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ABSTRACT

The estimation algorithms based on the MAP (Maximum-
a-Posteriori) criterion have the ability to deal with ill-posed
problems, involving noisy data, by reducing the number of
admissible solutions. However, this method is usually it-
erative and time consuming and not appropriate to work
in a real time basis. In the context of image reconstruc-
tion/restoration, Gibbs priors with quadratic potential func-
tions have been used because they allow simple mathemati-
cal formulations. However, these priors lead to smooth solu-
tions with a poor representation of transitions. To overcome
this problem, several authors have proposed other potential
function, non quadratic, that deal better with the transitions,
but leading to an increase of complexity.

In this paper, we come back to the Gibbs priors with
quadratic potential functions to show that MAP algorithms
can be formulated as a linear filtering problem. The recur-
sive nature of the filtering methods allows the obtention of
very fast and efficient restoration/reconstruction MAP algo-
rithms. Furthermore, we show that by using quadratic po-
tential functions involving high order differences between
neighbors it is possible to significantly improve the solu-
tion at the transitions. In fact, with this strategy we are in-
creasing the order of the filter that models the original MAP
problem.

The approach presented in this paper can be used as a
method to design Gibbs priors based on the filter design the-
ory.

1. INTRODUCTION

The estimation of signals from noisy observations has been
thoroughly studied in the last three decades. MAP meth-
ods using MRF (Markov Random Fields) models are pow-
erful tools to address this problem, taking into account the
statistics of the observations as well as the prior information
available about the signal to estimate. Gibbs priors [1, 2]
have been extensively used for this purpose. They are based
on the choice of a potential function which penalizes abrupt
changes of the signal.
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A popular solution consists of using quadratic poten-
tial functions based on first order differences [3], leading
to simple estimation algorithms which efficiently reduce the
observation noise. Unfortunately, quadratic potentials tend
to smooth the transitions and to eliminate small details of
the signal. Noise reduction is achieved by smoothing the
signal, destroying high frequencies. To overcome this diffi-
culty several strategies have been followed, namely by the
use of non-quadratic potential functions [4, 5] and multi-
scale representations of the signal (e.g., wavelets)[6]. These
methods lead to an improvement at the transitions but they
rely on iterative optimization schemes with higher compu-
tational complexity. Furthermore the convergence can be
slow.

In previous publications [7], the authors have shown that
the MAP solution with first order Gibbs priors can be ob-
tained by a linear filtering operation over the maximum like-
lihood solution. Here, the authors have derived the coeffi-
cients of the filter, as function of the prior parameters.

In this paper we describe the reverse operation, i.e., we
derive the prior parameters from the coefficients of the filter
which is a much more simple and useful operation. In fact,
using this method, it is possible to use the filtering design
theory to design quadratic priors with arbitrary shape in the
frequency domain. By using higher order (> 1) quadratic
potential functions and a non interactive optimization pro-
cedure based on IIR (Infinite Impulse Response) filtering it
is possible to obtain fast and low computational complexity
algorithms with good performance at transitions.

2. PROBLEM FORMULATION

Let F = {fi} be a vector ofN unknowns to be estimated
andY = {yi} a vector ofN noisy observations ofF . The
observations are assumed to be statistically independent fol-
lowing a normal distribution. Therefore, the log likelihood
function is

l(Y, F ) =
N∑

i=1

log(p(yi)) = − 1
2σ2

N∑

i=1

(yi − fi)2 + C (1)

In this paper the vectorF follows a Gibbs distribution



with quadratic potential functions of orderv, i.e.,

p(F ) =
1
Z

e−
ψ
2B

PN
i=1

Pv
j=1 βj(fi−fi−j)

2
(2)

whereB =
∑v

j=1 βj is a normalizing factor andβ1 = 1

2.1. MAP solution

The MAP solution is obtained by solving

F̂ = arg min
F

E(Y, F ) (3)

where

E(Y, F ) = −l(Y, F )− log p(F ) = (4)

1
2σ2

N∑

i=1

(yi − fi)2 +
ψ

2B

N∑

i=1

v∑

j=1

βj(fi − fi−j)2 + C (5)

Using the Gauss-Seidel algorithm and the fixed point
method to find the stationary point ofE(Y, F ) with respect
to eachfi, we obtain the following recursion

fn+1
i = (1− ki)fML

i + kif̄
n
i (6)

ki = k =
1

1 + 1/(2ψσ2)
(7)

f̄i =
1

2B

v∑

j=1

βj(fi−j + fi+j) (8)

wherefML
i = yi. In this denoising problem, we only have

an observation per unknown. Therefore, the observations
are equal to the maximum likelihood estimates. All the co-
efficients are updated according to (6)-(8). The estimation
procedure is repeated until convergence is achieved.

2.2. IIR filter

The potential functions in (2) consider not only the closest
neighbors but other neighbors as well, to improve the solu-
tion at the transitions.

However, choosing the prior coefficients in a trial and
error basis is not pratical, specially whenv is large.

This section shows that the MAP solution can be obtain
in two steps, by filtering the maximum likelihood estimates
with a causal and an anti-causal filter. We also show how to
derive the parametersψ andβj of the prior from the filter
coefficients. Therefore, the selection of the parametersβj is
converted into a filter design problem.

Equation (6) can be seen as a filtering process. By com-
puting its Z transform we obtain

G(z) =
Fz

Yz
=

1− k

1− k
2B

∑v
j=1 βj(z−j + zj)

(9)

whereFz andYz are the Z transform ofF andY respec-
tively.

This filter can not be recursively computed because it is
not wedge supported, i.e., each output depends on past and
future outputs. To overcome this difficulty it is decomposed
as a cascade of two filters, a causal and an anti-causal filter

C(z) = Hc(z)Ha(z) (10)

whith

Hc(z) =
A∑v

j=0 ajz−j
Ha(z) =

A∑v
j=0 ajzj

(11)

whereA =
∑v

j=0 aj . These filters have unit gain at DC,
i.e.,Hc(1) = Ha(1) = 1 and zeros only at the origin. This
leads to

Hc(z)Ha(z) =
A2

∑v
r=0 αr(z−r + zr)

=

A2/A2

1 + 1
A2

∑v
r=1 αr(z−r + zr)

(12)

whereA2 =
∑v

j=0 a2
j andαr =

∑v
j=r ajaj−r

Comparing (12) and (9) and assumingβ1 = 1 we have

βj =
αj

α1
(13)

k = 1− A2

A2
(14)

B = −kA2

2α1
(15)

ψ =
1

2σ2

k

1− k
(16)

These equations allow to obtain the prior parameters,ψ
andβj from the filter coefficients.

It is important to note that the inverse operation, i.e., the
computation ofaj from the prior parametersψ andβj is
much more difficult. Forv = 1 andv = 2 it is possible to
find closed form expressions. However, forv > 2 we need
to solve a set of non linear equations, which is difficult to
solve in a exact way.

3. IIR MAP SOLUTION

The MAP estimate is obtain by filtering the maximum like-
lihood estimate by a cascade of two filters: a causal and an
anti causal filter. In practice, the ML signal is first filtered
with the causal filter given by (11). The order of the output
is then reversed and the signal is filtered again with the same
filter as shown in Fig. 1
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Fig. 1. MAP estimate. The signal is filtered twice using
the same filter. A time-reversing operation is performed be-
tween both filtering operations.

4. EXPERIMENTAL RESULTS

In this section two examples of application are shown using
synthetic and real data. The goal is to compare the recon-
structions using the same observation model and priors of
two different orders. The prior parametersψ and βj are
computed from the filter coefficients,ai, as well the param-
eterk. To make a fair comparison, the parameterk (andψ)
should have the same value in the first and higher order pri-
ors. The computation ofψ andk is performed by using (14)
and (16).

4.1. 1D Synthetic Data

In this experiment, the data to be estimated is a 1D vector
of 256 elements, withfi = 200, 64 ≤ i ≤ 200 andfi =
64, 0 ≤ i ≤ 63∧201 ≤ i ≤ 256. This vector was corrupted
with additive Gaussian noise with distributionN(0, 152) as
shown in Fig. 2. To estimateF , the maximum likelihood
estimates (in this case, the observations) are filtered twice
(in both directions) with a 5-order linear filter, with poles
at positionsp0 = 0.4 andpi = 0.4cos(ωi) ± j0.5sin(ωi),
with ω1 = π/10+i(π/4−π/10)/2 andi = 0, 1, 2. The co-
efficients,aj , of the filters (11) are listed in Table 1 and the
estimated vector is represented in Fig. 2 (thick line). Based
on these coefficients, we have computed the prior param-
eters by using the equations (13)-(16). Theβj parameters
are listed at Table 1 and the other parameters areK = 0.996
andψ = 0.3109. Usingψ = 0.3109 a new estimation was
performed using a first order Gibbs ([3]). These first order
estimates are also shown in Fig. 2 (thin line). The frequency
response of both filters are shown in Fig. 3.

Fig.2 shows a clear improvement of the transitions when
the 5-order filter is used instead of the first order one. This
improvement is confirmed with an increase of the signal to
noise ratio fromSNR = 4dB to SNR = 16.5dB. The im-
provement at the transitions is explained by the frequency
responses of the first order filter which has a larger band-
width and shorter transition band (Fig.3).

4.2. MRI real data

In this experiment a MRI (Magnetic Resonance Imaging)
image of176 × 250 pixels is used. The 1D filter is applied
to each column and the resulting image is then filtered again
by lines.

index ai βi

0 1 -
1 -1.727 1
2 1.335 -0.515
3 -0.573 0.169
4 0.135 -0.033
5 -0.014 0.003

Table 1. Simulation results using synthetic data.
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Fig. 2. Reconstruction results with synthetic data forv = 1
(thin line) andv = 5 (thick line) with ψ = 0.3109 and
K = 0.996 in both experiments.

We still use a5th order filter with poles at positions
p0 = 0.25 and pi = 0.25cos(ωi) ± j0.5sin(ωi), with
ω1 = π/10 + i(π/4 − π/10)/2 and i = 0, 1, 2. The co-
efficients,aj , of the filters (11) and the wightsβj of the
prior are listed at Table 2. The observed image corrupted by
Gaussian noise and the filtered ones are shown in Fig. 4.

The parameters of the first order prior were computed
from the coefficientsaj by using the equations (13)-(16),
leading tok = 0.9417 andψ = 0.0128. The pole position
of the first order filter isp1 = 0.7047.

The image obtained with the 5-order filter is sharper and
shows a clear improvement of transitions as shown in Fig.
4. The signal to noise ratio, in this example, has also in-
creased when the 5-order filter was used (SNR = 19.3dB)
if compared with the first order filter (SNR = 12.8dB).

The frequency response of both filters are displayed in
Fig: 5. As in the previous example the higher order fil-
ter preserves better the transitions due its larger bandwidth
keeping the ability to reject the high frequency noise.

Furthermore, the proposed algorithms are very fast. They
do not require an iterative optimization process but only two
IIR filtering operations [7].
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Fig. 3. Frequency response of the filter (used with synthetic
data) forv = 1(thin line) andv = 5 (thick line) with the
sameψ = 0.3109 andK = 0.996.

Fig. 4. MRI image of a knee. Left i)Noisy image. Middle
ii)Restored image with the 6-order filter (SNR = 19.3dB).
Right iii)Restored image with the correspondent first order
prior (SNR = 12.8dB).

5. CONCLUSIONS

This paper proposes a fast algorithm to compute the MAP
estimates of signals corrupted by noise. The proposed solu-
tion avoids the need of an iterative optimization procedure.
The reconstructed signal is obtained by filtering the input
signal with two IIR filters. The relationship between the fil-
ter and the Gibbs prior is defined. This allows to replace the
design of the prior distribution by a filter design problem
which can be addressed in the frequency domain.

Furthermore, it is shown that higher order priors lead to
better performance at transitions than the popular first order
prior used in many image reconstruction applications.

The design of the optimal filter for a given problem is
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Fig. 5. Frequency response of the filter (used with real data)
for v = 1(thin line) andv = 5 (thick line) with the same
ψ = 0.0128 andK = 0.9417.

index ai βi

0 1 -
1 -1.079 1
2 0.678 -0.494
3 -0.250 0.156
4 0.052 -0.029
5 -0.005 0.002

Table 2. Simulation results using MRI data.

an open issue to be addressed in the future.
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