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Abstract— Cytogenetics is a key tool in the detection of acquired
chromosomal abnormalities and in the diagnosis of genetic diseases
such as leukemia. The karyotyping is a set of procedures, in the scope
of the cytogenetics, that produces a visual representation of the 46
chromosomes (called karyogram), paired and arranged in decreasing
order of size.

The pairing procedure aims to identify all pairs of homologous chro-
mosomes. The pairing criterion is based on dimensional, morphological,
and textural features similarity. This process is time consuming when
performed manually, and demanding from a technical point of view. An
automatic pairing algorithm would thus bring benefits, but it remains
an open problem to date.

In this paper a new strategy for automatic pairing of homologous
chromosomes is proposed. Besides the traditional features described
in the literature, the Mutual Information (MI) is used to discriminate
chromosome textural differences. A supervised non-linear classifier is
trained by using manual classifications provided by expert technicians,
combining the different features computed from each pair.

Simulations using 836 real chromosome images, obtained with
a LeicaTM Optical Microscope DM 2500, in a leave-one-out cross-
validation fashion, were performed for training and testing the al-
gorithm. Promising and relevant results were found, despite the poor
quality of the original chromosome images, contrasting with state-of-
the-art algorithms and datasets found in the literature.

Index Terms— Chromosome, Pairing, Leukemia, Image Processing,
Optical Microscope, Mutual Information, Optimization, Classification,
Integer Programming

I. INTRODUCTION

The cytogenetic is used for detection of chromosomal abnor-
malities occurring in several genetic diseases such as Down syn-
drome or leukemia. The karyogram is an image representation of
stained human chromosomes with the widely used Giemsa Stain
metaphase spread (G-banding) in which chromosomes are paired in
22 classes of homologous chromosomes and two sex-determinative
chromosomes (XX for the female or XY for the male), arranged
in order of decreasing size. The karyotype of a patient is the set of
characteristics extracted from the karyogram that may be used for
diagnosis purposes. Fig. 1 shows a typical normal male karyotype
where the chromosomes are observed during the metaphase stage of
the cellular division called mitosis. In this stage the chromosomes
are at their most condensed state appearing better defined than in
all others stages of the cellular cycle.

To form the karyogram, the chromosome images, extracted from
the metaphase plate, must be segmented and paired. Very often
this pairing procedure is done by visual inspection which is a time
consuming and technically demanding task. Automatic pairing is
needed but it is a difficult problem. For instance, the most widely
used commercial packages available for cytogenetic analysis like
LeicaTM, MetasystemsTM and CytovisionTM are still very ineffective
with respect to chromosome classification and/or pairing. In fact,
the problem of the automated chromosome classification has been
an active field of research in the last 20 years and it still is an open
problem [2]–[7].
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Fig. 1. Normal male karyotype.

This paper is focused in the specific task of pairing in the scope
of karyotyping procedure. The motivating goal is to design an
automatic pairing algorithm in order to improve the productivity of
the technical staff of the Institute of Molecular Medicine of Lisbon
(IMM) in this type of the cytogenetic exams.

This paper presents improvements with respect to the algorithm
described in [1] where the mutual information (MI) is added to
the traditional dimensional and morphological features to compare
chromosomes. The goal is to better characterize the textural infor-
mation associated with each pair by adding discriminative power
to the G-banding profiles information. The proposed algorithm
computes similarity of chromosomes instead of classifying them
individually.

In this paper, improvements with respect to [1] on the optimiza-
tion algorithm used in the pairing procedure itself are described.
Additionally, refinements and tuning on the feature extraction
process makes it possible to use a complete set of 22 pairs
of chromosomes with a classifier performance comparable with
the state-of-the-art algorithms described in the literature. A new
extended set of karyograms is used in this paper for training
and testing the classifier allowing for a better characterization and
validation of the pairing algorithm. Notice that the karyograms used
in leukemia diagnosis, obtained from bone marrow cells in which
we are interested in, present much less quality than the ones used
in the traditional genetic analysis that uses the sets like Edinburgh
[2,4], Copenhagen [2,3] or Philadelphia [2] where the images have
better quality and less variability than the chromosomes images
obtained from the bone marrow cells used in this work.

This paper is organized as follows: section II contains a problem
formulation description and section II-B describes the classifier and
the training procedure. Section III shows the experimental results
and section IV concludes the paper.

II. PROBLEM FORMULATION

The problem treated in this paper may be formulated as follows:
considering n chromosomes (for n even, and n ≤ 44)1, a pairing

1The pairing process can also be applied to any subset of chromosome
classes.
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assignment P is defined as a set of ordered pairs (i, j), correspond-
ing to the pairs of homologous chromosomes, satisfying two trivial
constraints: (1) i ̸= j holds for any pair, and (2) any given index i
appears in no more than one pair of the set. A pairing assignment
is said to be total iff, for any i = 1, . . . , n, there is exactly one
pair (r, s) in the set such that either i = r or i = s. The sum of
distances implied by a pairing P can be written as

C(P) =
X

(i,j)∈P

d(i, j) (1)

where d(i, j) is the distance function between chromosomes i and
j. The goal of the pairing process is then to find a total pairing
P that minimizes C(P). To accomplish this task, the problem is
divided in two sub-problems: (1) feature extraction, described in the
following section, and (2) classification, explained in section II-B.

A. Feature extraction

An image pre-processing procedure is first performed before the
feature extraction stage. All chromosome images are histogram
equalized in order to minimize the effects of the contrast and
bright differences in the classification process. Furthermore, geo-
metric compensation is also performed in order to compensate for
geometrical distortions occurring in the metaphase. This is done
by computing the skeleton medial axis of each chromosome and
distort it to make this medial axis straight. For the textural feature
extraction a geometrical scaling is also performed by interpolation
in order to obtain normalized images with the equal dimensions.

Three types of features are used to compare two chromosomes,
i) dimensional, ii) shape and iii) textural. The dimensional features
aim to discriminate the dimensions, and correspond to: the axis
dimensions of the ellipsis containing the chromosome, the chromo-
some length proportion (which corresponds to dividing the length
of all the chromosomes by the major lenght of all, which ideally
would be the lenght of the chromosome of the first class), the border
perimeter, the length, and the area. The shape is only discriminated
by the normalized area of the chromosome image. The textural
features are the banding profile and the mutual information (see
details in [1]). The banding profile is obtained by integrating along
the pixels of each chromosomal image line.

For the pairing process it does not matter the absolute values
of the measures computed for each chromosome, but rather their
relation within each one of the total of n2 pairs. Thus, for the dimen-
sional features, the associated pair distance feature is d(ma, mb) =
|ma −mb| where ma and mb are the measures extracted from the
first and second chromosomes of the pair. For the banding profile
the distance feature is dbp(pa, pb) = mind ∥pa − pb(d)∥2 where
∥.∥2 denotes the Euclidean distance between the profile pa of the
first chromosome and the profile pb(d) of the second chromosome
shifted by d samples. The goal of this procedure is to accurately
compare both profiles even if they are misaligned. The mutual
information is a single scalar that provides a (textural) similarity
level measure between every two chromosomes.

The distance between two arbitrary chromosomes is defined by

d(a, b) = min
i

L
X

k=1

wi(k)dk(a, b) (2)

where 1 ≤ i ≤ 22 is the index of the vector wi =
{wi(1), wi(2), ..., wi(L)}T and L is the number of measures.

The weight vectors wi are obtained in the training step from
all pairs of chromosomes for each class i in the training set by

minimizing an energy function under the constraint ∥w∥ = 1

wr = arg min
w:∥w∥=1

E(w) (3)

In this paper two energy functions are tested:

E1(wi) =
X

(a,b)∈V (i)

d(a, b; i) −
X

(a,b)∈U(i)

d(a, b; i) (4)

E2(wi) =
X

(a,b)∈V (i)

d2(a, b; i) −
X

(a,b)∈U(i)

d2(a, b; i) (5)

where d(a, b; i) =
PL

k=1 wi(k)dk(a, b), V (i) is the set of all
pairs of chromosomes of the ith class and U(i) is the set of all
chromosomes where at most one chromosome in each pair belongs
to the ith class.

The algorithm that minimizes E1 is called method A and the
algorithm that minimizes E2 is called method B. In the method
A, each weight vector wr is computed by minimizing the sum of
intraclass distances and maximizing the sum of interclass distances.
The method B is mutatis mutandis of A, except that squared
distances are used instead. For details on the minimization of (4)
and (5) see [1].

Each karyogram, with n somatic chromosomes, gives rise to a
n×n distance matrix, D = {d(i, j)} where d(i, j) is the distance
between the ith and jth chromosomes of the karyogram. The goal
is then to estimate the total pairing P , defined in section II, that
minimizes (1). The next sub-section describes the procedure to
obtain P .

B. Classification

The pairing process is a computationally hard problem because
the optimal pairing must minimize the overall distance, meaning
that the solution must correspond to a global minimum of the
cost function. This problem can be stated as a combinatorial
optimization problem, which can be solved using standard integer
programming techniques, since the cost function, as well as the
constraints, are linear.

The distances computed using expression (2) form a symmetric
matrix of distances D, where each element is the distance between
the i-th and the j-th chromosomes, Dij = d(i, j).

Note that the cost function (1) can be reformulated as a matrix
inner product between the distance matrix D and a pairing matrix
X, such that

Xij =

ȷ

1 (i, j) ∈ P
0 otherwise

(6)

Thus, (1) can be re-written as C(P) = D · X where ‘·’ denotes
the usual matrix inner product:

D · X =
X

i

X

j

DijXij (7)

The cost function becomes then linear with the pairing matrix X,
which becomes the parameters with respect to which (7) is to be
minimized.

The constraints referred above can be easily re-written as linear
constraints in the following way: constraint (1) is equivalent to
state that the main diagonal of D is all zeroes, and constraint (2)
corresponds to having one and only one entry equal to 1 in each
row, as well as in each column. Constraining the domain of the
matrix entries to be boolean (i.e., Xij ∈ {0, 1}), the latter is the
same to say that

∀i

X

j

Xij = 1 and ∀j

X

i

Xij = 1 (8)
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The combinatorial optimization problem can then be restated as
a integer programming problem, consisting in

minimize D · X
where ∀i ∀j Xij ∈ {0, 1}

subject to ∀i ∀j Xij = Xji

∀i Xii = 0
∀i

P

j Xij = 1

∀j

P

i Xij = 1

(9)

To solve this integer programming problem, the GNU Linear
Programming Kit2 (GLPK) was employed.

This method has proved significantly faster than other state-space
search methods used previously by the authors [1], since those
methods did not exploit the linear nature of the problem. All results
presented in this paper were obtained after negligible execution
times (average: 0.285s; compare with A* average: >257s and with
branch-and-bound average: 11.2s).

III. EXPERIMENTAL RESULTS

In this section the results obtained using 3 test sets with growing
pairing difficulty are presented. The first set contains chromosomes
only from classes 1, 10, 16, and 21, while the second, with higher
pairing difficulty, contains chromosomes from classes 1, 3, 10,
12, 15, 16, 21 and 22 (Fig. 1). Both these test sets were built
upon 27 karyograms. The third test set was obtained from 19
karyograms and contains chromosomes from all of the 22 classes
(the sex chromosomes are not considered here). This means that
the first testing set consists of 27 × 4 × 2 = 216 chromosomes,
the second of 432 chromosomes, and the third one of 836 chro-
mosomes (Tab. I). The chromosomes in each data set are classified
and paired manually by experts, thus providing ground truth to
assess the performance of the automatic pairing algorithm. All the
chromosomes were correctly oriented in a computer assisted basis
by the clinical staff. Only karyograms that present no numerical
or structural abnormalities were used. Regarding the quality of
metaphase plates, and subsequently of the karyograms used in this
stage of the work, only the ”best” karyograms were included in
the data sets, i.e., karyograms where the chromosomes are not in
the highest stage of condensation and bending, and where it is
possible for a non-expert to discriminate the band profile, like the
ones presented in the Fig. 1

Data set 1 Data set 2 Data set 3
Tissue of origin bone marrow cells

Nr. of chromosome classes 4 8 22
Total nr. of chromosomes 216 432 836

TABLE I
CHROMOSOME DATA SETS USED TO EVALUATE THE IMPLEMENTED

ALGORITHMS.

These test sets were used with both classifiers proposed in this
paper and the results are listed in tables II, III, and IV. These tables
display the number of pairing errors in each experiment where each
line corresponds to the possible test of the leave-one-out cross-
validation strategy (LOOCV), i.e., where all but one karyogram are
used for training and the remaining one is used for testing.

Besides the overall characterization of the classifier we are also
interested in evaluating the improvement of the algorithm due to
the introduction of the MI as a discriminative factor in the distance
function. Therefore, tables II, III and IV also display the pairing

2http://www.gnu.org/software/glpk

results with and without MI for comparison purposes. In these tables
the symbol

√
is used to indicate that a completely correct pairing

was obtained (0 errors).

Data set 1 Data set 2
w/out MI w/ MI w/out MI w/ MI

1
√ √

2 2
2

√ √ √ √

3
√ √

4 2
4–9

√ √ √ √

10
√ √ √

2
11

√ √ √ √

12
√ √

2
√

13–14
√ √ √ √

15 2 2
√ √

16
√ √

2 2
17

√ √ √ √

18 2 2
√ √

19
√ √ √ √

20 2 2
√ √

21–25
√ √ √ √

26
√ √

4 2
27

√ √ √ √

total 6 6 14 10

TABLE II
SIMULATION RESULTS (NUMBER OF PAIRING ERRORS IN A TOTAL OF 27

KARYOGRAMS) USING METHOD A AND TWO TRAINING/TEST SETS:
DATA SET 1 WITH 4 CLASSES OF CHROMOSOMES AND DATA SET 2 WITH

8 CLASSES OF CHROMOSOMES. IN BOTH CASES, RESULTS WITH AND

WITHOUT MI ARE PRESENTED.

In the results presented here, the mean classification rate cor-
responds to the average of the ratio between the number of
correctly paired chromosomes and n/2 (the total number of pairs
of chromosomes considered).

From table V it is concluded that overall, method A performs
better then method B (the only exception among all tests is the case
of the test set 12 with MI where the method B performs better than
method A, Tab. IV), and although not presented here, this behavior
is consistent across various experiments performed throughout the
conducted work.

It is also concluded that the introduction of the MI in the set of
features often leads to an improvement in the pairing results. This
can be observed in the case of experiments 3, 12 and 26 in the
Data set 2 with 8 classes (Tab. II) and 2, 13, 14 and 16 in the
Data set 3 with 22 classes for method A (Tab. IV). For method B
this can be observed in the case of experiments 12 in the Data set
2 (Tab. III) and 2, 18 and 19 in the Data set 3 (Tab. IV).

The classification time is dependent on the distance matrix D
but in all tests performed here it ranges from few milliseconds (4
classes test sets) up to few tenth of a second for the 22 classes test
sets which is a major improvement against much higher execution
times of the previously used classification method by the authors [1]
that could reach up to minutes when performed on the 22 classes
test sets (see II-B).

A 70.10% mean classification rate is observed with the method
A and mutual information for the most realistic Data Set 3 with
the 22 classes of chromosomes (Tab. V). And although below the
85.8% and 98.10% classification rates presented by X. Wu et. al
in [5,6] (which can be explained by the very low quality of the
chromosome images used in our dataset, as described above) those
are very optimistic and promising results.
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Data set 1 Data set 2
w/out MI w/ MI w/out MI w/ MI

1
√ √

2 2
2

√ √ √ √

3
√ √

4 4
4–9

√ √ √ √

10
√ √

2 2
11

√ √ √ √

12
√ √

2
√

13–14
√ √ √ √

15 2 2
√ √

16
√ √

2 2
17

√ √ √ √

18 2 2
√ √

19
√ √ √ √

20 2 2
√ √

21–25
√ √ √ √

26
√ √

2 4
27

√ √ √ √

total 6 6 14 14

TABLE III
SIMULATION RESULTS (NUMBER OF PAIRING ERRORS IN A TOTAL OF 27

karyograms) USING method B AND TWO TRAINING/TEST SETS: Data set 1
WITH 4 CLASSES OF CHROMOSOMES AND Data set 2 WITH 8 CLASSES OF

CHROMOSOMES. IN BOTH CASES RESULTS WITH AND WITHOUT MI ARE

PRESENTED.

IV. CONCLUSIONS

In this paper a pairing algorithm is proposed for pairing purposes
in the scope of karyotyping process used in cytogentic analysis. The
proposed algorithm is based on the traditional features extracted
from the karyogram, such as, dimensions and banding profile
and on a new feature, based on the mutual information (MI),
introduced to improve the discriminative power of the automatic
pairing algorithm.

The ultimate goal of this work is to produce a reliable and
accurate pairing method to be used in the scope of the cytogenetics,
rather than a chromosome classifier.

New refinements in the algorithms already presented in [1]
and a new, better and quicker optimization technique introduced
here were crucial to proceed to the next experimental level up
to 22 classes of chromosomes. Indeed, tests using 19 karyograms
and a leave-one-out cross-validation strategy allow us to conclude
that in the proposed pairing algorithms, working with 22 classes
of chromosomes, method A has an overall better performance,
achieving a 70.10% pairing accuracy when executed together with
mutual information.

Preliminary qualitative comparison with the results obtained with
the LeicaTM CW 4000 Karyo software, using the same data, have
shown a relevant and promising improvement. In the near future,
detailed comparison with this software and other methods and
datasets will be performed, in order to better validate our algorithm.
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Data set 3
method A method B

w/out MI w/ MI w/out MI w/ MI
1 13 13 13 13
2 10 8 10 8
3 2 2 2 2
4 2 2 2 2
5 5 5 5 5
6 13 13 13 13
7

√ √ √ √

8 8 8 8 8
9 2 2 2 2
10 8 10 8 10
11 5 5 5 5
12 10 10 9 9
13 7 6 6 6
14 15 13 13 13
15

√ √ √ √

16 4 2 4 4
17 2 2 2 2
18 13 13 14 13
19 11 11 12 11

total 130 125 128 126

TABLE IV
SIMULATION RESULTS (NUMBER OF PAIRING ERRORS IN A TOTAL OF 19

karyograms) USING BOTH method A AND method B AND THE THIRD

TRAINING/TEST SET: Data set 3 WITH 22 CLASSES OF CHROMOSOMES.
FOR BOTH METHODS RESULTS WITH AND WITHOUT MI ARE

PRESENTED.

Data Set 1 Data Set 2 Data Set 3
method (w/o) (w) (w/o) (w) (w/o) (w)

A 94.4% 94.4% 93.5% 95.4% 68.9% 70.1%
B 94.4% 94.4% 93.5% 93.5% 69.4% 69.9%

TABLE V
COMPARISON OF THE MEAN CLASSIFICATION RATES BETWEEN method A
AND method B FOR ALL THE TRAINING/TEST DATA SETS: WITHOUT (w/o)

AND WITH (w) MI).
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