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ABSTRACT

Medical images are often noisy owing to the physical mechanisms
of the acquisition process. The great majority of the denoising algo-
rithms assumeadditive white Gaussian noise. However, some of the
most popular medical image modalities are degraded by some type
of non-Gaussian noise. Among these types, we refer the Poisson
noise, which is particularly suitable for modeling the counting pro-
cesses associated to many imaging modalities such as PET, SPECT,
and fluorescent confocal microscopy imaging. The aim of this work
is to compare the effectiveness of several denoising algorithms in
the presence of Poisson noise. We consider algorithms specifically
designed for Poisson noise (wavelets, Platelets, and minimum de-
scritpion length) and algorithms designed for Gaussian noise (edge
preserving bilateral filtering, total variation, and non-local means).
These algorithms are applied to piecewise smooth simulated and real
data. Somehow unexpectedly, we conclude that total variation, de-
signed for Gaussian noise, outperforms more elaborated state-of-the-
art methods specifically designed for Poisson noise.

Index Terms— Denoising, Poisson, Multiplicative, Bayesian,
Regularization, Wavelets, Total Variation, Non-local Means.

1. INTRODUCTION

Noise removal is essential in medical imaging applications in or-
der to enhance and recover anatomical details that may be hidden in
the data. The literature is rich in denoising methods assuming the
additive white Gaussian noise (AWGN)model. However, some im-
portant imaging modalities are corrupted by Poisson noise. In fact,
imaging acquisition systems using photon-counting devices such as
positron emission tomography, single photon emission computed to-
mography, and confocal microscopy imaging (see Fig. 1) are domi-
nated by Poisson noise. Denoising such images is an ill-posed prob-
lem, usually leading to hard optimization problems involving non-
quadratic (due to the Poisson observations and non-Gaussian pri-
ors), non-negatively constrained, and, possibly, non-convex objec-
tive functions.

Let y = {yi,j : i, j = 1, . . . , N} andx = {xi,j : i, j =
1, . . . , N} denote the noisy and the original images, respectively.
Samplesyi,j are contaminated by Poisson noise. Thus, the likeli-
hood of observingy given the true imagex is

p (y|x) =
N∏

i,j=1

e−xi,j x
yi,j

i,j

yi,j !
. (1)
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Fig. 1. Confocal Laser Scanning Microscopy(CLSM) imaging (Cell)

Let y be a Poisson random variable with meanE[y] = x. Defin-
ing the signal-to-noise ratio as SNR =‖x‖2/E‖y − x‖2, and not-
ing that Var[y] = x, we have SNR =‖x‖2/

∑
i,j

xi,j . To control
the SNR of simulated images, we generated images according to
y ˜ Po (αx), wherePo stands for the Poisson density function and
α > 0. We have then SNR =α‖x‖2/

∑
i,j

xi,j , i.e., the SNR is
linearly dependent onα.

Given an estimatêx of the original intensityx, we com-
pute, for comparison purposes, theMean Square Error, MSE =
1/M2 ∑M

i,j=1 (x̂i,j − xi,j)
2, the Peak Signal-to-Noise Ratio,

PSNR = 10 log10

(
x2

max/MSE
)
, the Signal-to-Noise Ratio Im-

provement, ISNR = SNRf− SNRi, where SNRi and SNRf are
the signal-to-noise ratios before and after applying the algorithm,
respectively, and T, the CPU time the algorithm takes to run in a
Centrino Duo, 2GB RAM.

2. OVERVIEW OF POISSON DENOISING

In the seventies, W.H. Richardson and L. Lucy presented a denois-
ing technique for Poisson noise, named after them as the R-L algo-
rithm. It consists on the iterative minimization of a non-quadratic
log-likelihood function with multiplicative corrections. The main
shortcoming of this method is that after a few iterations, the algo-
rithm yields highly noisy estimates, in particular when the SNR is
low [1].

In 1992 Rudin, Osher and Fatemi [2] proposed the total varia-
tion (TV) regularization scheme applied to Gaussian denoising. This
methodology constitutes an important achievement in the field of the
edge preservingdenoising algorithms, suitable to deal with the dis-
continuities associated with anatomical details. A combination of
R-L with TV was applied with success by Deyet al. [3] to confo-
cal laser scanning microscopyimages degraded by out-of-focus blur
and/or Poisson noise due to photon-limited detection. X. Zhanget
al. [4] adopted the TV regularizer in tomographic imaging. TV reg-
ularization was also used by Bardsley and Luttman [5] jointly with a
Poissonian likelihood functional.



Wavelet-based methods are now of widespread use in medical
imaging and disease diagnosis. Most of these algorithms operate by
applying some type of shrinkage/thresholding to the wavelet image
coefficients and then synthesize the denoised image from these co-
efficients. The most difficult task is the estimation or adoption of an
appropriate threshold [6], [7]. Unseret al., in 2003, presented a de-
scription of the state-of-the-art on the subject of wavelets in medical
imaging in [8]. Besbeaset al. presented in [9] a comparative study
of wavelet shrinkage methods for estimating the underlying inten-
sity, based on observations from a Poisson regression model. The
unnormalized Haar wavelet is an appropriate transform to the case
of the Poisson distribution, since it is self-reproducing across scales.
Taking advantage of this property, Timmermann and Nowak [10]
derived a simple Bayesian intensity estimate procedure, the Multi-
scale Multiplicative Innovations (MMI) model. MMI was applied
to photon-limited imaging. Multiscale analysis is a powerful tool
in what concerns denoising procedures. Nowak and Kolaczyk [11]
generalized the theory of multiresolution analysis to likelihoods that
can be represented as the product of conditional densities, possess-
ing information on the data and on the parameter vector localized
in position and scale. Poisson is one of the members of the fam-
ily of distributions that allow such a factorization. This theory has
its analog in wavelets. Willett and Nowak [12] introduced a new
multiscale method for nonparametric piecewise polynomial inten-
sity and density estimation of Poisson point processes. The authors
developed fast computing piecewise polynomial maximum penal-
ized likelihood methods that become recursive partioning schemes
based on multiscale likelihood factorization. These schemes yield
nearly-optimal performance dispensing with anya priori knowledge
of the underlying signal’s smoothness. Also using a recursive par-
tioning scheme, Nowak and Figueiredo [13] introduced methods for
estimating the underlying intensity functions of spatial Poisson point
processes, assuming those functions to be approximately piecewise
constant; the splitting of the region is operated according to the Min-
imum Description Length (MDL) criterium.

The Non-local Means algorithm (NLM), introduced by Buades
et al. [14], is a non-local averaging technique, operating on all pixels
in the image with the same characteristic. Unfortunately the method
is very slow. To speed it up, Mahmoudi and Sapiro [15] proposed
a scheme of pre-selection of neighborhoods. With the same idea,
Couṕeet al. [16] proposed a similar algorithm where they have used
parallel processing. With a similar philosophy, Dabovet al. [17] pre-
sented an approach to image denoising, based on effective filtering
in 3-D transform domain, by combining sliding windows transform
processing with block matching. The blocks within the image are
processed in a sliding way, which means that given a block, the al-
gorithm searches among the other blocks, which ones match accord-
ing to a certain criterium. The matching blocks are stacked together
forming a 3-D array with high level of correlation. A 3-D unitary
transform is applied and noise is attenuated due to the shrinkage of
the coefficients of the transform. This 3-D transform produce esti-
mates of all the matched blocks. Repeating this procedure for all
blocks in a sliding way, the final estimate is computed as a weighted
average of all overlapping block estimates. The authors proposed a
fast and efficient algorithm to solve this problem.

3. ALGORITHMS

In this section, the results of a set of six representative algorithms,
three of them for Poisson denoising and the other three for Gaus-
sian noise removal are compared using synthetic and real data. In
the case of synthetic data, the comparison is based on thefigures of
meritPSNR, ISNR, MSE and CPU time, as described in the previous
section.

TheNLM [18] is based on the non-local averaging of all pixels
in the image with the same characteristic. The NLM can be regarded
as an evolution of the Yarolavski filter (1985), where the average is
performed among similar pixels in the image and the measure of sim-
ilarity is based on the local intensity. The main difference between
this filter and NLM is the way the similarity is measured; the latter is
more robust, since not only it compares the gray intensity level in a
single point, but also the geometric configuration in a whole neigh-
borhood. In this context, ifY is a noisy image on a bounded domain
Ω ∈ ℜ2 andx ∈ Ω, the NLM algorithm estimates the value ofx
as an average of the values of all the pixels whose neighborhood is
similar, in a certain sense, to the neighborhood ofx,

x̂ = NLM(Y)(x) =
1

C(x)

∫

Ω

eK(x,z)
Y(z)dz (2)

with
K(x, z) = −

1

h2

∫

ℜ2

Ga(t)‖Y(x + t) − Y(z + t)‖2dt (3)

and the normalizing factorC(x) =
∫
Ω

eK(x,z)dz. Buadeset al.
proved that NLM is asymptotically optimal under a generic statisti-
cal image model.

TheW [12] algorithm is a Bayesian approach to Poisson inten-
sity estimation based on the translation invariant (TI) hereditary un-
normalized Haar wavelet transform. Since the sum of independent
Poisson variatesCi with parametersλi is also Poisson distributed
with parameter

∑
λi, this type of wavelets allows a simple formu-

lation in the case of Poisson data, since every scaling coefficient is
the sum of two finer-scale scaling coefficients. This means that the
Poisson distribution is self-reproducing across scales. In this algo-
rithm, traditional hard or soft threshold schemes are not applicable;
instead, wavelet coefficients are scaled according to their ancestors
pruning decisions. The hereditary nature of the pruning process is
responsible for the robustness of this algorithm.

The P [12] is a nonparametric multiscale platelet algorithm
that, unlike traditional wavelet-based methods, is well suited to
both photon-limited medical imaging applications involving Pois-
son data and to piecewise smooth images,i.e., images consisting
of smooth regions separated by smooth boundaries. Platelets are
localized functions at various scales, locations, and orientations that
produce piecewise linear image approximations. A multiscale im-
age decomposition based on these functions is performed. This is
a relatively fast, platelet-based, penalized likelihood method. The
idea of the method is to find the partition of theregion of interest
which minimizes the following penalized likelihood function:

P̂ = arg min
P

[
− log p

(
x|f

(
P̂

))
+ EPlat

(
P̂

)]
, (4)

wherep(x|f(P̂)) is the likelihood of observing the countsx given
the estimatêf = f(P̂) andEPlat(P̂) is the penalization for using the
model of the platelets.̂f is the model maximum likelihood estimate
in each region of the partition̂P or the penalized likelihood estima-
tor (PLE). The dependence of the estimator on the dyadic partition is
attenuated through a process of cycle-spinning that consists on cir-
cularly shift the raw data, denoising and shift the estimate back to its
initial position.

The Minimum Description LengthMDL based method [13]
gives an estimate of the underlying intensity function of a spatial
Poisson point process, assuming it to be approximately piecewise
constant. The algorithm builds, in a recursive fashion, a partition
of the observation space into regions where the intensity can be
considered as constant. The complexity of the partition is measured
by information theoretical tools and the MDL criterium is used to
find the partition of minimum length. Although the overall scheme
is not optimal, it is effective and computationally light.



The bilateral filteringBIL algorithm [19] smooths images but
preserves edges by means of a nonlinear combination of nearby im-
age values. The method is noniterative, local, simple, and fast. It
combines gray levels based on their geometric closeness and their
photometric similarity; it gives preference to near values in both do-
main and range. The combined filtering is given by:

h(x) =
1

K(x)

∫ +∞

−∞

∫ +∞

−∞

f(z)c(z, x)s(f(z), f(x))dz, (5)

wheref(z) is the noisy image,c(z, x) is a measure of the geometric
closeness between the neighborhood centerx and the nearby point
z ands(f(z), f(x)) measures the photometric similarity between the
pixel at the neighborhood centerx and that of a nearby pointz. K(x)
is a normalization factor and is given by

K(x) =

∫ +∞

−∞

∫ +∞

−∞

c(z, x)s(f(z), f(x))dz. (6)

In fact, the bilateral filtering replaces the pixel value atx with an
average of similar and nearby pixel values.

The denoising optimization problem under the TV regulariza-
tion and AWGN noise is solved in a very fast way by algorithms
by Chambolle [20] and by Figueiredoet al. [21]. The former ex-
ploits projections onto convex sets, whereas the latter adopts the
majorization minimization (MM) framework. Although these algo-
rithms were derived for Gaussian noise, we have included the last
one (TVMM ) due its competitive performance even operating under
noise statistic for which it has not been conceived.

4. EXPERIMENTAL RESULTS
In this section experimental results using synthetic and real data are
presented, comparing the performance of the algorithms described
above.

4.1. Synthetic Data

The results of this section are based on the Shepp-Logan phantom of
size128 × 128 pixels, in a gray scale ranging from 0 to 255. Fig.2
displays the original Logan phantom, the phantom corrupted with
Poisson noise and the denoised images using the described methods.

The Logan phantom was scaled and corrupted by Poisson noise
in order to obtain a15dB SNR. This corrupted image was denoised
with each denoising method and thefigures of meritreferred in the
Introduction section were computed and listed in table 1.

The performance of these algorithms depends a great deal on
several specific parameters that are chosen by the user while run-
ning the software, such as the number of shifts in theP algorithm
or the size of the search window inNLM. A different tuning of
these parameters for a specific image may lead to different results.
In our case the parameters were chosen in order to accomplish a
compromise between PSNR and CPU time T. Among the meth-
ods specifically designed for Poisson denoising, (W, P, MDL ), the
Wavelets based method presents the most competitive results: the
highest PSNR and ISNR and simultaneously the shorter CPU time
T. Among the methods for Gaussian denoising, theTVMM achieves
the better scores. Comparing the estimation errors produced by the
six algorithms,W, P, andTVMM displays similar results, which
are better than the remaining algorithms. Concerning CPU time,W
algorithm is the fastest, followed closely byTVMM and far way by
P.

In the next experiment with synthetic data we varied the SNR
between 5 and 25 dB. Each noisy image was denoised using the
tested algorithms and the final SNR (SNRf ) of the denoised im-
ages were computed and displayed in Figure 3 for the six methods.
The TVMM algorithm shows in general superior performance in
the range 5dB− 20 dB. For 25dB the BIL algorithm presents a

slightly higher SNRf . An interesting fact aboutTVMM is the curve
for this algorithm being almost a straight line with a slope of approx-
imately4/5, which means that given a value of SNRi in the range
shown in the plot, it is possible to have an idea of the value of the
final SNR one is going to get. The Wavelets based method shows an
increasing performance for SNRi in the range5dB - 15dB. With th
exception of the 15dB SNRi, the TVMM always outperforms the
W algorithm.

Alg. PSNR ISNR MSE T (s) SNRf

W 37.406 9.617 11.815 0.14 24.575
P 37.154 9.365 12.523 360.43 24.323

MDL 36.059 8.270 16.112 0.31 23.228
BIL 34.801 7.012 21.527 1.52 21.970

TVMM 37.246 9.457 12.260 0.97 24.415
NLM 35.054 7.257 20.307 9.20 22.215

Table 1. Poisson Denoising Logan 128x128.xmax = 255 SNR=15dB

a) True Image b) Noisy Image

c) Denoised: Bilateral Filter d) Denoised: MDL criterium

e) Denoised: Non−local means f) Denoised: Platelets

g) Denoised: Total Var. mm h) Denoised: Wavelets

Fig. 2. Denoising with the Shepp-Logan phantom128× 128 pixels.

4.2. Real Data

In this section we apply the algorithms under comparison to real
data from confocal microscopy and PET images. Figure 4 shows
the original images and the denoising results of the three models we
have found more appropriate to these data: W, P and TVMM. Visual
inspection indicates that TVMM is the most convenient method for
the denoising of the cell image. For the tumor image, the Platelets
based method seems to give the best results.

5. CONCLUDING REMARKS

This paper presents a comparison of denoising algorithms applied to
images corrupted by Poisson noise. We are particularly interested
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Fig. 4. Denoising Cell and Tumor

in medical images, to which the assumption of piecewise smooth-
ness of the original images is a good model. Six algorithms were
tested. Three of them were specifically designed for Poisson noise
(wavelet, Platetet , and minimum descritpion length); the remaining
three were designed for Gaussian noise (edge preserving bilateral
filtering, total variation, and non-local means). The algorithm were
applied to simulated and real data. We conclude, perhaps unexpect-
edly, that total variation denoising designed for white Gaussian noise
quasi-uniformly (with respect to SNR) the best algorithm.
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