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Medical Image Noise Reduction Using the
Sylvester—Lyapunov Equation

Jodo M. Sanches, Member, IEEE, Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques

Abstract—Multiplicative noise is often present in medical and bi-
ological imaging, such as magnetic resonance imaging (MRI), Ul-
trasound, positron emission tomography (PET), single photon emis-
sion computed tomography (SPECT), and fluorescence microscopy.
Noise reduction in medical images is a difficult task in which linear
filtering algorithms usually fail. Bayesian algorithms have been
used with success but they are time consuming and computation-
ally demanding. In addition, the increasing importance of the 3-D
and 4-D medical image analysis in medical diagnosis procedures
increases the amount of data that must be efficiently processed.
This paper presents a Bayesian denoising algorithm which copes
with additive white Gaussian and multiplicative noise described by
Poisson and Rayleigh distributions. The algorithm is based on the
maximum a posteriori (MAP) criterion, and edge preserving priors
which avoid the distortion of relevant anatomical details. The main
contribution of the paper is the unification of a set of Bayesian
denoising algorithms for additive and multiplicative noise using
a well-known mathematical framework, the Sylvester—Lyapunov
equation, developed in the context of the Control theory.

Index Terms—Despeckling, image denoising, medical imaging.

1. INTRODUCTION

EDICAL imaging acquisition technologies and systems
M introduce noise and artifacts in the images that should
be attenuated by denoising algorithms. The denoising process,
however, should not destroy anatomical details relevant from
a clinical point of view. For instance, the noise corrupting the
ultrasound images often contains relevant medical information
useful for diagnosis proposes [1]-[3]. A significant effort has
been made in the last decades to develop reliable and fast algo-
rithms to remove noise without distorting or destroying relevant
clinical information [4], [5]. Despite the huge advances in the
computer technology, the computational efficiency is still a key
issue, since the amount of information grows as we extend the
analysis from 2-D images to 3-D and 4-D data [6]-[9].

The additive white Gaussian noise (AWGN) model is the sim-
plest and the most used model to describe noisy signals [10] and
images [11]. However, this model is not acceptable when the
image is corrupted by multiplicative or impulsive noise [11],
[12].

Several techniques have been proposed to transform the mul-
tiplicative noise in order to use the AWGN paradigm. Among
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which the log conversion [11] for speckle and the Anscombe
transform [13] for Poisson have been widely used. However,
these approaches leads to rough approximations of Gaussian
distribution as it will be discussed in Section II.

Two types of multiplicative noise often arise in several
imaging modalities: speckle and Poisson noise. Both types
are called multiplicative in the sense that their variance is not
constant but depends on the parameters to be estimated [14].
The speckle noise usually appears in acquisition processes
involving coherent radiation like high intensity LASER [15],
ultrasound [16] and synthetic aperture radar (SAR) [17] and
the Poisson noise in systems involving counting procedures like
PET/SPECT [18], functional MRI [19], fluorescence confocal
microscopy [20] and very low intensity LASER [21]. The
additive Gaussian noise model is used in computed tomography
(CT) [22] and sometimes in low intensity MRI [23]. In fact,
the noise corrupting the MRI images is usually modeled by a
Rice distribution which can be approximated by a Gaussian
distribution for low image intensities and by a Rayleigh distri-
bution for high intensity regions [23]. Common distributions
describing speckle noise are: Rayleigh [23], Poisson [20],
K-distribution [24], Nakagami [25], Fisher-Tippet [26], and
generalized gamma (GG) [27].

In this paper, a framework is presented to deal with additive
white Gaussian and multiplicative noise described by Rayleigh
and Poisson distributions. The goal is not to describe a new de-
noising algorithm, neither a new and faster computational pro-
cedure but to describe a new formalism for denoising images
corrupted by multiplicative noise.

The paper shows that the MAP estimate of the image is the
solution of a Sylvester—Lyapunov equation

PX +XP+Q=0 (1

where Q is a known matrix in the case of the Gaussian noise
and it depends on X in the case of the Rayleigh and Poisson
distributions.

The main contribution of this paper is the unification, in a
single framework, of a set of Bayesian denoising algorithms
for aditive white Gaussian noise (AWGN) and multiplicative
noise by using a well known mathematical framework, the
Sylvester—Lyapunov equation, for which there are fast and
computationally efficient algorithms described in the literature
[28], [29] and implemented in scientific processing packages,
e.g., Matlab.

The proposed algorithm is compared with several despeck-
ling algorithms [30].

II. STATE OF THE ART

Linear filtering, e.g., Wiener filter [10], was the first approach
used to deal with multiplicative noise [14]. Although linear fil-
tering reduces the amount of noise in the image it over-smooths
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the transitions and anatomical details that should be preserved
[27]. This difficulty arises because images corrupted with this
type of noise often present low signal-to-noise ratio (SNR) and
the nonlinear and nonadditive nature of the corrupting process
makes the linear approach not appropriate [22]. This difficulty
can be overcome by adopting specific multiplicative models to
describe the speckle noise [11], [31]-[33].

In the last two decades, nonlinear filtering methods have been
successfully used to deal with the multiplicative noise using sev-
eral approaches [34]. The median filter has been extensively
used to process multiplicative and impulsive noise [11], [35] be-
cause it is a very simple technique and the results are usually
impressive. Several variants of the basic median filter were pro-
posed, e.g., adaptive median filters. An example is the weighted
median filter (WMF) proposed in [36] for despeckling of ultra-
sound images. The filter considers a small window centered at
each pixel as usual but each element of the input image is consid-
ered several times according to the local statistics of the image.

More recently, [30] proposes a novel stochastically driven fil-
tering method with constant and variable size windows. A sim-
pler version of this filter with constant window, is proposed in
[37]. In [30], a novel despeckling method iteratively removes
outliers by determining the local mean and standard deviation
from an adaptively varying window. By removing outliers (local
extrema) at each iteration, this method produces a convergent
sequence of images by squeezing the stochastically distributed
pixels values to a limiting value. It was experimentally shown
by the authors that the proposed filter outperforms all the me-
dian filters considered in the experiments.

Wavelet based despeckling algorithm have also been ex-
tensively used in medical imaging since the seminal works
of Donoho on soft-thresholding were published [38]. This
method is based on the multi scale decomposition of the noisy
image and in the processing of the image coefficients at coarser
scales [23], [34], [39]-[42]. For example, in [40], the authors
compute the multiscale decomposition of the logarithmic of
the ultrasound image and model the coefficients at each scale
by the alpha-stable heavy-tailed distribution. A Bayesian based
nonlinear operator is then used to remove the speckle noise
at each scale. A similar approach is described in [41] using
generalized Gaussian distribution (GGD).

In [23], the same multiscale decomposition is used to identify
wavelet coefficients at different scales with high correlation. It
is assumed that these coefficients describe anatomical details
of the image which should be preserved. This allows the elim-
ination of the noise without removing anatomical information.
Comprehensive surveys on wavelets in medical imaging can be
found in [43] and [44].

An usual approach to deal with multiplicative noise is
to apply a logarithmic transformation to the observations.
If the observation model is y(n) = xz(n)n(n) [11], then
logy(n) = logz(n) + logn(n) where it is assumed that
logn(n) ~ N(u,o?). However, this assumption is not true,
as discussed in [26] and [27]. In fact, this observation model
does not accurately describe the speckle [16] and Poisson [45]
noise generation process dealt in the paper. Besides, even if the
referred model is correct the distribution of r(n) = log(n(n))
would not be Gaussian as can easily be demonstrated. Nev-
ertheless, this approximation, called homomorphic wavelet
despeckling (HWDS), is used by several authors (e.g., [46])
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producing some of the most efficient and fast denoising
state-of-the-art algorithms to deal with multiplicative noise.

Bayesian approaches have been used to deal with this type
of noise and they have produced some of the most advanced
algorithms to remove multiplicative noise. Bayesian methods
formulates the denoising task as an estimation problem, where
the likelihood function and a prior distribution are jointly max-
imized. Three issues must be chosen in this framework: 7) the
statistical observation model, i7) the prior distribution and, %)
the optimization method [47]. Bayesian methods are often com-
bined with the wavelet decomposition leading to efficient and
fast algorithms [48]—[50].

In this paper, we present a unifying Bayesian algorithm which
is able to deal with AWGN and multiplicative (Rayleigh and
Poisson) noise and with several prior distributions.

This paper is organized as follows. Section III formulates the
denoising problem in a Bayesian framework. Section IV de-
scribes the proposed method based on the Sylvester—Lyapunov
equation, the simpler linear case of the AWGN and Gaussian
prior. Section V uses a majorize/minimize (MM) optimization
algorithm to denoise the images with multiplicative noise. Sec-
tion VI presents examples of applications and comparisons with
other methods and Section VII concludes the paper.

Appendix VIII-A discusses edge preserving priors, empha-
sizing the ones using adaptive potential functions (APF). Ap-
pendix VIII-B contains the pseudo-code of the algorithm.

III. PROBLEM FORMULATION

Let X be a N x M unknown image to be estimated/re-
constructed from a noisy image, Y. The maximum a posteriori
(MAP) estimate of X is the solution of the following optimiza-
tion problem:

X = arg Ir;én E(X,Y) 2)
where
—— N——
Data fidelity term  Prior term
Ey(X,Y) = —logp(Y|X), is called the data fidelity

term and attracts the solution toward the data while
Ex(X) = —logp(X), is called the prior or internal en-
ergy and regularizes the solution removing the noise.

The computation of X, based on the minimization of the data
fidelity term Ey-(X,Y), is the maximum likelihood (ML) es-
timation problem and it is usually an ill-posed problem in the
Hadamard sense because the solution is not unique and it may
not depend continuously on the data [47], [51], [52]. To over-
come this difficulty, a regularization term is added, turning the
problem into a well-posed problem. The distribution p(X) in-
troduces prior knowledge about the image to be estimated, and
it usually favors smooth solutions. The MAP energy function,
E(X,Y) has a global minimum, called MAP solution, which
is, very often, difficult to find because the MAP optimization
function (3) may not be convex.

Insight on the a priori distributions of images are difficult to
attain. This is especially true in medical applications where as-
sumptions about the prior distribution may lead to wrong di-
agnosis. The common assumption about these images is that
they are band-limited, changing slowly in space except near the

Authorized licensed use limited to: UNIVERSIDADE TECNICA DE LISBOA. Downloaded on April 13, 2009 at 12:32 from |IEEE Xplore. Restrictions apply.



1524

organs boundaries where abrupt transitions are expected. This
is a difficult assumption because the location of the transitions
are unknown and must be estimated. X can be modeled as a
Markov random field (MRF) under the assumption that neigh-
boring pixels have similar intensities, except if they are located
at a transition.

The joint probability density function of a MRF, given by the
Hammersley-Clifford theorem [53], [54] is a Gibbs distribution

“4)

where U(X) is the Gibbs energy and Z is the partition function,
which is very difficult to compute. A typical choice for the Gibbs
energy function is [55]

_QZ

where 6, (¢,7) = x(4,j) — xz(i — 1,7) and 6,(¢,5) = x(i,j) —
x(4, 7 — 1) are the first-order vertical and horizontal differences
respectively, computed at pixel x(i, 7). p(d,, 65 ) is a potential
function and « is the prior hyper-parameter that may be auto-
matically estimated [41], [56]. Here, it is chosen in a trial and
error basis.

Assuming conditional independence on the observations,

v L ] 5h 1 ])) (5)

p(Y[X) = II; ; p(y(i, j)|=(i, j)) and defining
d(z,y) = —zlogp(y|) (6)
the data fidelity term, Ey(X,Y) = —log p(Y|X), is
=Y dlw(i, ), y(i, ) (7)
2%
and the energy is given by
Y) =Y d(i,j),y(i, )
2%
+az v(4,5),0n(i,5))- (8)

The conditional independence of the observations may not be
realistic in some cases. However, it is a convenient hypothesis
because it separates spatial dependence and data dependence ef-
fects making the problem much easier. Furthermore, the inclu-
sion of the statistical dependence in the observation model may
not lead to relevant improvement of the final solution, as noted
in [57].

The minimization of the energy function (3) is graphically
illustrated in Fig. 1. In this 1-D example the MAP solution min-
imizes the total potential energy which is the sum of the energies
d(z,y) associated with the data springs which pull the solution
towards the data and the regularization energies p(8,,6) as-
sociated with the other springs which smooth the solution and
avoid fast changes.

The MAP solution can be obtained by computing the sta-
tionary points of (3) by solving the equation

VxEy(X,Y)+ VyEx(X)=0 ©)
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Fig. 1. Mechanical interpretation of the optimization task for the 1-D case.

where V x denotes the gradient operator with respect to (w.r.t.)
X.

In the following sections, three observation models are
considered based on the Gaussian, Rayleigh and Poisson dis-
tributions and three regularization models are also discussed:
quadratic (Ls), total variation (TV), and Benford (Bfd).

IV. AWGN AND GAUSSIAN PRIOR MODELS

Let us first consider the simpler case of additive white
Gaussian noise (AWGN) model. We will show that the de-
noising problem can be solved by a Sylvester—Lyapunov
equation, independent of the observation model. Later on,
multiplicative noise will be considered and included in this
formalism.

LetY be the observed image obtained by corrupting the orig-
inal image X with additive white Gaussian noise (AWGN)

Y=X+T (10)
I' = {v;;} is a random image with ~;; ~ N(0,c?%). The prior
distribution is also assumed to be Gaussian

N—
—log(p(X)) = a

1,M—1
[62(4,4) + 67 (4,5)] + C (11

4,j=0

where C' is a constant and the potential function p(6,,d5) is
quadratic.
The energy function in this case is

| N-LM-1
_ L Co .12
E(X7Y) - 20,2 ZJXZ:O [‘T(Z?J) /U(ZJ)]
/ N-1,M-1
+a Y [625)+65)] (2)
i,j=0
and the partial derivative w.r.t. a given pixel, z(k, (), is
IEX,Y) 1, .
“oath D) 5 (@(k, 1) =y (k1))
+20 | Noa(k, D)= > au(kD)| =0 (13)
seS(x(k,l))
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where S(z(k, 1)) is the 4-neighborhood of z(k,!) and N, = 4.
This equation can be rewritten as follows:

w(k,1) = (1 = K)y(k, 1) + Kz (k, 1)

0<kI<N-1,M—-1 (14)

where K = 2N, 3/(1 + 2N, 3) is a constant, 3 = ao? and

z(k,1) = Ni >

Y seS(x(k,l))

(k1) (15)

is the average intensity in the 4-neighborhood of z(k, ). The
parameter 3 depends on the noise variance o and the parameter
a, which is manually chosen in a trial and error basis.

In the case of Gaussian observation and prior distributions,
the set of (15) is linear and a closed form solution may be com-
puted by using matrix manipulation. However, for the multi-
plicative observation models (Poisson and Rayleigh) and non
Gaussian priors (TV and Benford), considered later, this set of
equation is no longer linear and must be iteratively solved, e.g.,
by using the following recursion expression based on the fixed
point algorithm [58]

o' (k1) = (1= K)y(k,1) + Kz (k, 1) (16)
where 7171 (k, 1) is the average value of the neighbors of z:(k, )
computed in the previous iteration, £ — 1.

The iterative algorithm sweeps all elements of X until con-
vergence is achieved. The final estimate depends on several fac-
tors such as the initialization, the updating order of the image
pixels of X and on the prior parameter «. The convergence con-
ditions depend on the « parameter, i.e., the higher is «, more
stable is the iterative algorithm. In fact, for small values of a
the algorithm may diverge. This behavior is expected, since the
denoising process based on the ML criterion is an i/l posed in-
verse problem. The goal of the prior distribution, is to regularize
the solution and to stabilize the estimation algorithm. Therefore,
the smaller is the value of « the more ill-posed the problem is.

Let us now formalize the estimation process using matrix no-
tation, defining x = vect(X),y = vect(Y) as two column vec-
tors corresponding to lexicographical [10] column ordering of
the images X and Y, where the columns of each image matrix
are stacked in vectors. Using this notation, the energy function
(3) may be written as follows:

1
E(x,y) = 55lx = yI” + a(IDux|* + 1Dsx]?) - (7)
where ||v||? = vI'v is the squared Euclidean norm of v and

D,,, Dy are NM x N M difference matrix operators. The min-
imization of (17) leads to the following set of equations:

[I+20%a (D3 Dy + Dy Dy)] x=y. (18)

This is a system of N M equations and N M unknowns whose
solution is the MAP estimate of x. It is not possible to solve
the system by matrix inversion since the matrix A = [I 4+
20%a(DT D, + DT Dy,)] has huge dimensions. For instance, if
X is a 128 x 128 image, A is a square matrix of dimensions
16384 x 16384. Another difficulty is the computational burden
and memory associated with the vectorial tasks.

These difficulties are avoided by locally processing the image
data, in a pixel-wise or block-wise way.
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An alternative method is now proposed to avoid dealing with
such high-dimensional matrices keeping the objects within rea-
sonable dimensions, e.g., equal to the dimension of the original
image.

The energy function (12) can be written as

E(X,Y) =tr [T;(X -Y)I'(X - Y)}
+a tr[(¢,X)" (¢, X)
+ (¢nXT) T (4 XT)]
=tr [%(X -Y)'(X - Y)}

+atr | XT (T,) X+ X (67 1) X7
—— ——

On Om
(19)

where X,Y are N x M matrices, ¢,,, and ¢y, are N x N, M x M
matrices used to compute the vertical and horizontal first order
differences; tr denotes the trace of a matrix. Both matrices, ¢,
and ¢y,, have the following structure (but different dimensions)

1 o o --- 0 0 -1
1 1 0 - - o 0

p=1 0 -1 1 : 0 (20)
0 o 0 -+ -+ -1 1

Computing the derivative of F with respect to the unknown
matrix X, we obtain a stationary condition

dFE 1
d—X = W(X — Y) + 2(¥(®NX + X@]u) =0 (21
where [(dE/dX)]|x; = 0E(X,Y)/dz(k,l) and
On = pndN
Onm = Prrdum (22)

are two symmetric circulant matrices, with the following struc-
ture [see (23) shown at the bottom of the next page].
After straightforward manipulations, (21) can be written as

AX+XB+C=0 (24)
where

A= %IN + 2a0°0y (25)

B= %IM + 20020y (26)

C=-Y (27

and Iy, I, are the identity matrices of order N, M, respec-
tively. Equation (24) is the well-known Sylvester equation [59]
(the Lyapunov equation is a particular case of this equation,
when B = A ). In this equation, X, Y, A and Bare N x M,
N x M, N x N and M x M -dimensional matrices, respec-
tively. Therefore, all the matrices involved in this equation have
the size of the original data. Note that, if X is a square images,
A and B are equal, symmetric, and real matrices, and (21) be-
comes the Lyapunov equation.
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TABLE 1
GAUSSIAN, POISSON, AND RAYLEIGH MODELS FOR THE OBSERVATIONS
Obs. Model p(y|z) d(z, ) %d(w,y) ML
-l (z—y)? oML
Gaussian Ke 2.2@Y) # (x —y)? S y
i zYe” " _ ML
Poisson L ;! z — ylog(x) 2=z y
Rayleigh Ye—v?/(22) —log(¥) | == aML 2/
ayleig z € 215 0og 2 Yy

There are efficient algorithms to solve the Sylvester—
Lyapunov equation [28], [29], [60] available in several mathe-
matical packages, e.g., Matlab and Mathematica, which avoid
the need of huge matrices and the solution of huge systems of
equations.

The complexity of these algorithms is about M N? + N M?>
floating point operations, for N x M images [61].

This section showed that the denoising problem with
Gaussian observation and prior models can be solved by a
Sylvester—Lyapunov equation (24) where A and B are constant
matrices and C is also a constant matrix depending on Y. In the
other cases (non Gaussian noise and prior) considered in this
paper, the solution is also obtained by the Sylvester—Lyapunov
equation but the matrix C is no longer constant.

V. DENOISING WITH EDGE PRESERVING PRIORS

This section extends the previous algorithm to other data
models and prior distributions. We consider three data distri-
butions which are often used in medical imaging: Gaussian,
Rayleigh, and Poisson. These distributions can be used to deal
with CT, ultrasound, PET/SPECT and MRI. We also consider
in this section edge preserving priors that will smooth the image
in slowly varying regions but preserve the transitions. This type
of priors allow a better representation of anatomical details.
The priors considered in this paper are: quadratic (L2), total
variation (TV), and Benford (Bfd).

The minimization of E(X,Y) is performed by solving the
equation

VxE(X,Y)=0 (28)

which leads to the following set of equations:

N—1,M-1

3 ﬁ[d(x(i,j),y(ﬁj))]

1,5=0

TABLE II
GAUSSIAN (L> ), TOTAL VARIATION (TV), AND BENFORD (BFD) PRIORS

Prior Model | p(6y,0p) Ex(X)

_90
(kD)

Gaussian g2(k,1) 2Ny [2(k, 1) — Z(k, 1))

TV

glk,1) S [k, 1) — 2(k, )]

Benford log g(k, 1) [x(k, 1) — Z(k,1)]

(k 1)

N-1,M-1

> %Wﬂ@ 7),8n(i,3))] = 0

,]=
~ v
~~

Ba:(kl)E)\(X)
0<k,I<N-1,M-1

+ «

(29)

where (d/dx)d(x,
models.

The potential functions, p(8,, 65 ) and the partial derivatives
of Ex(X) with respect z(k,l) are listed in Table I where

z(k,1) is defined in (15) and g(k, 1) = \/62(k,1) + 67 (k,1) is
the gradient magnitude computed of X at (k, l)th pixel. In the
computation of (0/9z(k,1))Ex(X), in Table II, it is assumed
that g(k,1) =~ g(k + 1,1) =~ g(k,l + 1).

From Tables I and II, it is concluded that (29) are linear only
in the case of Gaussian observation and prior models, as shown
in Section IV. In the other cases, the minimization of the energy
function F(X,Y) leads to a huge set of non linear equations,
which must be iteratively solved.

This problem will be tackled by using the MM algorithm [62],
[63]. The MM algorithm is a powerful tool to deal with non

y) is defined in Table I for three observation

a2

0 0 0

(23)
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TABLE IIT
WEIGHTS FOR THE LTV AND BFD PRIORS, WHERE ¢; _; DENOTES THE
GRADIENT MAGNITUDE VALUE COMPUTED IN THE PREVIOUS ITERATION.
SINCE WE ARE DEALING WITH ISOTROPIC FIELDS, wj), = w,,
[ Weights [ Lo | TV | Bfd |

| w | o | a/gi—1 | a/gf_l |

quadratic optimization problems. It amounts to iteratively min-
imizing a non quadratic energy function by iteratively solving
a set of simpler quadratic energy functions, Ea(X, X;_1), de-
pending on the previous estimates, X;_1 such that the following
relations hold:!
Ey(Xy-1,X¢1) = E(X41)
Es(X,Xi-1) > E(X)

(30)
€1y

for every X € V(X;_1) where V(X,_1) is a neighborhood of
X_1. This means that the auxiliary function Fs must lge greater
or equal than the true function E in the vicinity of X;_; and
both functions must be equal at X;_1.

One of the most used MM algorithm is the reweighted least
squares (RWLS) algorithm [10] that is used in the minimization
of functions based on the L, norm.

Here, we consider a specific MM algorithm proposed in [64],
where the quadratic energy function to be optimized in each
iteration is

N-1,M-1
EX,Y)= Y da(i.g)y(i.5)
i,7=0
1N—1,]\[—1
i N62(i. i
+ 5 1,20 [wv(l’7J)6v(7’7J)

+wp (i, 5)67 (i, 7)) (32)

where d(z, y) is defined in (6), w, (7, j) and wy, (%, j) are weights
updated in each iteration and computed as follows:

1 dp(3)

w(é) = —m T (33)
where w stands for w, and wjy,, and
p(6) = Ke=or®) (34)

is the distribution of ¢. Table III shows the weights computed
with (33) for the three priors considered, Lo, TV and Bfd.

The partial derivative of E(X,Y) w.r.t. z(k,!) computed
from (32) lead to

IE(X,Y)  d
aeh D) deep @k (kD)
+ [wv(k7 l)(su(k/ l) + wh(k7 l)6h(k, l)]
— [wo(k + 1,08, (k + 1,1)

+ wh,(k,l—i— 1)(5h(k,l + 1)]

(35)

where w, (k,l) = wp(k,l) = w(k,l) because we are using an
isotropic MRF, as can be seen from Table III. Assuming the
following approximations:
we(k+1,1) = w,(k,l) = w(k,l)
wp(k, L+ 1) = wp(k,l) = w(k,)

(36)
(37)

IThe dependence on Y was dropped for the sake of simplicity
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TABLE 1V
GRADIENT OF THE DATA ENERGY V x Ey (X, Y ) FOR THE GAUSSIAN,
POISSON, AND RAYLEIGH MODELS (SEE TABLE I). THE (- OPERATOR
REPRESENTS A ELEMENT WISE OR HADAMMARD MULTIPLICATION

Observation Model VxEy(X,Y)
Gaussian (X — XMLy5—2
Poisson (X — XMLy xX~-01
Rayleigh (X — XML) 5 X-02

TABLE V
MATRIX ¥ FOR THE GAUSSIAN, POISSON, AND RAYLEIGH OBSERVATION
MODELS AND FOR THE LTV AND BFD PRIORS. THE () OPERATOR REPRESENTS
A ELEMENT WISE OR HADAMMARD OPERATION

[ ¥ [ Gaussian | Poisson | Rayleigh |
Lo 1/(ao?) 10 /(aX) 16 /(aX92)
TV G/(ac?) GO /(aX) G 0 /(aX©?)
Bfd | GO2/(ac?) | GO?20 /(aX) | GO%Z 6 /(aX?)

equation (35) may be rewritten as follows:
OE(X,Y)
ox(k,1)
d

- Wd(x(m),y(k,z)) +w(k, 1)

X | 6p(k, 1) = 6u(k 4 1,1) 4 6, (k, 1) — 6n (K, 1+ 1)
4z(k,l)—w(k—1,l)—w(k-;z,l)—m(k,l—l)—m(k,H—l)
(38)

and, therefore, the stationary point of F(X,Y") can be computed
by solving the following set of equations:

a7 Tk D)

+ |2z(k,l) — 2(k - 1,1) — 2(k+ 1,1)

~
Vertical differences

+2x(k,l) —x(k,l - 1) —z(k,l+1)| =0

~~
Horizontal differences

0<kiI<N,M.

The set of (39) can be written in a compact way [see (21) and
Table 1V]

Yo (XXM 4 (08X +XOy) =0 (39)

where ® is the Hadammard operator (component wise multipli-
cation), the elements of XM are defined in Table I, O x', O/
are given by (23) and X is a N x M matrix depending on the
observation and prior models, defined in Table V.

Equation (39), is an extension of (21). However, it is a non-
linear equation since > depends on X which must be iteratively
solved. By using the fixed point method the following recursion
is obtained:

Y1 @ (Xymy = XMY) 4 (O X +XO) =0 (40)

where ¥;_; is computed using the estimate X;_; obtained in
the previous iteration. Equation (40), solved in each iteration, is
the well-known Sylvester equation

ONX+XOy+Ci1 =0 41)
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where C;_1 = X1 © (X;—y — XML,

Let us now discuss the number of solution of this equation.
The Sylvester equation, for an arbitrary matrix C;_;, has a
unique solution if and only if (Ay); # —(Ap); for 0 < i <
N—1and0 < j < M —1, where (Ay); and (Aps); are the
eigenvalues of © 5 and O, respectively [65], [66]. These are
circulant matrices and the eigenvalues of a N x N circulant
matrix, circulant(co, cq,...,cn_1), are given by the discrete
Fourier transform (DFT) of the first column [10]

N-1 o
Ai = Z cke_ﬂm’“/N. (42)
k=0
Using (23), we obtain
(AL)i = 2[1 — cos(27i/L)] (43)

with0 < ¢ < L—1and L = {N, M}. Therefore, fori = j =0
there are two equal and symmetrical eigenvalues of © and
Onr, (An)o = (Aar)o = 0, which means that (41) does not
have a unique solution. To overcome this difficulty let us rewrite
(40) as follows:

ONX+ XDy +Qi1 =0 (44)
where
@y = D1y + Oy (45)
Py = §IM + O (46)
Qi 1=%10 (X1 — XM= 8X,.1 @D

where Iy and In; are N X N and M x M identity matrices
respectively; [ is condition parameter used to improve the
stability of the algorithm. In fact, the new matrix ®j, is also
circulant

&, = circulant §—|—2,—17...,07...,—1 . (48)
L ele:r:lents
The eigenvalues are now
3
(AL)i = £ + 2[1 — cos(2mi/L)] (49)

2
with 0 < ¢ < L — 1. These new eigenvalues are all strictly
positive and, therefore, (Anx); # —(Aar);, which means that
there is a unique solution for (44) in each iteration [65]. The
condition number

[Amax| B/2+4 8
|)\min| /6/2 /B

is a measure of the numerical stability of the algorithm.

The proposed iterative algorithm described by equations
(44)—-(47) has two key features: 1) it does not require the
vectorization of images and 2) it is based on the solution of a
Sylvester equation in each iteration which can be done by fast
algorithms described in the literature.

(50)

KR =

VI. EXPERIMENTAL RESULTS

This section presents three experiments comparing the per-
formance of the proposed algorithm with other methods. The
methods considered in this study are: i) median filter, ii) Wiener
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filter, iii) squeeze box filter (SBF) [30] iv) platelets [67], the
method proposed in this paper using v) Lo, vi) TV, and vii) Bfd
priors. The first set of experiments (Section VI-A) comprises a
Monte Carlo (MC) test in two scenarios, using synthetic image
corrupted with Gaussian noise, and with Rayleigh noise distri-
butions. In the case of synthetic images corrupted with Rayleigh
noise (where we try to simulate the noise present in medical im-
ages), each noisy pixel is obtained by using a random number
generator, y(i, j) = R(x(4,j)), where z is the original noiseless
pixel and p(y) = (yx)e™"/2%. The algorithms are evaluated
by MC tests using the SNR criterion. The second set of experi-
ments (Section VI-B), presents a comparison of the methods in
two scenarios: ultrasound (US) images (Rayleigh distributed)
and fluorescence confocal microscopy (FCM) images (Poisson
distributed). We also present the image profiles in three image
modalities: US, MRI, and FCM. Finally, in the third set of ex-
periments (Section VI-C), we evaluate the performance of the
methods in a tracking task using two ultrasound sequences of
the LV. The first sequence contains 490 frames and the second
one contains 470 frames (corresponding to 26 and 19 cardiac cy-
cles, respectively). The tracking is done using the shape-prob-
abilistic data association filter (S-PDAF) recently proposed in
[68]. To evaluate the performance of the algorithms, we compare
the contour estimates provided by the tracker with the ground
truth (reference contours). This comparison is done as follows:
we selected four images from each cardiac cycle (two images
in the systole phase and two images in the diastole phase) and
asked to the user to manually define the LV contour for each
of these images. For the first sequence, the user segmented 72
images: 36 images extracted during the systole phase and other
36 images during the diastole phase. For the second sequence,
the user segmented 78 images: 39 images in systole phase, and
39 images in diastole phase. The selection of the frames was
random within each cycle. Three metrics are used in these tests:
1) Hausdorff distance , ii) average distance, and iii) Hammoude
distance [69]. The Hausdorff and Hammoude distances are met-
rics since they verify all the axioms of a metric. However, the
average distance is not a metric since is not symmetric. The
Hammoude distance is a normalized version of the Hamming
distance (see Section IV-C) which is widely used to compare bi-
nary strings and images in information theory. The formulated
methodology allows us to obtain an objective evaluation of the
contours accuracy provided by the methods considered herein.

A. Synthetic Images

To assess the performance of the above mentioned methods,
we performed MC tests in two scenarios using synthetic
image of a gray square in a black background. In the first
scenario the image is corrupted with i) Gaussian noise, in
the second with ii) Rayleigh noise distribution. In the first
set of experiment, the o parameter was varied in the set
{0.1,0.2,0.3,0.4,0.5}, and we carried out 20 experiments
for each o value. In the case of Rayleigh noise we consider
p(y| ) (y/nz) exp((—y?/2nz)) the n parameter varied
in the interval {10,100, 500,1000,5000}. Fig. 3 shows the
mean of SNR for the different values of ¢ and 7. The SNR is
computed along the main diagonal of the image.

It can be seen for Gaussian noise [Fig. 3(a)] that for small
values of o, the Wiener method exhibits the best SNR. However,
it strongly degrades as o increases. The same can be said about
the median filtering. It also has a poor performance for higher

Authorized licensed use limited to: UNIVERSIDADE TECNICA DE LISBOA. Downloaded on April 13, 2009 at 12:32 from |IEEE Xplore. Restrictions apply.



SANCHES et al.: MEDICAL IMAGE NOISE REDUCTION USING THE SYLVESTER-LYAPUNOV EQUATION

z e
n [ S ““'1-.
= = - Noisy data | =Q
10| = € = Median Teeol
- ¢ = Wiener Sso
- ¥ - seF e
5'§"—2 ~~~+--_ 1
- -7V ‘~-.+
- - Bfd
0.1 015 02 025 0‘3 0.35 04 045 05
o
(@
Rayleigh noise
Qg g ¢
B T e e e *
-EF-------mmmmmmmm e el Enl
14
12
L @-0--0--r-mmmmnm e ©
2 ¢ - = - Noisy data
ol = € - Median
- ¥ - ssF
+ B
i) -g-ﬂlﬂ
2’:*‘ r ¥ 1
B o g U Uy Uy SRR SRR +
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
n
(b)

Fig. 3. Evolution of SNR as a function of parameter o and 7: (a) Gaussian,
(b) Rayleigh noise distributions.

values of o. The SBF has a good and almost constant SNR, and
the best SNR is achieved by the Sylvester algorithm with TV and
Benford priors. Fig. 3(b) reports the performance of the methods
with Rayleigh noise. The SBF and TV, Benford priors exhibit
remarkable results. As in the previous experiment, the TV and
Bfd prior exhibit the best results.

A second experiment is shown in Fig. 4. In this study, it was
created a synthetic phantom of an ultrasound image with the
Field II simulation program (see [70] for details) that simulates
the ultrasound image generation process where the noise is mul-
tiplicative, in the sense that the variance is space dependent. The
goal is to compare the techniques in a image corrupted with
Rayleigh noise.
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Fig. 4 shows the simulation of an US image and the output of
the various despeckling algorithms.2 The phantom consists of a
background region class with a “one” pixel value, and other two
classes with “zero” (dark region) and “ten” pixel values (bright
region). Each foreground object consists of a two sets of five
bright disks with increasing (left) and decreasing radius (right),
respectively [from the top to the bottom image, see left image
in Fig. 4(a)].

The original size of the image is 500 x 390. However, a resize
of this image to 512 x 256 was needed, due to the constraints
imposed by the method proposed in [67].

We compute the SNR along a vertical line passing through the
centers of the left bright circles. In this study the comparison
comprises the following methods: i) median filter, ii) Wiener,
iii) SBF [30] and the proposed techniques, iv) Lo, v) TV, and
vi) Bfd. In this comparison, the platelets method is not presented
since it is not tailored do deal with Rayleigh noise.

Fig. 4 shows the output, as well as the intensity profile image
for each method. The red line is the true profile and the blue line
is the image profile after denoising.

In this experiment, five iterations were used for the proposed
techniques (L5 ). The average time required to denoise the image
was:

e SBF:6.05 s;

e [5:7.26s;

e TV:7.60s;

e Bfd: 7.55s.

From Fig. 4, it should be stressed that, although the TV and
Bfd priors provide competitive results, the SBF method provides
the best SNR, and an excellent output with sharp transitions [see
Fig. 4(d)].

Fig. 5 show the results when the image is corrupted with
Poisson noise. In this experiment, we integrate the Platelets
method proposed in [67], which can be a basis for comparison
for Poisson denoising (see [71] for a comprehensive descrip-
tion). Thus, the comparison comprises the following methods:
i) Platelets [67] and the proposed techniques, ii)) Lo, iii) TV,
iv) Bfd. Here, we do not include the Wiener as well as median
filters, since the results are very poor. In this comparison the
SBF method is not presented since it is not tailored do deal
with Poisson noise.

We used 20 iterations in the platelets method [67] and 5 iter-
ations in the proposed methods as in the previous experiment.
iterations were used, in the proposed methods we maintained
five iterations as in the previous experiment. The average time
per iteration was the following:

e Platelets : 23.90 s;

o Lo:7.77s;

e TV:8.03s;

e Bfd: 7.94 s.

Fig. 5 shows that the proposed techniques outperform the
platelets, exhibiting attractive SNR as well as the processing
time to denoise the image.

B. Still Images

This section evaluates the denoising algorithms in US, MRI
and Fluorescence Confocal Microscopy (FCM) images. Three
examples are presented (see Fig. 6): an US image of the carotid,
aMRI image of a knee and a FCM of a cell. For comparison pur-
poses, we selected the appropriate method (which depends

2This test is similar to the one presented in [30].
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Fig. 4. Ideal profile (square wave in red) and estimated profile obtained with various methods (in blue): (a) original image with size 512 x 256,
(b) median—SNR = 3.93, (c) Wiener—SNR = 3.83, (d) SBF—SNR = 6.053, (e) L2—SNR = 4.67, (f) TV—SNR = 5.92, (g) Bfd—SNR = 5.92.

on the image modality) and the framework herein proposed (Lo,
TV and Bfd priors). Thus, we compare the framework with: 1)
the SBF method (carotid image); ii) Wiener filter (knee image);
iii) Platelets method (cell image).

Fig. 7 shows the denoising results for a US image of carotid
where the noise was modeled by a Rayleigh distribution (fourth

column in Table V). The Bayesian estimates presented in this
study were obtained using a Rayleigh data distribution which
accounts for multiplicative noise and the three priors. The com-
parison of the results obtained by several methods shows that
the best results are obtained by the TV and Bfd priors as well
as the SBF, which is well suited to deal with US images. This is
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Platelets

Fig. 5.

illustrated in Fig. 7, which shows the image profiles produced
by each method (blue line).

Fig. 8 shows the results obtained with MRI image. In this
case, the noise is modeled as being white, additive and Gaussian
(second column in Table V). It is desirable to compare the re-
sults with the Wiener method since it is a benchmark when
dealing with Gaussian noise. It can be seen from the figure that
the framework methods perform much better than the Wiener
filtering.

Fig. 9 shows the results obtained with FCM image. The three
proposed methods were implemented using a non Gaussian ob-
servation model (Poisson distributed). Once again, the methods
proposed in this paper outperforms the platelets, exhibiting re-
markable results concerning the obtained image profiles.

C. Heart Sequences

The denoising algorithm proposed in this paper was evalu-
ated in the context of heart tracking in ultrasound images. The
ultrasound sequences were obtained using an ultrasound probe
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Ideal profile (square wave in red) and estimated profile obtained with various methods (in blue): (a) original image with size 512 X 256, (b) platelets-SNR =
5.06, (¢c) L2 — SNR = 8.01, (d) TV—SNR = 8.93, (e¢) Bfd—SNR = 8.90.

operating at 1.7 MHz and were sampled at 15 frames/s~'. Two
sequences of the heart cavities were used in this study with 490
and 470 frames, corresponding to 26 and 19 cardiac cycles, re-
spectively. The size of each frame is 200 x 248 pixels for both
sequences. This study aims to track the left ventricle during the
whole sequences. Fig. 10 shows a frame from both sequences.
These images present a poor quality (low SNR) and the multi-
plicative speckle noise which corrupts these images is modeled
by a Rayleigh distribution. Furthermore, the boundaries of the
LV can hardly be seen when they suffer a sudden motion. This
happens mainly in diastole phase.

The test was done as follows. The ultrasound sequences were
first processed by each of the denoising algorithms: i) median
filtering, ii) squeeze box filter [30], and the proposed method
with iii) Lo norm, iv) total variation, and v) Benford priors. The
last three methods were implemented using a non Gaussian ob-
servation model (Rayleigh). A tracking algorithm was then ap-
plied to the denoised images to estimate the boundary of the left
ventricle during the whole sequences. The tracker used in this
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(c)

Fig. 6. Sizes and corresponding images used in this study: (a) 440 X 346 US carotid image, (b) 256 X 256 MRI knee image, (c) 512 X 512 cell FCM image.

Profiles — L2

SBF Profiles - SBF

Profiles - TV

Benford Profiles — Benford

Fig. 7. Image output and resulting image profiles (along diagonal line) of the
methods: (blue) profile of the original image, (black) profile of the estimated
image. Top row (from left to right): SBF, L2 norm. Bottom row (from left to
right): TV, Bfd priors.

study is the S-PDAF tracker proposed by the authors in [68].
This tracker is able to discard spurious edges since it relies on a
robust association of the detected features (intensity transitions)
with the contour. This is specially important since multiple de-
tections are expected. The output of the tracker for each of the
denoising conditions was then compared with the ground truth
contours of the left ventricle.

Three metrics were used in this test to compare the output
of the tracker with the reference contours defined by the user:
the Hausdorff distance, the average distance and the Hammoude
metric. We will briefly define each of them.

LetX = {x1,X2,...,xn, },andY = {y1,y2,...,¥n, }. be
two sets of points obtained by sampling the estimated contour
and the reference contour. We define the distance of x; to the
curve ) as the distance from X to the closest point of )

d(xi, ) = min ly; —xi. 820
This is denoted as distance to the closest point (DCP).
The average distance between the sets X', ) is defined as

1 X
Aoy = o ; d(xi,Y) (52)

Profiles — L2
Profiles — Wiener

A

Profiles - TV

|

Fig. 8. Image output and resulting image profiles (along diagonal line) of the
methods: (blue) profile of the original image, (black) profile of the estimated
image. Top row (from left to right): Wiener filtering, L2 norm. Bottom row (from
left to right): TV, Bfd priors.

Wiener

Benford Profiles - Benford

where IV, is the length of the X and the Hausdorff distance be-
tween both sets is defined as the maximum of the DCP’s be-
tween the two curves [72]

dmax(X,Y) = max(max{d(x;,))}, max{d(y;, X)}). (53)
i J

We have also Hammoude metric [69]. Let Ry, Ry be the
image regions inside the two contours. We compute the number
of points which belongs to only one of these regions (e.g., ob-
tained by pixel-wise XOR operation) and normalize it by the
number of points of the union of both regions

§((Rx U Ry) — (Rx N Ry))
(R U Ry) '

dp = (54)

Fig. 11 shows the features detected in the ultrasound image
after the denoising operation. These features are obtained by
detecting intensity transitions along directions orthogonal to the
best available estimate of the contour. Details can be found in
[68].

Fig. 12 shows a frame processed by each of the denoising
techniques, as well as the intensity profile on the image line
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Fig. 9. Image output and resulting image profiles (along diagonal line) of the
methods: (blue) profile of the original image, (black) profile of the estimated
image. Top row (from left to right): platelets, L, norm. Bottom row (from left
to right): TV, Bfd priors.

(a) (b)

Fig. 10. Ultrasound images of the left ventricle extracted from two test se-
quences: (a) first sequence, (b) second sequence.

[see the white line in Fig. 12(a)] locations used to perform the
comparison.

Table VI shows the performance of the S-PDAF tracker using
the: Average distance, Hausdorff distance, and the Hammoude
metric. It is concluded that good results are obtained with all
the denoising algorithms. The best results in sequence 1 are
achieved by the proposed algorithm with the Benford prior. The
best results in sequence 2 are obtained by the proposed algo-
rithm with the total variation prior and by the SBF method.

From this paper, we conclude that the TV and Bfd prior pro-
posed in this framework compare well with all the other de-
noising techniques.

Table VII shows the average time per frame needed to denoise
the images from both sequences in a Matlab implementation on
a Pentium 2-Ghz CPU. Is is seen from this table that the median
filtering is the fastest method, whilst the TV and Bfd prior are
slower since they are the output of an iterative algorithm (six
iterations were used).

Table VIII displays the percentage outlier features (i.e., fea-
tures that do not belong to the left ventricle boundary) detected
by the tracker (the results listed in first sequence row of this
table are obtained with the data sequence displayed in Fig. 11).
From Table VIII, we see that the first sequence is noisier than the
second sequence (all the methods provide higher number of out-
liers in the first sequence). The Lo norm provides less outliers
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Fig. 11. Outliers detected by the tracker in one frame of the first sequence:
(a) median filtering, (b) SBF, (c¢) L> norm, (d) TV, (e) Bfd.

for both sequences than the remaining methods. The Median
filter provides the worst result, the TV and Bfd are best ones and
seems to be equivalent in the first sequence. This is ascertained
in Fig. 11 where one frame of the first sequence is displayed,
the yellow dots are the features detected by the tracker, most
of them located outside (i.e., inner/outer regions of the contour)
from de left ventricle boundary. The median filtering provides
the higher number of outliers. The Ly prior is the best method
not providing inner features. The TV and Bfd priors, appear to
be, once again, similar to each other.

Table IX, shows the total and average time (in seconds)
needed to track the whole sequences. It is seen that the tracker
with the Lo norm provides the fasted processing time. This
happens due to the reasons already mentioned (i.e., small
number of outlier features). From this table, we stress that all
the methods allow a much faster tracking process when com-
pared with the median filtering. Recall that, with the denosing
methods herein proposed, we gain 3 to 4 min to track the LV
contour, which is an expressive difference.

VII. CONCLUSION

Bayesian methods rely on the minimization of an energy
function with two terms: a data dependent term and a regular-
ization term. If the image is corrupted by Gaussian additive
noise and the prior is Gaussian, the MAP estimate is obtained
by solving a system of linear equations with MN equations.
This system has a huge dimension which prevents the compu-
tational direct solution by matrix inversion and leads to the use
of numeric algorithms.
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TABLE VI
METRICS MEAN VALUES FOR THE FIRST AND SECOND SEQUENCES
Median SBF Lo TV Bfd
1st sequence 0.20 0.18 0.18 0.19 0.17
Hammoude
2nd sequence 0.25 0.18 0.22 0.19 0.20
1st sequence 4.66 4.32 4.20 4.19 3.81
Average
2nd sequence 4.58 3.64 4.33 3.57 3.74
1st sequence 13.74 13.25 | 12.83 12.78 11.33
Hausdorff
2nd sequence 12.17 9.70 11.16 9.47 9.95

Fig. 12. Denoising images with the corresponding intensity profile. The yellow line is the location in which the intensity profile is computed for each of the
methods: (a) real image, (b) median filtering, (c) SBF (d) L- norm, (e) TV, (f) Bfd.

This paper shows that the solution of the denoising problem
with Gaussian noise and prior can be obtained by solving the
Sylvester—Lyapunov matrix equation. This equation avoids the
use of matrices with huge dimensions and can be efficiently
solved using standard numerical algorithms. In the case of non
Gaussian noise (e.g., multiplicative noise) and non Gaussian
priors (e.g., total variation or Benford) the same approach can
still be used. However, the coefficients of the Sylvester—Lya-

punov equation are no longer constant and depend on the de-
noised image. This difficulty is solved by recursively solving
the Sylvester—Lyapunov equation using a fixed point algorithm.

Experimental results using several priors and noise models
are presented to evaluate the performance of the proposed algo-
rithm. A comparison with state of the art denoising methods is
also included. All the methods were applied to ultrasound, CT
and MRI images which have different types of noise statistics.
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Fig. 13. Filtered images and the corresponding profiles taken at diagonal line of the image. (a) L» norm, (b) TV, and (c) Bfd prior. Also shown is the initial SNR
(SNRi) and the corresponding improvement that was achieved (ISNR).

TABLE VII

AVERAGE TIME PER FRAME (VALUES IN SECONDS) TAKEN TO

DENOISE THE SEQUENCES FOR ALL METHODS

PERCENTAGE OF OUTLIER FEATURES DETECTED BY

THE TRACKER FOR BOTH SEQUENCES

Median SBF Lo TV Bfd
1st sequence 0.10 2.49 2.25 5.93 6.25
2nd sequence 0.10 2.56 2.38 5.90 6.22
TABLE VIII

Median Lo TV Bfd SBF
1st sequence 56 8 15 16 19
2nd sequence 11 5 11 6 12
TABLE IX

AVERAGE TIME SPENT BY THE S-PDAF TRACKER (VALUES IN SECONDS):
TOTAL TIME TAKEN TO TRACK THE CONTOUR AND AVERAGE TIME PER FRAME

Median SBF Lo TV Bfd
Ist sequence 1.19 0.76 0.69 0.76 0.79
2nd sequence 0.75 0.69 0.66 0.66 0.72

The Sylvester—Lyapunov algorithm proposed in the paper man-
ages to achieve competitive results with the best tested methods
in a wide variety of experimental conditions.

APPENDIX

A. Edge Preserving Priors

The Gaussian prior used in the Section IV, with quadratic po-
tential functions, allows an efficient elimination of the noise as-
signing a quadratic cost to the differences between neighboring
pixels. However, it also assigns a quadratic cost to transitions.
Therefore, the MAP images, obtained with quadratic potential
have smooth transitions which lead to a loss of anatomical de-
tails. This effect is shown in Fig. 13 where a synthetic square
image is created with a zero background, and unit square fore-
ground. This image is corrupted with additive white Gaussian
noise (AWGN) with distribution (0, 0.25%). The edges of the
filtered image appear smoothed as shown in Fig. 13(a), while
in the case of edge preserving priors, TV and Bfd, shown in
Fig. 13(b) and (c), respectively, the edges are preserved (less
distorted).

To overcome this difficulty, other prior functions were pro-
posed in the literature [73]. These priors present a quadratic be-
havior for small differences and a sub-quadratic behavior for
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Algorithm 1 Unified Framework

Initialization:
On — L oN;
On — ¢hdms

Qend < Q;
Q= Qtpegins
Selection of the matrix X:
| ¥ | Gaussian |  Poisson | Rayleigh |
Lo 1/(ac?) 10 /(aX) 16 /(aX®?)
TV | G/(a0?) G 0O /(aX) G o /(aX9?)
Bfd | G®%/(ao?) | GP20 /(aX) | GP20O /(aX®?)

Select one line and one column from the above Table according to the Prior and Observation Model respectively to obtain

3.
for t =2 to N do
Compute:
Oy — ZIn+ On;
Oy — SIv + Owm;
Qt—l — Et—l o) (Xt—l _ XML) _ ﬂXt_l;
Solve:
ONX +XOy + Q' =0
o — o+ %(aend - abegin);
end for

higher differences. It is assumed that higher differences are due
to transitions and should not receive a strong penalty while small
differences that are associated to noise should be attenuated.

Table X shows several edge preserving potential func-
tions, p(x), and the corresponding influence functions,
() dp(x)/dz [56] and Fig. 14 shows their graphical
representations as well as the quadratic potential function.

The displayed potential functions are the L; norm, the L,
norm, also known as Generalized Gaussian Markov Random
Fields (GGMRF) [74], [75], the Geman and McClure [55], the
Lorentzian, the Huber [73], and the Benford [76] potential func-
tions. Almost all of these potential functions present a quadratic
behavior for small values of = and a sub-quadratic behavior
for higher values of z. In the case of L; and Huber potential
functions, the asymptotic behavior is linear, for the case of the
Lorentzian and Benford the asymptotic behavior is logarithmic,
in the case of Geman and McClure the asymptotic behavior is
a constant value and finally in the case of L, (GGMRF) prior
the asymptotic behavior is something between the L, and Lo
priors. For all priors, the asymptotic behavior is sub-quadratic
which means that large differences among neighboring nodes
are not so penalized as in the case of the quadratic prior L.

Each potential function, described above, depends only on
one first order difference. When applied to image processing,
all first order vertical and horizontal differences are indepen-
dently considered which means that the cliques are pairs of
neighboring pixels [54]. More complex edge preserving poten-

tial functions, called here adaptive potential functions (APF),
have been recently used to cope with higher order cliques. One
example is the TV of the discrete image X [27], [75], [77], de-
fined by

N-1,M-1

>

i.4=0

U(X) =« 9(t,5) (55)

where g(i,5) = /62(i,j) + 62(i, j) is a discrete approxima-
tion of the gradient magnitude at pixel (4, 7).

U(X) is a discrete version of the TV of a continuous scalar
function, X (z) : 2 — R with Q C R?2, defined as follows:

/ VX (z)|d.
QCR?

Each potential function in (55) depends on both horizontal,
8., (1, 7) and vertical, 6, (4, j) differences.

These potential functions [see (57), shown at the bottom of
the page], have higher order than the previous ones because
they involve two interactions with the neighbors: one with the
nearest neighbor in the horizontal direction and the other with
the nearest neighbor in the vertical direction.

To compare the total variation prior with the previous poten-
tial functions, listed in Table X, let us consider that one of the
differences is constant. The potential function associated to the
other can be written as follows:

plx) =vz2+6

TV(X(x))

(56)

(58)

9(i,7)

(i, j — 1)) (57

4

'

on

\/(x(z;j) — (i~ 1,9))2 + ((4, 5) —

by
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TABLE X

COMMON EDGE PRESERVING

PRIORS (EXCLUDING L»)

[ [ Potential - p(z)

Influence - ¥ (x) = dp(z)/dx |

[ Lo S [ 2z |
Edge preserving priors
L1 x sign(z)
L, (GGMRF) z|P sign(x)p|z[P~1
z2 2x

Geman and McClure T4a? D)
Lorentzian log(1 + 4(2)?) Hgﬁ
Huber 22/2e +¢/2, |z <€ | x/e, x| <€

|z, |z] > €. sign(x), |x| > €.
Benford log(Jz] + €) sign(z)/(Jz] + €)

Potential functions, p(x) Influence functions, y(x)

L
L, L )
3 1
L
P
2 0
e 1
L
0 2 L
-2 E 0 1 2 ] 05 0 05 1
2 2
Hb L
1.5 2 L,
Lz 1
! Lz
05 0 GMc
0
-1
0.5 GMc Hb
. Bfd , Bid
2 E 0 1 2 2 1 0 1 2
Fig. 14. Edge preserving potential functions.
Total Variation Benford

Fig. 15. TV—Adaptive priors, (left) TV, and (right) Benford.

which is a function depending on the space varying param-
eter 0, the other interaction involved in the clique. Fig. 15(a)
displays this function for several values of ¢, as well as the
quadratic potential function. As before, this function presents
a sub-quadratic behavior, typical in edge preserving potential
functions, depending on the other difference considered as con-
stant. This means that a penalization in one direction (for in-
stance vertical direction, ¢,) depends on the first order differ-
ence on the other direction (for instance horizontal direction,
6p) and vice versa.

In [76], a new adaptive potential function is proposed based
on the Benford law, with the following energy function:

N—-1,M—1

by

4,7=0

U(X) = log [g(4,7)] (59)

where ¢(i, 7), as previously, is the gradient magnitude at pixel
(%, 7). This new prior is derived by assuming the existence of a
natural prior for real life images [78] and specially for medical
images [76].3 Fig. 15(b) displays this APF for several values of
6 and compare the respective curves with the quadratic potential
function. Once again these potential functions present a desir-
able sub-quadratic behavior for edge preserving priors.

B. Pseudo-Code Implementation
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