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Jõao M. Sanches Jacinto C. Nascimento Jorge S. Marques
jmrs@isr.ist.utl.pt jan@isr.ist.utl.pt jsm@isr.ist.utl.pt
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Abstract—Multiplicative noise is often present in several medical and
biological imaging modalities, such as MRI, Ultrasound, PET/SPECT
and Fluorescence Microscopy. Noise removal and preserving the details
is not a trivial task. Bayesian algorithms have been used to tackle
this problem. They succeed to accomplish this task, howeverthey lead
to a computational burden as we increase the image dimensionality.
Therefore, a significant effort has been made to accomplish this tradeoff,
i.e., to develop fast and reliable algorithms to remove noise without
distorting relevant clinical information. This paper prov ides a new unified
framework for Bayesian denoising of images corrupted with additive and
multiplicative multiplicative noise. This allows to deal with additive white
Gaussian and multiplicative noise described by Poisson and Rayleigh
distributions respectively. The proposed algorithm is based on the
maximum a posteriori (MAP) criterion, and an edge preserving priors are
used to avoid the distortion of the relevant image details. The denoising
task is performed by an iterative scheme based on Sylvester/Lyapunov
equation. This approach allows to use fast and efficient algorithms
described in the literature to solve the Sylvester/Lyapunov equation
developed in the context of the Control theory. Experimental results
with synthetic and real data testify the performance of the proposed
technique, and competitive results are achieved when comparing to the
of the state-of-the-art methods.1

I. I NTRODUCTION AND PRIOR WORK

The acquisition of medical Imaging introduces anatomical artifacts,
which hamper the extraction of the relevant features for the medical
diagnosis. Hence, denoising techniques must applied to significantly
reduce the artifacts present in the image, and preserve the anatomical
structure. A significant effort has been made to provide fast and reliable
algorithms allowing noise removal and preserving relevant anatomical
structures [1,2].

The white additive Gaussian noise is amongst the most popular models
used to describe noisy signals [3]. This assumption is not acceptable in
many imaging systems which produce images corrupted by multiplicative
or impulsive noise [4,5].

Two types of multiplicative noise arise in a wide variety of imaging
modalities such as medical and biological imaging: speckle noise and
Poisson noise. The speckle noise usually appears in aquisition processes
using coherent radiation, e.g., laser [6], ultrasound [7] and SAR [8]
images. Poisson noise arises in systems involving counting procedures
like PET/SPECT [9], functional MRI [10] and fluorescence confocal
microscopy [11].

The additive Gaussian noise is commonly used in CT [12] and less
frequently used in low intensity MRI [13]. Indeed, the noise corrupting
the MRI images is usually approximated by a Rice and Gaussian
distributions, for low and high intensities, respectively [13].Common
distributions describing speckle noise are: Rayleigh [13], Poisson [11],
K-distribution [14], Nakagami [15], Fisher-Tippet [16] andGeneralized
Gamma(GG) [17].

In this paper a unifying denoising framework is presented to deal
with additive Gaussian white noise and multiplicative noise described
by Rayleigh and Poisson distributions. The paper shows that the MAP
estimate of the image is the solution of a Sylvester-Lyapunov equation

ΦX + XΦ + Q = 0, (1)

1This work was partially supported byFCT, Portuguese Ministry of Science
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whereQ is a known matrix in the case of the Gaussian noise and depends
on X in the case of the Rayleigh and Poisson distributions. This paper
formulates the denoising problem in terms of the Sylvester-Lyapunov
equation which can be numerically solved by efficient algorithms. Differ-
ent types of priors are also consider to preserve the discontinuities present
in the noisy images. The proposed algorithm is compared with some of
the most used despeckling filters, like the Wiener and the normal median
filter, and a state-of-the-art adaptive median filter describedin [18].

Prior work dealing with multiplicative noise can be framed intothe
following categories:i) Median filtering,ii) Wavelets andiii) Bayesian
methods.

The median filter is the most popular choice since it is simple and
provides high quality results. Variants addressing this approach are
proposed in [18,19]. In the later, two versions are proposed:i) fixed
- Squeeze Box Filter(SBF), andii) variable -Adaptive Weighted Median
Filtering (AWMF) size windows. In [18], it is illustrated that the proposed
method outperforms other despeckling median filters, being a state-of-the-
art method in this class.

Wavelet based despekling algorithms have also been used, e.g., soft-
thresholding denoising pioneered by Donoho [20]. These methodsare
based on multi-scale decomposition of the noisy image and in the
processing of the image coefficients in coarser scales, e.g., [13,21,22].

Bayesian methods have also been proposed to deal with multiplicative
noise reduction. This approach is closely related with the work presented
herein. It formulates the denoising task as an estimation problem,where
the likelihood function and a prior distribution are jointlymaximized.
The following three issues must be addressed:i) statistical observation
model,ii) prior distribution andiii) optimization method [23]. Recently,
denoising algorithms have been formulated in a Bayesian framework,
and using a wavelet decomposition, achieving very efficient andfast
algorithms [24,25].

This paper is organized as follows. Section II formulates the denoising
problem. Section IV reports experimental results exhibiting the effective-
ness of the proposed approach comparing its performance with a state-
of-the-art method. Section V concludes the paper.

II. PROBLEM FORMULATION

Let X be aN × M unknown image to be estimated from the noisy
imageY . The estimation ofX is formulated in a Bayesian framework
as the following optimization problem

X̂ = arg min
X

E(X, Y ) (2)

where

E(X, Y ) = EY (Y, X)
︸ ︷︷ ︸

Data fidelity term

+ EX(X)
︸ ︷︷ ︸

Prior term

. (3)

EY (X, Y ), calleddata fidelity term, depends on the observation model
and attracts the solution toward the data, andEX(X), called prior
term or internal energy, regularizes the solution, removes the noise and
incorporates a priori knowledge about the solution.

Usually it is assumed a priori thatX is band-limited signal described
by a Markov Random Field(MRF) defined using neighborhood inter-
actions among set of pixels. By the Hammersley-Clifford theorem, this
means thatP (X) = Ce−U(X) is a Gibbs distribution whereC = 1/Z
is the reciprocal of the partition functionZ.
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The interactions among neighbors, defined by the prior turn (2)into a
well posed problem with a unique solution. However, the solution may
appear smoothed and blurred at the transitions. To avoid this undesirable
effect several authors have suggested different Gibbs distributions to
model these interactions in order to minimize the distortions of the
edges in the final solution. In general, this set of priors are called edge
preserving priors, EPP. Two examples are thetotal variationandBenford
priors [26].

Assuming statistical independence of the observations the energy
function may be written as follows

E(X, Y ) = −
∑

i

p(yi|xi) + U(X) (4)

where p(yi|xi) is the distribution that models the acquisition process,
U(X) =

∑

k ρ(δk) is the Gibbs energy,ρ(δ) is the so-called potential
function, e.g.,ρ(x) = x2 is the simplest one, andδk are the intensity
differences between pairs of neighboring pixels.

III. O PTIMIZATION

The minimization of (4) is an huge optimization task. It can be formu-
lated in a matrix framework after vectorizing the images,x = vect(X),
in lexicographical order, i.e., by stacking the columns ofX. Direct matrix
processing of the data in this format is not possible, in practice,because
the resulting matrices have huge dimensions, despite their sparseness
structure. Therefore, the minimization of (4) is usually performed in a
element wise basis.

In this paper an optimization method is proposed where the original
matrix structure of the data is kept along the entire optimization process,
making useless the vectorization of the data. Furthermore, the optimiza-
tion problem is formulated by using the well known Sylvester/Lyapunov
equation for which there are efficient and fast solvers described in the
literature and the algorithm aims to be a generalized framework to
cope with several image observation models and use several prior Gibbs
distributions.

TABLE I
GAUSSIAN, POISSON ANDRAYLEIGH MODELS FOR THE OBSERVATIONS.

Model p(y|x) ǫ(x, y) ∂ǫ(x, y)/∂x xML

Gauss Ke
−

1

2σ2
(x−y)2 1

2σ2
(x − y)2 x−xML

σ2
y

Poisson xye−x

y!
x − y log(x) x−xML

x
y

Rayleigh y
x

e−y2/(2x) y2

2x
− log( y

x
) x−xML

x2
y2/2

The energy function to be minimized is the following,

E(Y, X) =

N,M
∑

i,j

ǫ(x(i, j), y(i, j)) +

α

N,M
∑

i,j

[
ωv(i, j)δ2

v(i, j) + ωh(i, j)δ2
h(i, j)

]
(5)

whereǫ(x(i, j), y(i, j)) are the terms associated with the data (see Table
I), y(i, j), and depends on the observation model andδτ (i, j), with τ ∈

[h, v] are the horizontal and vertical differences between neighbors at
each pixel location.ωv(i, j) and ωh(i, j) are weights updated in each
iteration and obtained by using a specific MM algorithm proposedby
[27]. These weights are related to the prior as follows,

ωτ =
1

δp(δ)

dp(δ)

dδ
(6)

where p(δ) = Ke−αρ(δ) is the distribution ofδ. Table II shows the
weights computed with (6) for the three priors considered,L2, TV and
Benford.

TABLE II
WEIGHTS FOR THEL2 , TV AND BENFORD PRIORS, WHEREgt−1 DENOTES

THE GRADIENT MAGNITUDE VALUE COMPUTED IN THE PREVIOUS

ITERATION. SINCE WE ARE DEALING WITH ISOTROPIC FIELDSωh = ωv .

Weights L2 TV Benford

w 1 1/gt−1 [1/gt−1]2

The partial derivative ofE(X, Y ) w.r.t. x(i, j) computed from (5) lead
to
∂E(X, Y )

∂x(k, l)
=

dǫ(x(k, l), y(k, l))

dx(k, l)
(7)

+ 2α [ωv(k, l)δv(k, l) + ωh(k, l)δh(k, l)]

− 2α [ωv(k + 1, l)δv(k + 1, l) + ωh(k, l + 1)δh(k, l + 1)]

whereωv(k, l) = ωh(k, l) = ω(k, l) because we are using an isotropic
MRF. Assuming the following simplifications

ωv(k + 1, l) ≈ ωv(k, l) = ω(k, l)

ωh(k, l + 1) ≈ ωh(k, l) = ω(k, l)

and taking into account the equation (7) the stationary pointmay be
computed by solving the following set of equations

1

ω(k, l)

dǫ(x(k, l), y(k, l))

dx(k, l)
+ 2α[2x(i, j) − x(i − 1, j) − x(i + 1, j)

︸ ︷︷ ︸

Vertical differences

] +

2α[2x(i, j) − x(i, j − 1) − x(i, j + 1)
︸ ︷︷ ︸

Horizontal differences

] = 0 (8)

0 ≤ k, l ≤ N, M

TABLE III
MATRIX Σ FOR THEGAUSSIAN, POISSON ANDRAYLEIGH OBSERVATION

MODELS AND FOR THEL2 , TV AND BENFORD PRIORS. THE OPERATOR⊙
REPRESENTS A ELEMENT WISE ORHADAMMARD OPERATION.

Σ Gaussian Poisson Rayleigh

L2 1/σ2 1 ⊙ /X 1 ⊙ /X⊙2

TV G/σ2 G ⊙ /X G ⊙ /X⊙2

Bfd G⊙2/σ2 G⊙2 ⊙ /X G⊙2 ⊙ /X⊙2

The set of equations (8) can be written using matrix notation

Σ ⊙ (X − XML) + 2α(ΘNX + XΘM ) = 0 (9)

where⊙ is the Hadammard operator, the elements ofXML are defined
in Table I andΣ is a N × M matrix depending on the observation and
prior models, as shown in table III. The matrixΘL, with L ∈ [N, M ], is
as follows,

Θ =











2 −1 0 0 ... 0 0 0 −1

−1 2 −1 0 ... ... ... 0 0
0 −1 2 −1 ... ... ... 0 0
... ... ... ... ... −1 2 −1 0
0 0 0 ... ... 0 −1 2 −1

−1 0 0 ... ... 0 0 −1 2











. (10)

Equation (9) is non linear and must be iteratively solved. By using the
fixed point method the following recursion is obtained

Σt−1 ⊙ (Xt−1 − XML) + 2α(ΘNX + XΘM ) = 0 (11)

where Σt−1 is computed using the estimateXt−1 obtained in the
previous iteration. Equation (11), solved in each iteration, is the well
known Sylvester equation,

ΦNX + XΦM + Ct−1 = 0 (12)

where

ΦN =
1

2
IN + 2ασ2ΘN

ΦM =
1

2
IM + 2ασ2ΘM

Ct−1 = Σt−1 ⊙ (Xt−1 − XML).
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IV. EXPERIMENTAL RESULTS

In this section we present two sets of experiments. In both sets we
present a performance comparison of the following denoising methods:
i) median filtering,ii) Wiener filtering,iii) Squeeze Box filter(SBF),iv)
L2 prior, v) Total Variation (TV) prior, andvi) Benfordprior.

In the first set of experiments (Section IV-A), we present the per-
formance of the mentioned methods in synthetic images analyzing the
SNR for each technique. Then, we illustrate the results in several images
modalities:Ultrasound(US), Computed Tumography(CT).

A. Synthetic Images

To assess the performance of the above mentioned methods, we per-
formed Monte Carlo tests in two scenarios. We consider a synthetic im-
age, which consists of a white centered square in a black background. This
image corrupted withi) gaussian, andii) Rayleigh noise distributions.
The experiments comprise the following: ini) we change theσ parameter
in the setσ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and we carried out 20 experiments
for each σ value; in ii) we vary theσ ∈ {10, 100, 500, 1000, 5000}
keeping the same number of the experiments for each value ofσ. Fig.
1 shows the mean of SNR for the different values ofσ. The SNR is
computed in a diagonal profile of the image from top-left to bottom-
right.

It can be seen for gaussian noise (Fig. 1 (a)) that for small values
of σ the Wiener method exhibits the best SNR, since is tailored to deal
with this kind of noise. However, it strongly degrades as theσ increases.
The median filtering has a similar poor performance for higher values
of σ. The SBF has a good and almost constant SNR, nevertheless, the
best SNR are achieved by the TV and Benford priors. Fig. 1 (b) reports
the performance of the methods under a rayleigh noise corruptedimage.
The SBF and TV, Benford priors exhibit remarkable results. As inthe
previous experiment, the TV and Benford prior render the most attractive
results.
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Fig. 1. SNR obtained for various methods: (a) gaussian, (b) rayleigh noise
distributions.

A second experiment is shown in Fig. 2. This figure shows an input
and a simulation of an ultrasound image to evaluate the performance to
the various despeckling algorithms considered2 This image consists of a
background region class with a “one” pixel value, and other two classes
with “zero” (dark region) and “ten” pixel values. We compute the SNR
in a vertical line passing through the centers of the circles, inwhich the
image profile is computed. In Fig. 2 it is illustrated the output image
for each method, as well as the obtained intensity profiles: red line is
the profile of the input image; the blue line depicts the resulting image
profile for technique.

The best SNR results is achieved by the SBF method, however the TV
and Benford priors can provide competitive results.

B. Real Images

To illustrate the performance of the denoising algorithms, we use
real images from several medical modalities. The images output and
the respective intensity profiles are shown. These profiles are obtained

2this test is similar to the one presented in [18].
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Fig. 2. SNR obtained for various methods: (a) original image; (b) median -
SNR = 3.78; (c) Wiener -SNR = 3.57; (d) SBF -SNR = 5.86; (e) L2
- SNR = 4.88; (f) TV - SNR = 5.84, (g) Benford -SNR = 5.84.

along a diagonal line (from upper left corner to bottom rightcorner).
The original intensity profile is shown in blue, whereas the black line
refers to the intensity of the filtered image. Due to the lack of space only
a subset of images are provided.

Fig. 3, shows the denoising results in a US image. For the three
Bayesian methods (L2, TV and Benford), the noise is modeled by a
Rayleigh distribution. The comparison of the results obtained by the
several methods shows that the best results are obtained by the TV and
Benford priors as well as the SBF, which is tailored to deal with US
images. This is illustrated in Fig. 4 where it is displayed the image profiles
obtained in each method (blue line).

In Fig. 5 other modality (MRI) is presented. In this case the noiseis
modeled as being white, additive and Gaussian. It is desirable tocompare
the results with the Wiener method since it is a benchmark when dealing
with Gaussian noise. From this point of view it is interesting to note that
the EPP filters provides amongst the best results.

V. CONCLUSIONS

The application of a Bayesian methodology to image denoising pro-
cesses is usually time and memory consuming. The usual procedure to
deal with images as vectors leads to huge dimension matrices which are
difficult to manipulate. In this paper we present an approach where the
original 2D structure of the images is kept during the denoisingprocess.

Herein, we show that the solution of the denoising problem with
multiplicative abd Gaussian noise can be obtained by using the
Sylvester/Lyapunov matricial equation. This equation cen beefficiently
solved using numerical methods described in the literature and included
in software packages (e.g., Matlab).

MAP filtering with non quadratic priors were also considered. We
propose an iterative version of the gaussian MAP algorithm to be used
with non-gaussian priors or with deblurring problems.
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Fig. 3. Output of the methods in US images: (first row) heart, (second row)
carotid, (third row) thyroid.
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Fig. 4. Output of the methods in MRI images: (first row) head, (second and
third rows) knee.

[18] as well as the image presented in Fig .2, which assuredly was helpful
to enrich the quality of the paper.
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