overlapped).

The accuracy of the method can be improved if spacial corre-
lation information is included, removing several of those isolated,
spatially uncorrelated, voxels. For illustration purposes, the Pe is

recalculated after removing areas of one (Ṗe) and two (P̈e) isolated
voxels in an 8 voxels neighborhood. The resultant error probabili-
ties (see Table 1) decreases for all the noise amounts, yielding null
for the 0.2 and 0.5 σy values. The HRF average estimations are
presented in Fig. 2 for σy = {0.05, 0.5, 1}. Other methods, more
complex, may be used to model the spatial correlation in order to
reduce even more the error probability, such as, Total Variation (TV)
edge preserving denoising filters.

Fig. 2. Mean HRF estimation results considering for σy =
{0.05, 0.5, 1} from top to down. The Real HRF used for data gener-
ation is in green, the estimated FIR average in red, and the estimated
IIR average in blue.

3.2. Real data
In this section results using real data are presented an compared with
the ones obtained by the medical doctor by using the Brain Voyager
software. Two volunteers with no history of neurological or psychi-
atric diseases participated on motor and trajectory generation block-
designed paradigms during fMRI data acquisition on a Philips Intera
Achieva Quasar Dual 3T whole-body system with a 8 channel head-
coil. T2*-weighted echo-planar images (EPI), 23cm square field of
view with a 128×128 matrix size resulting in an in-plane resolution
of 1.8 × 1.8mm for each 4mm slice, echo time = 33ms, flip angle
= 20o were acquired with a TR = 3000ms.

The fMRI data was preprocessed with the standard procedures
implemented in the Brain Voyager software, namely decrease of data
distortions due to motion or other phase changes over time (registra-
tion) and spacial smoothing. This data was then statistically pro-
cessed by the Brain Voyager SPM-GLM and SPM-MAP algorithms,
and the results are plotted in Fig. 3. Since the obtainable brain maps
by SPM-GLM highly depends on the selected p-values a neurologist
provided the results (third column), for each data set, which he con-
siders more correct (reference result). Since this result is subjective,
he also provided two other results which he considers loose (second
column) and restricted (fourth column). The first column displays
the SPM-MAP results.

Visual inspection of the results in Fig. 3 show some expected re-
semblance between the neurologist reference solution, obtained with
the SPM-GLM algorithm, and the brain maps obtained by the pro-
posed SPM-MAP algorithm. The small differences may be explained



by the structural different approaches used by both methods about
the HRF. In the SPM-GLM this response is considered space invari-
ant while in the SPM-MAP methods it is jointly estimated in each
time course.

In several of the brain map image sets there are brain regions
detected as activated by SPM-MAP that were not detected by SPM-
GLM as shown in the (g) section of Fig.3. These are unlikely false
positives. Considering that the error probability has been shown con-
siderably low (see section 3.1), the probability of several false pos-
itives occuring grouped in a small image area, instead of randomly
dispersed in the image, is very small. Furthermore, as shown in the
(g) section of Fig. 3 the time courses associated with these areas
present a clear correlation with the paradigm which allow the con-
clusion they are true activated areas.

4. CONCLUSIONS
In this paper the SPM-MAP algorithm for detection of brain acti-
vated regions in the scope of Functional MRI is described. The al-
gorithm is design in a Bayesian framework using the maximum a
posteriori (MAP) criterion and estimates simultaneously the activa-
tion binary variables and the hemodynamic response function (HRF)
at each voxel location. The performance of the algorithm was evalu-
ated by using synthetic data and a Monte Carlo methodology where
used to compute the average error probability, Pe, for several amount
of Gaussian noise.

Results using real data were compared with the ones provided
by a neurologist obtained with the traditional SPM-GLM method.
The comparison has shown similar results without need of any pa-
rameter defined by the medical doctor that induces an undesirable
subjectivity in the results. Additionally, it was shown the ability
of the proposed algorithm to detect areas that are not detect by the
SPM-GLM method.
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(a) Verb generation paradigm results.

(b) Trajectory generation paradigm results.

(c) Right foot motor paradigm results.

(d) Right foot motor paradigm results.

(e) Right hand motor paradigm results.

(f) Bilateral hands motor paradigm results.

(g) Non detect areas with the SPM-GLM method.

Fig. 3. SPM-MAP activity detection results (left) on real data com-
pared against the ones obtained by a neurologist with the SPM-GLM
method (3rd column - reference, 2nd column - restricted and 4th
column - loose).
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