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Abstract—Multiplicative noise is often present in several medical ad
biological imaging modalities, such as MRI, Ultrasound, PETSPECT
and Fluorescence Microscopy. Noise removal and preservindié¢ details
is not a trivial task. Bayesian algorithms have been used toatkle
this problem. They succeed to accomplish this task, howevahey lead
to a computational burden as we increase the image dimensiatity.
Therefore, a significant effort has been made to accomplisthts tradeoff,
i.e., to develop fast and reliable algorithms to remove noés without
distorting relevant clinical information. This paper prov ides a new unified
framework for Bayesian denoising of images corrupted with aditive and
multiplicative multiplicative noise. This allows to deal with additive white
Gaussian and multiplicative noise described by Poisson and dleigh
distributions respectively. The proposed algorithm is basd on the
maximum a posteriori (MAP) criterion, and an edge preserving priors are
used to avoid the distortion of the relevant image details. fie denoising
task is performed by an iterative scheme based on Sylvestéyapunov
equation. This approach allows to use fast and efficient algithms
described in the literature to solve the Sylvester/Lyapune equation
developed in the context of the Control theory. Experimenth results
with synthetic and real data testify the performance of the poposed
technique, and competitive results are achieved when compag to the
of the state-of-the-art methods*

I. INTRODUCTION AND PRIOR WORK

The acquisition of medical Imaging introduces anatomical aots,
which hamper the extraction of the relevant features for thelicaé

whereQ is a known matrix in the case of the Gaussian noise and depends
on X in the case of the Rayleigh and Poisson distributions. This paper
formulates the denoising problem in terms of the Sylvester-upap
equation which can be numerically solved by efficient alganghDiffer-

ent types of priors are also consider to preserve the discotéispiresent

in the noisy images. The proposed algorithm is compared with some of
the most used despeckling filters, like the Wiener and the normalamedi
filter, and a state-of-the-art adaptive median filter describgd8].

Prior work dealing with multiplicative noise can be framed it
following categoriesi) Median filtering,i:) Wavelets andii) Bayesian
methods.

The median filter is the most popular choice since it is simple and
provides high quality results. Variants addressing this amproare
proposed in [18,19]. In the later, two versions are proposgdixed
- Squeeze Box Filtg]SBF), andi:) variable -Adaptive Weighted Median
Filtering (AWMF) size windows. In [18], it is illustrated that the proposed
method outperforms other despeckling median filters, being actdlte-
art method in this class.

Wavelet based despekling algorithms have also been used, etg., sof
thresholding denoising pioneered by Donoho [20]. These methoels
based on multi-scale decomposition of the noisy image and in the
processing of the image coefficients in coarser scales, e.g.,1[22]2

Bayesian methods have also been proposed to deal with multipdicat
noise reduction. This approach is closely related with thekvpoesented
herein. It formulates the denoising task as an estimation probidrere

diagnosis. Hence, denoising techniques must applied to sigrilficanthe likelihood function and a prior distribution are jointtgaximized.

reduce the artifacts present in the image, and preserve thenasinat
structure. A significant effort has been made to provide fast ahiabte
algorithms allowing noise removal and preserving relevant cangil
structures [1,2].

The following three issues must be address@dstatistical observation
model,4z) prior distribution andii) optimization method [23]. Recently,
denoising algorithms have been formulated in a Bayesian frankewor
and using a wavelet decomposition, achieving very efficient fasd

The white additive Gaussian noise is amongst the most popular modglgorithms [24,25].

used to describe noisy signals [3]. This assumption is not accepiabl

This paper is organized as follows. Section |l formulates #oising

many imaging systems which produce images corrupted by multipkcat problem. Section 1V reports experimental results exhibitmg effective-

or impulsive noise [4,5].

ness of the proposed approach comparing its performance withea sta

Two types of multiplicative noise arise in a wide variety of ima@i of-the-art method. Section V concludes the paper.
modalities such as medical and biological imaging: speckle naise a

Poisson noise. The speckle noise usually appears in aquisitioagses

using coherent radiation, e.g., laser [6], ultrasound [7] aAdR 98]

images. Poisson noise arises in systems involving counting procedure

like PET/SPECT [9], functional MRI [10] and fluorescence cl
microscopy [11].

The additive Gaussian noise is commonly used in CT [12] and less

frequently used in low intensity MRI [13]. Indeed, the noiserapting

Il. PROBLEM FORMULATION

Let X be aN x M unknown image to be estimated from the noisy
imageY. The estimation ofX is formulated in a Bayesian framework
as the following optimization problem

the MRI images is usually approximated by a Rice and Gaussiathere

distributions, for low and high intensities, respectively [18jommon
distributions describing speckle noise are: Rayleigh [13]s&tmi [11],

K-distribution [14], Nakagami [15], Fisher-Tippet [16] ar@eneralized

Gamma(GG) [17].

X = arg m}%n E(X,Y) 2)
B(X,Y) = By(Y,X) +Ex(X). @)

Data fidelity term  Prior term

Ey(X,Y), calleddata fidelity termdepends on the observation model

In this paper a unifying denoising framework is presented td degny aracts the solution toward the data, abg(X), called prior

with additive Gaussian white noise and multiplicative noise deedr

term or internal energy regularizes the solution, removes the noise and

by Rayleigh and Poisson distributions. The paper shows that the M'ﬁworporates a priori knowledge about the solution.

estimate of the image is the solution of a Sylvester-Lyapunov temua

X +XP+Q =0, Q)

Usually it is assumed a priori that is band-limited signal described
by a Markov Random FieldMRF) defined using neighborhood inter-
actions among set of pixels. By the Hammersley-Clifford theoreis, th

1This work was partially supported BCT, Portuguese Ministry of Science means thatP(X) = Ce~V(X) is a Gibbs distribution where’ = 1/2

and Technology and Higher Education (which includes FEDE&RUS).

is the reciprocal of the partition functiof.



. . . . . . TABLE Il
The interactions among neighbors, defined by the prior turin@)a  \ye,6uTs For THELs, TV AND BENFORD PRIORSWHERE '~ ! DENOTES

well posed problem with a unique solution. However, the sofutitzay THE GRADIENT MAGNITUDE VALUE COMPUTED IN THE PREVIOUS
appear smoothed and blurred at the transitions. To avoid thigsinathle | TERATION. SINCE WE ARE DEALING WITH ISOTROPIC FIELDSw), = wa.
effect several authors have suggested different Gibbs digtitsu to

model these interactions in order to minimize the distortions haf t [ Weights[ Lo [ TV | Benford |
edges in the final solution. In general, this set of priors atled¢@dge [ w [T [/ | /g |
preserving priors EPP. Two examples are thetal variationandBenford
priors [26].

Assuming statistical independence of the observations the energyThe partial derivative of2(X,Y) w.r.t. z(i, j) computed from (5) lead
function may be written as follows to

OE(X,Y) de(z(k, 1), y(k, 1))
E(X,)Y)=- Z p(yilzi) + U(X) 4 oz (k,1) = dx(k, 1) ™

i

20wk, D)8y (K, 1) + wp (k, D)8y (k, 1)]
20 [wo (k + 1,18, (k + 1,1) + wp (k, L+ 1)8, (k, I + 1)]

where p(y;|z;) is the distribution that models the acquisition process,
U(X) = 3, p(dr) is the Gibbs energyy(d) is the so-called potential . . .
function, e.g.,p(z) = 22 is the simplest one, andl, are the intensity Whereéw(k,l) = wn(k,l) = w(k,!) because we are using an isotropic
differences between pairs of neighboring pixels. MRF. Assuming the following simplifications

Q

wy(k+1,1)
wn(k, L+ 1)

and taking into account the equation (7) the stationary poiay be
The minimization of (4) is an huge optimization task. It can befor computed by solving the following set of equations
lated in a matrix framework after vectorizing the imagess vect(X),
. . . . : ; . 1 de(z(k,1),y(k, 1)
in lexicographical order, i.e., by stacking the columnsxofDirect matrix P do(kl
processing of the data in this format is not possible, in prackieeause w(k,1) x(k, 1)
the resulting matrices have huge dimensions, despite their spsssene

wy(k, 1) = w(k,l)
wp (k1) = w(k,1)

Q

I1l. OPTIMIZATION

+2a[2z(i,5) —x(i — 1,5) —z(i + 1,5)] +

Vertical differences

, ! 202z (i, §) — z(i,j — 1) — z(i,j + 1)] =0 8
structure. Therefore, the minimization of (4) is usually perfed in a 2wl g) — (i)~ —2@i+ 1) ®)
element wise basis. Horizontal differences

In this paper an optimization method is proposed where theraiigi 0<kI<N,M
matrix structure of the data is kept along the entire optimirafirocess,
making useless the vectorization of the data. Furthermore, dtimiaa- TABLE Il

tion problem is formulated by using the well known Sylvesteafiynov =~ MATRIX X FOR THE GAUSSIAN, POISSON ANDRAYLEIGH OBSERVATION
equation for which there are efficient and fast solvers destribethe MODE'F;E :’;“Esziig:EE{?E'M L\'{‘ TA\’;‘V?SEEONRF_&EEJSL%T)SJ;EER%EFLATOR@
literature and the algorithm aims to be a generalized framevior ’

cope W|'_th several image observation models and use several pbbs Gi [ S | Gaussian| Poisson | Rayleigh |
distributions. 5 =
Lo 1/o 160 /X 16 /X9
2 [OP]
M TG T oI,
GAUSSIAN, POISSON ANDRAYLEIGH MODELS FOR THE OBSERVATIONS Bfd | G*°/o Go/X | GPRo/X
The set of equations (8) can be written using matrix notation
ML
Model p(1y|z) ; e(z,y) 8e(m,yN)I/L8x x S0 (X = XML) 4 20(On X + XOp1) = 0 ©)
Gauss | Ke 2.2("°%) 2%(90 —y)? =z y . .

. V=7 7 1 oML where® is the Hadammard operator, the elementsydf'L are defined
Poisson y] Ty og(@) e Y in Table | ands: is a N x M matrix depending on the observation and
Rayleigh Ye—vy/(22) L —log(¥) - y2/2 prior models, as shown in table Ill. The mati;,, with L € [N, M], is

as follows,
The energy function to be minimized is the following, 2 -1.0 0 .. 0 0 0 -1
-1 2 —1 0 0 0
N,M 0 -1 2 -1 ... .. 0 0
. 0= . 10
E(Y,X) = > e(i,5),y05)+ e e e e .o =12 =1 0 (10)
i,j 0 0 0 0 -1 2 -1
N,M -1 0 0 0 0 —1 2

a Y [woli, )02, 5) + wali, )05 (i, 5)]  (5) Equation (9) is non linear and must be iteratively solved. By gisire
] fixed point method the following recursion is obtained

wheree(z(i, 1), y(i, 7)) are the terms associated with the data (see Table £t~ ! o (X?! — XMLy 4 20(OnX + XOp) =0 (11)
1), y(4,7), and depends on the observation model &nd, 5), with = € o1 . . 1 . .
[h,v] are the horizontal and vertical differences between neighlat Whefe xTIs computec_i using the estimats _obta!_ned in the
each pixel locationw, (z,7) and wy,(4,j) are weights updated in each previous iteration. Equ_atlon (11), solved in each iteratisnthe well
iteration and obtained by using a specific MM algorithm propokgd known Sylvester equation,

[27]. These weights are related to the prior as follows, ONX + X0y +CE=0 (12)
where
o= s ©) 1
p(5) oy = 51N+2aa?®1\;

where p(§) = Ke— (%) is the distribution ofs. Table Il shows the
weights computed with (6) for the three priors consideresgl, TV and
Benford. ct-l = wt-lo(xtTl o xMLy,

1
Sy = §IJVI+2(10'2@1\4



IV. EXPERIMENTAL RESULTS

In this section we present two sets of experiments. In both sets we
present a performance comparison of the following denoising rdstho

1) median filteringi) Wiener filtering,iii) Squeeze Box filtdSBF),iv)
L, prior, v) Total Variation (TV) prior, andv:) Benfordprior.

In the first set of experiments (Section IV-A), we present the per-
formance of the mentioned methods in synthetic images analyhiag t

SNR for each technique. Then, we illustrate the results in atiraages
modalities:Ultrasound (US), Computed Tumograph§CT).

A. Synthetic Images

To assess the performance of the above mentioned methods, we per-
formed Monte Carlo tests in two scenarios. We consider a synthmetic i

age, which consists of a white centered square in a black baakgrdhis

image corrupted with) gaussian, andi) Rayleigh noise distributions.

The experiments comprise the following:inwe change the parameter

for eacho value; in i) we vary thes € {10,100, 500, 1000, 5000}
keeping the same number of the experiments for each value Bfg.
1 shows the mean of SNR for the different valuescofThe SNR is
computed in a diagonal profile of the image from top-left to dwit
right.

in the seto € {0.1,0.2,0.3,0.4,0.5}, and we carried out 20 experiments ] L

It can be seen for gaussian noise (Fig. 1 (a)) that for small values
of o the Wiener method exhibits the best SNR, since is tailored tb dea

with this kind of noise. However, it strongly degrades asdhacreases.
The median filtering has a similar poor performance for higheuesl

of 0. The SBF has a good and almost constant SNR, nevertheless, the

best SNR are achieved by the TV and Benford priors. Fig. 1 (bjrtep
the performance of the methods under a rayleigh noise corruptage.
The SBF and TV, Benford priors exhibit remarkable results. Ashi
previous experiment, the TV and Benford prior render the mostciive
results.

Gaussian Noise

Rayleigh Noise
T

R S S

@ (b)

Fig. 1. SNR obtained for various methods: (a) gaussian, (dgigh noise
distributions.

A second experiment is shown in Fig. 2. This figure shows an inp%ht
and a simulation of an ultrasound image to evaluate the perfoengnc
the various despeckling algorithms considér&tiis image consists of a

background region class with a “one” pixel value, and othey tlasses
with “zero” (dark region) and “ten” pixel values. We compute tSNR

in a vertical line passing through the centers of the circlesyhiich the

image profile is computed. In Fig. 2 it is illustrated the outpuage
for each method, as well as the obtained intensity profiles: irezd it

the profile of the input image; the blue line depicts the resglimage
profile for technique.

The best SNR results is achieved by the SBF method, however the

and Benford priors can provide competitive results.

B. Real Images

:’ﬁ: il ;TTZ&

© ©
(
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Fig. 2. SNR obtained for various methods: (a) original imagé;nfedian -
SNR = 3.78; (c) Wiener -SNR = 3.57; (d) SBF -SNR = 5.86; (e) L2
-SNR=4.88; (f) TV- SNR = 5.84, (g) Benford -SNR = 5.84.

along a diagonal line (from upper left corner to bottom rigiarner).
The original intensity profile is shown in blue, whereas theckline
refers to the intensity of the filtered image. Due to the lack aicsponly
a subset of images are provided.

Fig. 3, shows the denoising results in a US image. For the three
Bayesian methodsZg, TV and Benford), the noise is modeled by a
Rayleigh distribution. The comparison of the results obtaingdthe
several methods shows that the best results are obtained by thadrv a
Benford priors as well as the SBF, which is tailored to deahwiS
images. This is illustrated in Fig. 4 where it is displayed the ieagfiles
obtained in each method (blue line).

In Fig. 5 other modality (MRI) is presented. In this case the nase
modeled as being white, additive and Gaussian. It is desiratdertpare
the results with the Wiener method since it is a benchmark whelindea
with Gaussian noise. From this point of view it is interesting ébenthat
e EPP filters provides amongst the best results.

V. CONCLUSIONS

The application of a Bayesian methodology to image denoising pro
cesses is usually time and memory consuming. The usual procedure to
deal with images as vectors leads to huge dimension matrices ahéc
difficult to manipulate. In this paper we present an approachrethe
original 2D structure of the images is kept during the denoigiragess.

Herein, we show that the solution of the denoising problem with

Itiplicative abd Gaussian noise can be obtained by using the

ylvester/Lyapunov matricial equation. This equation cerefieiently

solved using numerical methods described in the literature aridded
in software packages (e.g., Matlab).

MAP filtering with non quadratic priors were also considerede W

To illustrate the performance of the denoising algorithms, we u&§OPOSe an iterative version of the gaussian MAP algorithm tosee u
real images from several medical modalities. The images output affih non-gaussian priors or with deblurring problems.

the respective intensity profiles are shown. These profiles a@@nehl

2this test is similar to the one presented in [18].
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3. Output of the methods in US images: (first row) heardsd row)

carotid, (third row) thyroid.
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Fig. 4. Output of the methods in MRI images: (first row) headcdsel and
third rows) knee.

[18] as well as the image presented in Fig .2, which assuredly elaguh
to enrich the quality of the paper.
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