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Abstract. Dynamic-Contrast Enhanced MRI (DCE-MRI) is a method
to analyze the perfusion dynamics in the tissues. The contrast agent con-
centration along the time, after the bolus injection, depends on the type
of tissue observed, namely on its vascularization density and metabolic
activity. The number of acquired volumes in this type of exam is usu-
ally very small, typically < 10, and the volumes are misaligned due to
respiratory and cardiac activities.

In this paper an algorithm to automatically characterize the malig-
nancy of the tumor is presented based on the perfusion curves on each
voxel of the tumor, obtained from DCE-MRI. A non-rigid registration
procedure based on Mutual Information (MI) criterion is used to align
the the small volumes representing the region of interest (ROI) contain-
ing the tumor along the time. A pharmacokinetic (PK) third order linear
model is estimated from the observations and its parameters are used to
classify the malignancy of tumor.

1 Introduction

DCE-MRI is used to get information about the malignant tissues that generally
have an earlier contrast uptake, with rapid and large increases compared with
benign tissues. The slopes before and after the maximum of the curve, called
WashIn and WashOut, respectively, are used to classify the tumor with respect
to its malignancy. Cancer tissues present rapid and higher amplitude WashIn
and WashOut rates than healthy tissues allowing the evaluation of the tumor
perfusion and DCE-MRI is the preferred technique to measure them. However
MRI image processing and reconstruction is usually computationally intensive
and time consuming. Faster processing can be achieved by restricting the volume
to a smaller ROI containing the tumor.

In this paper, an algorithm is presented to cope with this data. Processing
these such small regions leads to difficulties concerning the registration proce-
dure. The motion occurred during the acquisition due to respiratory and cardiac
activity must be considered to make it possible to follow the same voxel along
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the whole time course. The perfusion curves are estimated from MRI signal in-
tensity contrast enhanced. Pharmacokinetics (PK) models are used to quantify
perfusion in a physiological meaningful way. In this paper, parameters of a PK
model are estimated from the observed intensity profiles as well as the initial
position and duration of the bolus injection (which are not usually accurately
known) to compute the WashIn and WashOut parameters.

PK models assume that the contrast agent is distributed between two main
tissue compartments: the intra-vascular plasma volume space and the extravas-
cular extracelular space (EES). The generalized kinetic model, describing the
evolution of contrast agent concentration with time, is defined by the following
differential equation [1],

dCtumor/dt = KtransCp − KepCtumor (1)

where Ctumor and Cp are the concentration of the contrast agent in EES and
plasma space, respectively. Ktrans and Kep are constants that may be use to
classify tumors. However, usually the Wash rates among others are the pre-
ferred parameters in clinical practice for sake of simplicity [2]. The PK model is
estimated from the arterial input function (AIF), measured in one of the arter-
ies around the tumor, and the observed contrast agent concentrations. However,
since small regions are being used no arteries are available to measure the AIF,
which mean it must be also estimated. Therefore, in this paper the whole chain,
AIF and PK systems are modeled [1] as an only poles three order linear time
invariant (LTI) system.

2 Problem Formulation

In this paper, the volumes are assumed to be continuous functions evolving in
the continuous time, f(x, t) : Ω → R where Ω ⊂ R3 × R. The function f(x, t)
is described by a linear combination of basis functions as follows: f(x, t) =∑

p fpφp(x, t) where p ∈ N4 and fp are coefficients to be estimated. The obser-
vation intensities and respective locations and times are arranged in the matrices
Z = {zi}, X = {xi} and T = {ti} respectively where 0 ≤ i ≤ L and L is the
number of observations.

The proposed algorithm is composed by six main steps: i) MRI acquisition,
ii) ROI selection (crop), iii) non rigid transformation register of the volumes, iv)
PK model parameter estimation, v) perfusion curves estimation from each time
course associated with each voxel and vi) tumor malignancy classification.

2.1 Registration

The Registration procedure performed in the volumes is needed to compensate
organ and tissue displacements occurred during acquisition. Here, the MI [1]
criterion is maximized by geometrically transforming each volume in a pairwise
basis:

T̂ = arg max
T

MI [f(x, p), f(T (x, q))] (2)
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where f(x, p) and f(x, q) are two volumes from the data sequence. This process
is time consuming and computationally intensive where MI is defined as follows:

MI(f, g) = h(f) + h(g) − h(f, g) (3)

where h(z) = −Ez(ln p(z)) is the entropy of z and Ez() is the expectation
operator.

In order to reduce the processing time, a small ROI is selected from the
whole volume. This procedure increases the difficulty of the registration process
because there are less samples available. The marginal and joint probability
densities functions are estimated by using the Parzen method.

2.2 PK Model

PK models are useful to describe contrast agent concentration, which is in general
not easy directly measured. Therefore, an intensity based classification algorithm
is preferred since contrast agent concentration values are difficult to assess pre-
cisely. In the case of a low-molecular weight contrast agent, the relation between
intensity and contrast agent concentration is the following s(t) = s(0)·(1+g·C(t))
where s(t) is the signal intensity, C(t) is the correspondent concentration value,
s(0) is the baseline intensity and g is a parameter depending on the tissue and
contrast agent. Since there are no measures for the g parameter, the signal

y(t) = g · C(t) = s(t)/s(0) − 1 (4)

is used instead of the concentration itself C(t) [3]. In this paper, a time invariant
linear discrete PK model is used in which the contrast agent concentration is
modeled as a response to the AIF, proposed in [4]. Unfortunately in a small ROI,
the AIF is not available because there are no arteries in the cropped volume. To
overcome this difficulty, the AIF is also estimated and modeled as the response of
a second order system to the bolus injection (in the arm) since it is assumed to be
a bi-exponential. The PK model input is the bolus injection, u(t) and the output
is the contrast signal, y(t). This two serial block model is represented in Fig. 1
where the first one represents the diffusion of contrast agent into the artery near
the tumor and the second block represents the contrast agent exchanges between
the artery and the tumor. This last block is based on the multi-compartment
model - the vascular space and the EES [5] described by Eq. (1). The goal is to
estimate the parameters describing the model from the low temporal resolution
intensity profiles for each voxel in the ROI.

Fig. 1. PK model
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3 Estimation

In this section, the PK model parameters estimation procedures are described.
The MI is estimated from the observations. Here the Mattes MI (from ITK
framework) is used where all observations are not used in order to speed up the
process. Therefore, the selection of the representative samples and the number
of discrete bins used to represent the histograms are key issues when tunning
the algorithm [6]. This topic is described later.

The equivalent discrete overall system obtained form in Eq.(4) and form the
AIF, represented in Fig. 1, is the following

H(z) =
Y (z)
X(z)

=
K

(1 − az−1)(1 − bz−1)(1 − cz−1)
(5)

The correspondent differences equation is

y(n) = Kx(n) − Ay(n − 1) − By(n − 2) − Cy(n − 3) (6)

where A = 1 − a − b − c, B = ab + ac + bc and C = −abc.
In this section, a single time course is considered where z =

{z(0), z(1), ..., z(N − 1)}T is the vector containing the expanded observations
of a single voxel along the time, after alignment. This expanded data is ob-
tained by inserting new observations in new instants by interpolating the real
observations.

u = {u(0), u(1), ..., u(N − 1)}T is the bolus injection signal and θ =
{K, A, B, C}T is the vector of parameter to be estimated. The estimation of θ
is performed with the Shank’s method [7] given z and u. This method provides
the θ vector defining the third order system that best represents the relation
between u and z in the MSE sense.

The bolus injection u(n) is not known and must be estimated. Three con-
strains are assumed, i) u(n) = 1 for d0 ≤ n ≤ d1 with d0 and d1 unknown,
ii) the bolus injection starts before the acquisition of the first volume enhanced
and iii) the duration of the injection has to be < 40 seconds. The estimation of
parameters d0 and d1 is performed by testing all admissible values and choosing
the ones that lead to a minimum error [d̂0, d̂1] = argmind0,d1 ‖z − h ∗ u(d0, d1)‖
where it is assumed that z(n) = 0 for 0 ≤ n < d0. It is also forced that the y(n)
will approximate zero around 960 seconds after the beginning of the acquisition
when the contrast agent Gadolinium (Gd) is taught to be going out of the body.

After the estimation of u (duration and start point) the perfusion curves
and WashIn and WashOut rates are analytically estimated estimated from the
estimated PK model.

4 Experimental Results

In this section, we present results with real DCE-MRI data. This algorithm
was implemented using C++ supported with the open source Insight Segmenta-
tion and Registration Toolkit (ITK) and Visualization toolkit classes (VTK) and
Matlab.
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DCE-MRI acquisition is started with the intravenous administration of about
20-25 ml of Gd contrast medium in the arm using an automatic injector. To
minimize organ motion, breath-hold is asked to the patients during acquisitions.
The patients underwent DCE-MRI imaged with a Siemens Sonata scanner us-
ing the "Vibe FS tra BH post iPat" protocol. Two dataset are used which are
composed by a sequence of six volumes, approximately 512x800x64 voxels each.
The interval between the single pre-contrast volume and the first pos-contrast
one is 120 seconds and the interval between the next ones is 30 seconds. The
voxel size varies from 0.72 × 0.72 mm2 to 0.78 × 0.78 mm2 and the slices are
from 2-3 mm thick. The acquired images are retrieved from the MR scanner via
DICOM protocol. The first dataset corresponds to a malign tumor and the sec-
ond one is benign. This classification was provided by several medical doctors,
specialists in the area.

The same rectangular ROI, around the tumor, is used in all sequences. The
cropped size is about 50×40×10 for small tumors (Data Set 1) and 80×90×16 for
larger ones (Data Set 2). One of the consequences of a ROI selection is dynamic
range reduction of the images. The dynamic range in the cropped volume is
smaller than in the whole volume making it possible to use smaller number of
bins in the registration step, leading to a decreasing in the processing time.

Fig. 2. Fixed and Moving Image and its Histograms

4.1 Optimal Number of Bins and Samples in the Registration

The number of bins and samples is critical in the representation of the true
probability density functions. It was concluded that a number of bins greater
than half of the largest dynamic range leads to approximately the same results.
In order to reduce even more the processing time only a partial amount of voxels
are used in the histogram estimation. A simple heuristic is proposed based in
the following: if the event F is the updating action of a given bin then it is a
Bernoulli trial. With this assumptions F follows a p mean normal distribution
with standard deviation p(1 − p)/n where n is the number of the observations.
For a confidence level of 95%, the error is e = 1.96 ×

√
p(1 − p)/n. So the

sample dimension that leads to an error less than e is n = (1.96/e)2p(1 − p).
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Here p = 1/L2 is used where L is the number of bins and the number of samples
is chosen in order to make e = 0.75%.

To access the previous heuristic, a set of experimental tests were performed
for different values of n. Let α = N/n be a fraction of the total number of
samples N . For each α the MSE(α) = ‖MI(1) − MI(α)‖ was computed. The
results of this experiment have shown that for α ≥ 5% the MSE value stabilizes.
Therefore, here only 5% of the data is used in order to speed up the algorithm.
This is represented in Figure 3.
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Fig. 3. Mean Square Error of estimates

4.2 Pairwise Registration Strategies

The MI registration procedure is pairwise based which means a series of two
volumes alignments are performed in order to achieve a global alignment. The
strategy to chose each pair for alignment is relevant for the final results. Here,
three strategies were tested: i) sequential, ii) reference and iii) random. In the
first case, every two consecutive volumes are aligned in a sequential order. In the
reference strategy, all volumes but one are aligned with the reference volume.
In the last strategy, the pairing is performed in a random basis. Here, the stop
criterion is the MI obtained with the best of the two other approaches. These
three approaches were compared based on processing time and MI values (see
Table 1).

Table 1. Alignement results

Image Set 1 50 × 40 × 10 size 12 bins, 1000 samples
Time (sec) MI

Sequential 236 −0.1198
Reference 236 −0.5458
Random 204 −0.55
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It is concluded that the random way for small dimension volumes is faster
than the other two methods. This is no longer true for larger volumes due to
the resampling procedure which is time consuming and is typically performed
more times in the random approach. Each Image Set was registered with the
best approach for the following algorithms.

4.3 PK Models

The small number of experimental points was increased by a shape-preserving
piecewise cubic interpolation. These curves and experimental data, extracted
from healthy and non-healthy tissues. The perfusion curves of the two datasets
were obtained in 36 voxels around the center of the image/tumor. This results can
be seen in Figure 4. These curves are how it was expected and we can already
see that different tumors have different perfusion curves when comparing the
different datasets.
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Fig. 4. Perfusion Curves. Observations (red), experimental points(green) , bolus Injec-
tion (yellow) and Modeled Perfusion(blue))
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Table 2. DataSet Results

Data Set 1: 50 × 40 × 10 size 12 bins, 1000 samples
Mean Var

WashIn 0.1394 0.0054
WashOut −0.0178 1.26E − 04

Data Set 2: 80 × 90 × 16 size 32 bins, 7000 samples
Mean Var

WashIn 0.0166 1.57E − 05
WashOut −0.0024 3.60E − 07

The two features: WashIn and WashOut of the perfusion curves for each pixel
were computed. It is known that malign tumors are more heterogeneous than
benign ones.

The mean and variance for each dataset are also computed to study the het-
erogeneity of the tumor. Data set 2 presents smaller variances in the two features
as well the mean values. This shows that this data set has a lower heterogeneity
in the tumor tissue.

5 Conclusions

In this work, a MI based registration algorithm was developed using non-rigid
transformations for DCE-MRI datasets. With a small ROI, small temporal res-
olution, optimal number of bins and samples leads to an optimized algorithm
from a time and computational point of view. Several global registration strate-
gies based in several pairwise alignment methods were also tested. PK models
estimated from the resulting 1D time courses, associated to each voxel, were used
to automatically get information to classify tumors based on the WashIn and
WashOut rates obtained from the perfusion curves. In the future, these WashIn
and WashOut rates should be calculated from different tissues and individuals (a
training dataset with more variance) in order to design more robust classifiers.
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