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ABSTRACT
It has been claimed that the first digit of real signals follows
a logarithmic distribution, called Benford law. This paper
shows that this distribution is a natural prior for the gradient
of several types of medical images (MRI, CT, ultrasound) and
proposes a reconstruction algorithm based on the Benford law
which does not require any parameter tuning. Experimental
results are presented to illustrate the performance of the re-
construction algorithm.

Index Terms— Biomedical imaging, Image reconstruc-
tion, Image restoration.

1. INTRODUCTION
Several methods have been proposed for denoising and re-
construction, e.g., wavelets [1], anisotropic diffusion [2] and
level sets [3]. Bayesian methods [4], have been widely used
to reconstruct images from noisy and distorted data, achiev-
ing remarkable results in many problems. They are based on
the minimization of an energy function with two terms: a data
fidelity term and a regularization term

E(Y,X) = − log p(Y |X)− log p(X) (1)

where X is the image to be reconstructed, Y is the observed
image and p(Y |X), p(X) are the observation model and the
prior distribution, respectively.

The choice of the prior distribution is an important issue
since it influences the final result. Several priors have been
proposed (e.g. using Gibbs distributions) but they can not
be considered as natural priors for the class of images being
considered and they often depend on hyper parameters which
are difficult to estimate. Therefore, prior selection is still an
open issue.

The Benford law, also known as, First Digit Law, was ob-
served for the fist time in 1881 by Simon Newcomb [6]. Fifty
years later the physicist Benford [7] has made exhaustive ex-
perimental tests that have confirmed the results observed by
Newcomb. Basically, Benford noted that the statistical distri-
bution of the first significant digit from a set of real life mea-
sures is not uniform, as expected, but follows a logarithmic
distribution,

p(n) = k log(1 + n−1)
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where k is a normalization constant. p(n) = { 0.301, 0.176,
0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046}.

After the work of Benford several authors have presented
different mathematical explanations for the Benford Law, but
only in 1995, T. P. Hill [8] provided a complete mathemati-
cal formulation for the problem, including a generalization of
the Benford law for the other significant digits after the first.
Varian [9] has suggested using the Benford law as a test of
reasonableness (naturalness) of the data.

Jolion [10] showed that the Benford law describes well
the first digit of the gradient magnitude in natural images.
Furthermore, he derived a prior distribution for the gradient
magnitude, assuming that the first digit obeys a Benford Law,
given by

p(gi) =
k

gi
(2)

where k is a constant and gi is the gradient magnitude at po-
sition i.

This paper shows that the first digit of the gradient mag-
nitude in MRI, CT and ultrasound images obeys the Benford
Law. Second, we propose a reconstruction algorithm based
on the Benford Law which does not require the adjustment of
any regularization parameter and achieves good reconstruc-
tion results.

2. PROBLEM FORMULATION
To estimate the image X , we use the maximum a posteriori
(MAP) criterion which is equivalent to solve the following
optimization problem:

X̂ = arg min
X

E(Y, X), (3)

where the energy E(Y, X) is given by (1).
In this paper we assume that X is a Markov random field

(MRF), and therefore, the prior function, p(X), is a Gibbs
distribution, p(X) = Z−1e−αU(X) with

U(X) =
∑

i

v(δiv, δih), (4)

where α is the prior parameter, Z is a normalization con-
stant, v(s) is a potential function and δiv = xi,j − xi,j−1 and
δih = xi,j − xi−1,j are the first order horizontal and vertical
differences on xi, respectively.



Assuming a Benford law and independence for the first
digit of the gradient magnitudes, denoted by G, p(G) =

∏
i p(gi)

where p(gi) is given by (2). Therefore,

p(G) = W−1e−
P

i log(gi) (5)

where W is a normalization constant. The gradient magni-
tude, gi, at the ith pixel can be approximated by using the first
order vertical and horizontal differences, gi =

√
δ2
iv + δ2

ih.
If α = 1 and vi(δiv, δiv) = log(gi) ⇔ P (G) = Z

W P (X),
i.e., if the first digit of the gradient magnitudes follows the
Benford law, which is the case of natural images, then p(X)
is a Gibbs distribution with the potential function

v(δiv, δih) = log(gi) = log(
√

δ2
iv + δ2

ih). (6)

Table 1 compares the potential functions and influence
functions associated to Benford prior, (2), with other well
known priors, L1, L2, GGMRF [13, 12], Geman and McClure
[5], Lorentzian and Hubert [11]. These functions are also dis-
played in Fig.1. The Benford prior is an edge preserving prior
since its potential function, v(x) = log(|x|), has a sub-linear
growth when x tends to infinity. Notice that, in this 2D case
the potential functions are v(δ) = log

√
δ2 + k2 where k is

the other of the two differences involved in each clic.
In this paper, we will use v(δiv, δih) = log(gi + ε) where

ε is a constant (typically 10−6) which avoids divisions by zero
in homogeneous regions without any texture.

Consequently, the regularization term, by taking logarithms,
is, log(p(X)) = −∑

i log(gi + ε) + C
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Fig. 1. Potential functions, v(x), (left) and influence func-
tions, ψ(x) = dv(x)/dx, (right) for different regulariza-
tion priors. Generalized Gaussian MRF (GGMRF), p =
{1, 1.25, 1.5, 1.75, 2} (first line). Geman and McClure, Hu-
bert and Lorentzian (second line). Benford prior (third line).

Let us assume for the sake of simplicity that Y = HX +
N where N is a Gaussian additive noise with distribution

potential(v(x)) Influence(ψ(x))
L1 |x| sign(x)
GGMRF |x|p sign(x)p|x|p−1

L2 x2 2x

Geman x2

1+x2
2x

(1+x2)2

Lorentzian log(1 + 1
2 ( x

σ )2) x/σ

1+ 1
2 ( x

σ )2

Hubert x2/2ε + ε/2, |x| ≤ ε x/ε, |x| ≤ ε
|x|, |x| > ε. sign(x), |x| > ε.

Benford log(|x|+ ε) sign(x)/(|x|+ ε)

Table 1. Common edge preserving priors (excluding L2)
.

N(0, σ2I). In this case, the energy is given by

E(Y, X) =
1

2σ2
‖HX − Y ‖22 +

∑

i

log(gi + ε). (7)

where H is a blurring operator. In this paper we will only deal
with the denoising problem, so H = I .

3. OPTIMIZATION
The minimization of the non quadratic equation (7) is ob-
tained by solving dE

dX = 0. In this paper we will use a bounded
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Fig. 2. Bounded optimization.

optimization algorithm proposed in [14] where the energy
function is iteratively minimized. In each iteration, a quadratic
energy function, E2, is minimized such that

E2(Y,X) ≥ E(Y, X)
E2(Y, X̂(t− 1)) = E(Y, X̂(t− 1))

where X̂(t − 1) is the estimate of X at iteration t − 1 (see
Fig.2). The minimization of E2 leads to a new estimate of X .
This procedure is iteratively performed until convergence is
achieved.

As shown in [14] the equation (7) can be minimized by
iteratively solving the following equation

E2(Y, X) =
1
2
‖X − Y ‖2 + σ2∆T D∆ (8)

where ∆ = {δi} is a column vector containing all vertical
and horizontal differences xp − xq for {p, q} ∈ N , where N
denotes the set of adjacent nodes and D is a diagonal matrix.
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Fig. 3. Images and respective most significant digit cumula-
tive distributions of the gradient magnitude (experimental his-
togram and Benford law), for CT (first column), MRI (second
column) and US (third column).

The difference vector ∆ can be computed as ∆ = ΘX where
Θ is an appropriate matrix. The elements of diagonal matrix
D are given by

di = − 1
δip(δi)

dp(δi)
dδi

(9)

where p(δi) = K
g(δi)+ε , given by (2), thus,

dp(δi)
dδi

= − Kδi

g(δi)(g(δi) + ε)2
⇒ (10)

d(δi) =
1

g(δi)(g(δi) + ε)
≈ 1

g2(δi) + ε
(11)

The minimum of (8) is given by

XT
t+1 = (I + σ2ΘT DΘ)−1Y (12)

4. EXPERIMENTAL RESULTS
In this section we present two types of experiments. First
we test if the Benford Law is valid in a data set of 400 real
medical images, using the Kolmogorov-Smirnov conformity

Fig. 4. Denoising results with artificially corrupted images.
CT(first line), MRI(second line) and Synthetic(third line) im-
ages. (first column) Clean original images, (second column)
artificially corrupted with gaussian additive noise (σ = 20)
and (last column) denoised images.

test. In the second set of experiments we apply the denoising
algorithm to several medical images, corrupted by additive
Gaussian noise.

4.1. Benford law conformity tests
This section applies conformity tests to the first digit of the
gradient magnitude for two different hypotheses: Benford law
and uniform distribution. To measure the degree of fitness
between the theoretical and experimental curves we use the
level of confidence on the null hypotesis, H0, given by the
Kolmogorov-Smirnov statistical test. We have also decided
to compare the experimental data with the uniform distribu-
tion because this one is more intuitive for the most significant
digit (despite this intuitiveness is wrong as proven in [10]).
Besides, the comparison with the uniform law help us to eval-
uate the degree of closeness with the Benford law.

Pe = 1 − PH0 is the probability of rejection of the null
hypothesis, H0, which is, the hypothesis of the data have been
generated by the Benford/Uniform law. For the Kolmogorov-
Smirnov test PH0 = QKS(λ) 1 where λ = (

√
N + 0.12 +

0.11/
√

N)D and N = 9 is the number of data points. D =
max|p(n) − h(n)| is the maximum absolute difference be-
tween the theoretical distribution, p(n) and the experimental
histogram, h(n), for 1 ≤ n ≤ 9. Table 2 shows the geometric
mean of Pe for the most significant digit law, computed over
three different sets of medical images, CT (60 images), MRI
(409 images) and US (7 images). The resulting experimental
histograms are compared with the theoretical Benford (sec-
ond column of table 2) and Uniform (third column of table 2)
laws. Figure 3 displays examples of medical images and the

1QKS(λ) = 2
P∞

j=1 (−1)j−1e−2j2λ2



Pe Benford Uniform
CT 7.06E − 14 4.41E − 01
MRI 1.06E − 11 6.84E − 01
US 2.38E − 13 2.34E − 01

Table 2. Kolmogorov-Smirnov tests: geometric mean of the
error probability, Pe, computed over 476 images.

Fig. 5. Denoising results using real noisy images. (first and
second columns) ultrasound images and (third column) fluo-
rescent confocal microscopy image os a cell.

correspondent cumulative distributions of the most significa-
tive digit, as well, the theoretical Benford law. These images,
show a good fit of the experimental data with the Benford
law. This fitness is reenforced with the Kolmogorov-Smirnov
Pe measures presented in the table 2, which shows a better
adjustment to the Benford law than the uniform distribution.

4.2. Denoising
Here, two types of experimental results are presented. First,
three low noise images are artificially corrupted with addi-
tive Gaussian noise. These noisy images are denoised us-
ing the algorithm (12). Fig. 4 displays clean CT, MRI and
synthetic images (first column), the correspondent corrupted
images (second column) and the denoised images in the last
column. The signal to noise ratio, SNR, is 22.6dB for the
CT image, 16.4dB for the MRI image and 29.8dB for the
synthetic case.

In the second type of experiments the reconstruction algo-
rithm is applied to three natural noisy images. Two ultrasound
images and one fluorescent image from confocal microscopy

are used due its high level of noise. Fig. 5 shows the orig-
inal images (first column) and the denoised images (second
column).

5. CONCLUSIONS
This paper discusses the application of the Benford Law to the
representation of medical images: CT, MRI, US. It is shown
that the Benford Law provides a valid distribution for the most
significant digit of the gradient magnitude, extending the re-
sults in [10]. This allows to derive a natural prior without
hyper parameter to describe the distribution of the image gra-
dient, in medical images.

A denoising algorithm based on the Benford prior is de-
veloped and tested with medical images leading to good im-
age estimates. These results were obtained without using any
hyper parameter which is difficult to estimate in real opera-
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