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Abstract— Image reconstruction from noisy and incomplete
observations is usually an ill-posed problem. A Bayesian frame-
work may be adopted do deal with this such inverse task by
well posing the reconstruction problem. In this approach, the ill
poseness nature of the reconstruction is removed by minimizing
a two-term energy function. The first term pushes the solution
toward the data and the second regularizes the solution.

A Bayesian algorithm for ultrasound image reconstruction
and de-noising is proposed where anedge preserving prior is
used to reduce the smoothing effect at the transitions. The
prior distribution is based on log-Euclidean potential functions
that are particular suitable in reconstruction problems under
the constraint of positivity, that is, when the unknowns to be
estimated should be positive, which is the case, where the noisy
observations are modeled by a Rayleigh distribution.

In this paper, the reconstruction procedure is formulated as
the optimization of a convex function and a Newton method
is adopted to obtain the minimizer. This strategy guarantees
a convergence to the global minimum in a small number of
iterations. Experimental results, using synthetic and real med-
ical images are shown. The proposed method produces images
where speckle noise is effectively suppressed and important
clinical details (organ and tissue transitions) are preserved.

I. I NTRODUCTION

Ultrasound imaging is widely used in clinical practice for
diagnostic purposes because it is non-invasive, non-ionizing,
not expensive and real time based. Therefore, ultrasound
image processing is an active field of research in areas such
as 2D and 3D reconstruction, despeckling and textural and
morphological characterization of tissues and organs.

The ultrasound images usually present a lowsignal to
noise ratio (SNR) and are corrupted by a type of multi-
plicative noise calledspecklethat accompanies all coherent
imaging modalities. It appears when images are obtained by
using coherent radiation and is the result of the constructive
and destructive interference of the echoes scattered from
heterogeneous tissues and organs [1].

The characteristic granular speckle pattern present in the
ultrasound images is evident in Fig. 5 (1st row, 1st col. of
each image set). Its reduction or even its removal, while
keeping the transitions that represent the anatomical details
throughout the image would be beneficial for automatic
contour segmentation or tissue characterization.

Several statistical models are proposed in the literature to
describe this type of multiplicative noise [2]. One of the most
used in Ultrasound (US), LASER andSynthetic Aperture
Radar (SAR) is the Rayleigh distribution [3].
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Thespecklenoise appearing in the US images is particular
severe and the traditional methods based on the classical
Additive White Gaussian Noise(AWGN) paradigm are not
appropriate. To deal with this type of noise several methods
have been proposed for de-noising and reconstruction based
on wavelets [4], anisotropic diffusion [5] and level sets. Two
methods, recently proposed, have shown to be particularly ef-
fective to deal withspecklenoise:Non-Local Means(NLM)
[6] and Squeeze Box Filter(SBF) [7].

Bayesian framework has also been successfully used in
several medical imaging modalities, namely, in ultrasound
imaging [8]. In this approach the ill-poseness nature of
the reconstruction/de-noising problem is circumvented by
using a priori information about the unknown image to be
estimated. The estimation is formulated as an optimization
task where a two-term energy function is minimized. The
first term pushes the solution toward the observations and
the second regularizes the solution. This second term, called
prior term, introducesa priori knowledge about the solution
by removing ambiguities that arise when only the observa-
tions are taken into account. Theprior usually smooths the
solution by removing the noise corrupting the observations
and filling the gaps of non observed regions. However a
difficulty must be addressed. The smoothing effect, which
is crucial to noise removal, should not distort too much the
edges of the solution associated with the anatomical details
that are important from a clinical point of view.

In this paper a Bayesian reconstruction/de-noising al-
gorithm for ultrasound data is proposed where anedge
preservingprior based onlog-Euclideanpotential functions
[9] is used. The reconstruction procedure is formulated
as the optimization of a convex function and a Newton
method is adopted to obtain the minimizer [10]. This strategy
guarantees a convergence to the global minimum in a small
number of iterations. Tests using synthetic and real data are
presented to illustrate the application of the algorithm.

The paper is organized as follows. Section II formulates
the problem and section III describes the optimization step.
Section IV presents several results using synthetic and real
medical data and Section V concludes the paper.

II. PROBLEM FORMULATION

Let X = {xi, j} andY = {yi, j} be aN×M original noiseless
image and a noisy version respectively. Thespecklenoise
corruptingY = {yi, j} is described by a Rayleigh distribution,

p(yi, j |xi, j) =
yi, j

xi, j
e
−

y2
i, j

2xi, j . (1)



Fig. 1. 4-pixel causal neighborhood representation.

The estimation ofX from Y is formulated as the following
optimization task

X̂ = argmin
X

E(X,Y), (2)

whereE(X,Y) is an energy function.
The optimization problem, described by equation (2), is

usually ill-posed in the Hadamard sense ifE(X,Y) is the
log-likelihood function, E(X,Y) = logp(Y|X).

This difficulty may be overcome by using themaximum a
posteriori (MAP) criterion,

E(X,Y) = EY(X,Y)
︸ ︷︷ ︸

data fidelity term

+ EX(X)
︸ ︷︷ ︸

prior term

, (3)

whereEY(X,Y), calleddata fidelity term, is the symmetric
of the log-likelihood function

EY(X,Y) = − log

[
N,M

∏
i, j=1

p(yi, j |xi, j)

]

, (4)

where it is assumed statistical independence of the observa-
tions [11].

The prior term is used to regularize the solution by
introducing a priori information about the imageX to be
estimated. Typically, the prior term is obtained by assuming
thatX is aMarkov random field(MRF) where a neighboring
system,S , is considered to define spatial interactions among
neighboring pixels (Fig. 1). By using the Emmerson-Clifford
theorem the assumption thatX is a MRF means thatp(X)
is a Gibbs distribution

p(X) =
1
Z

e−αU(X), (5)

whereZ is the partition function [12],α controls the prior
strength andU(X) is the Gibbs energy.

This Gibbs energy is usually defined as follows

U(X) = ∑
i, j

ρ(X i, j), (6)

where ρ() is called potential function andX i, j is a set of
pixels containing the pixelxi, j and its neighbors.

A typical potential function is the quadratic one,ρ(X i, j) =
(xi, j −xi−1, j)

2+(xi, j −xi, j−1)
2, where neighboring pixel dif-

ferences are quadratically penalized. This potential function
leads to simple equations and is able to efficiently remove
the noise. However, it also oversmooths the transitions,
attenuating or removing important anatomical details.

Fig. 2. Log-Euclideangradient magnitude (blue) and the quadratic (red)
and linear (black) potential functions.

To overcome this undesirable behavior, in this paper, an
edge preserving[13] potential function is used,

ρ(X i, j) = gi, j (7)

whereg is the log-Euclideangradient magnitude at(i, j)th

pixel,

g(i, j) =
√

log2(xi, j/xi−1, j)+ log2(xi, j/xi, j−1) (8)

This potential function is appropriated when positivity
constraint is imposed at the solution,xi, j > 0, which is the
case. Fig.2 shows this potential function,ρ(x,y) = log2(x/y),
for 0 ≤ x ≤ 10 andy = 1. The log-Euclidean[9] potential
function penalizes much more small differences between
neighboring pixels, when they are small than the quadric
potential function. On the contrary, if the difference is large,
which usually happens at the transitions, thelog-Euclidean
potential function penalizes less than the quadratic prior,
smoothing less the transitions.

The log-Euclideanprior is based on the distance function
ρ(x,y) = | log(x/y)| that is in fact a metric because the
following conditions hold:

1) ρ(x,y) ≥ 0
2) ρ(x,y) = 0 if and only if x = y
3) ρ(x,y) = ρ(y,x)
4) ρ(x,z)+ρ(z,y) ≥ ρ(x,y).

III. C ONVEX OPTIMIZATION

The energy function to be minimized is given by

E(X,Y) = ∑
i, j

[

y2
i, j

2xi, j
+ log(xi, j)

]

+α ∑
i, j

gi, j , (9)

wheregi, j is defined in (8).
This energy function is not convex because log(x) is

concave and 1/x andρ(x) are convex. Therefore, let us con-
sider the following variable changef = log(x) (notice that
log(x) is a monotonic function). The new energy function to
minimize is

E(F,Y) = ∑
i, j

[

y2
i, j

2
e− fi, j + fi, j

]

(10)

+ α ∑
i, j

√

( fi, j − fi−1, j)2 +( fi, j − fi, j−1)2 + ε,



which is now convex, because,e− f and ρ( f ) are both
convex.

The minimization of the energy function (10) is iteratively
performed by using a line search [10] algorithm in which the
basic step isxk+1 = xk + αk dk, with αk > 0. A continuous
variation strategy (here termedcooling) is used where a small
decreasing constantε, updated at each iteration, is added in
order to deal with the non-smooth term of (10). Different
strategies to compute the descent directiondk were tested:

1) Barzilai-Borwein steepest (gradient) method,dk =

−∇E(xk)/αk, with αk =
dT

k−1yk−1

dT
k−1dk−1

and
yT
k−1yk−1

yT
k−1dk−1

. ε =

10−6;
2) Barzilai-Borwein steepest (gradient) method, with con-

tinuous variation of:ε = 1→ 0 ;

3) Newton algorithm, with continuous variation ofε =

1→ 0, wheredk = −




∇2E(xk)

︸ ︷︷ ︸

Hessian1






−1

∇E(xk).

The main steps of the overall convex reconstruc-
tion/denoising algoorithm for ultrasound images are listed
in the following table,

Prototype algorithm

1. � chose initial estimationx0, toleranceη = 10−6 andε
2. � set k = 0
3. � computegk = ∇Ek
4. � if ‖gk)‖ < η , stop (or decrementε)
5. � compute descent directiondk
6. � Armijo rule to define an acceptableαk
7. � updatexk +1 = xk + αk ∗dk
8. � increment iteration k and return to step 3

The final solution isX̂ = eZ. As it is shown in Fig. 3
the Newton method performs better than the other descent
approaches used in the optimization algorithm, which is an
expected behavior because the search direction takes into
account not only the gradient of the energy function but also
its second-order information. The Newton algorithm seems
to be very computationally demanding because the Newton
direction is obtained by solving a rather large linear system
at each iteration. However, we are dealing with highly sparse
Hessian matrices (a variable is coupled only with its spatial
neighbors) which makes the method feasible.

IV. RESULTS

In this section we present three examples of reconstruction
using synthetic and real data. In the synthetic case we
use both 1D and 2D data corrupted with multiplicative
Rayleigh noise. In the real case, several ultrasound images
are presented.

A. Synthetic data - 1D and 2D

In this experiment we have first generated a vector X
with dimensionN = 1024 corresponding to a rectangular
shaped function withXmax = 5000 and Xmin = 500. A

Fig. 3. Profiles of the reconstructed data. Performances of the different
descent methods used.

Rayleigh distributed vector Y with parameter X was then
generated. Results of de-noising and performance using the
three different descent strategies are depicted in Fig. 3. Fig.
3 (bottom) illustrates the outstanding performance of the
Newton algorithm when compared with the other methods.
Therefore, the Newton method is used from now on.

Moreover, it is shown that lower values for the parameter
α (prior strength) lead to sharper solutions were the transi-
tions are better preserved. This parameter is manually tuned
and was selected in a trial and error basis.

In the second example, synthetic images (a square and
a set of different-sized ellipses) corrupted with Rayleigh
noise were generated (see Fig. 4(a-b) (1st row, 1st col.)). The
distribution parameters wereXmax = 5000 andXmin = 1000.
Reconstruction results obtained with the proposed method
(Fig. 4(a-b) (1st row, 2nd col.)) were visually compared
with SBF (Fig. 4(a-b) (2nd row, 1st col.)) and NLM (Fig.
4(a-b) (2nd row, 2nd col.)) algorithms. It is observed that
the proposed algorithm provides images where the speckle
noise is successfully attenuated while the edges are better
preserved. This observation is supported by inspecting the
de-noised image profiles (Fig. 4 (bottom)). To allow a more
objective comparison the signal to noise ratio (SNR) was
also computed. For both images, the best SNR is achieved
with the method proposed in this paper.

B. Medical data

In the last example, application of the proposed recon-
struction algorithm and comparison with SBF and NLM
was done in real medical data. 4 different ultrasound images
are presented (1st row, 1st col. of each set of images) and
reconstruction results using the proposed method (RaylCx -
1st row, 2nd col.), SBF (2nd row, 1st col.) and NLM (2nd

row, 2nd col.) are depicted in Fig. 5. At the bottom of each
set of images, profiles from the de-noised images using the
different reconstruction algorithms are shown. Regularization
parameters used by the three algorithms were kept constant
along the different images to study the robustness of the de-
noising methods.

By qualitative inspection of the images and corresponding



a) b)

Fig. 4. De-noising results of two artificially generated noisy images: a
noisy blank square (left) and a set of noisy different-sizedblank ellipses
(right), using the proposed method and two other de-noising algorithms.
(bottom) De-noised image profiles.

profiles, the proposed de-noising algorithm, which is time
competitive with the others used, attains cleaner images with
the relevant organ edges being well preserved. For instance,
Fig.5(a) shows that the SBF overestimates the original edges
and Fig.5(d) shows that the heart chambers walls are more
clearly defined using the RaylCx algorithm while the other
two produce smoother images.

V. CONCLUSIONS

This paper proposes a Bayesian ultrasound image
reconstruction/de-noising (despeckle) algorithm using the
maximum a posteriori(MAP) criterion. The algorithm is
formulated as the optimization of a convex energy function.
The convexity of the function and the minimization by using
the Newton method guarantee a continuous convergence to
the global minimum in a small number of iterations.

The prior distribution, used to regularize the solution and
well pose the intrinsic ill-posedmaximum likelihoodsolution,
is a Gibbs distribution with potential functions based on the
Log-Euclideangradient magnitude of the de-noised image.
The Log-Euclideangradient magnitude is based on theLog-
Euclideandistance metrics that are particular suitable when
the optimization is performed inRN

+, which is the case. In
fact, the speckle noise, corrupting the ultrasound images is
modeled by a Rayleigh distribution where the parameters to
be estimated are positive.

Tests using synthetic and real data illustrate the application
of the algorithm have show the effectiveness of the proposed
method. Furthermore, comparison with two state of the art
speckle algorithms described in the literature shows that the
proposed method outperforms the other methods.
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