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Abstract

Three-dimensional (3D) ultrasound aims to reconstruct a 3D volume of data from a set of ultrasound images. To

achieve this goal, accurate measurements of the probe position and orientation are required. This is not always possible

in practice, due to the limitation of current spatial location systems. Unfortunately, position errors produce a mis-

alignment of the volume cross-sections which blur the reconstruction results.

To overcome this difficulty an alignment algorithm must be derived. This paper describes a method which performs

both tasks: volume reconstruction and image alignment. The proposed algorithm is based on the optimization of a

single objective function which depends on both sets of parameters. Reconstruction results with synthetic and medical

data are presented showing significant improvement compared to the results obtained with standard technique without

alignment.
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1. Introduction

This paper address the problem of volume re-

construction from a sequence of ultrasound im-

ages. These images correspond to cross-sections of

the human body obtained at different positions of

the ultrasound probe (see Fig. 1).

The volume to be inspected is sampled by
sweeping the probe providing information about

the acoustic properties of the tissues and underly-

ing anatomy (Quistgaard, 1997). There is a spatial

locator coupled with the ultrasound probe which

gives the position and orientation of the probe for

each cross-section of the data sequence (see Fig. 2).

From this information, a Three-dimensional (3D)

function describing the acoustic properties of the

inspected volume is to be estimated.

3D reconstruction of the human anatomy is

currently a common procedure in several modali-

ties such as computed tomography (CT) (Herman
and Kuba, 1999), magnetic resonance imag-

ing (MRI), positron emission tomography (PET)

(Anderson, 1997) and single photon emission com-

puted tomography (SPECT) (Green, 1990). In

ultrasound imaging this approach is much less used

(Ogawa et al., 1998; Nelson et al., 1999; Nelson and

Pretorius, 1997) due to four main reasons (Rohling

et al., 1999): (1) the use of non-parallel inspection
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planes due to free hand probe manipulation, (2)

tissue deformations during the acquisition process,

(3) sensor position errors (Carr, 1996) and (4) low

signal to noise ratio. In fact, in free-hand ultra-

sound the probe is in full contact with the human

body: it is moved and kept under pressure by the

medical doctor. This procedure modifies the organs

shapes and positions during the acquisition pro-
cess. Consequently, significant geometric dis-

tortions can be observed in ultrasound images.

Furthermore, the spatial locator system coupled to

the ultrasound probe also introduces significant

errors in the position and orientation measure-

ments (see Fig. 3). Some actions can be performed

to alleviate these difficulties, e.g., by improving

accuracy of the spatial locator or by reducing the

pressure of the ultrasound probe against the

human body. 1 However, to achieve good results,
an alignment procedure must be devised.

In this paper a new approach is proposed to

compensate the misalignment and geometric dis-

tortions introduced during the acquisition process

(Sanches and Marques, 2000b). Instead of per-

forming volume reconstruction and image align-

ment as two separate tasks we perform a joint

estimation of alignment and reconstruction
parameters. This will be denoted as alignment-by-

reconstruction algorithm. The problem is formu-

lated in a Bayesian framework. The estimation of

the volume and alignment parameters is achieved

by optimizing the same objective function. It is

remarked that a different approach is followed in

most works: volume reconstruction and image

alignment are performed using different criteria
(Raya and Udupa, 1990; Tagare, 1999; Dorai et al.,

1998; Rohling et al., 1998).

To illustrate the application of the proposed

algorithm experimental results obtained by using

synthetic and real data are presented. Monte Carlo

tests will also be included to evaluate the robust-

ness of the algorithm.

This paper is organized as follows: Section 2 de-
scribes the alignment-by-reconstruction algorithm;

Section 3 addresses optimization issues; Section 4

presents some experimental results and Section 5

concludes the paper.

Fig. 1. Ultrasound sequence.

Fig. 2. Position and orientation of the inspection plane.

Fig. 3. Position and orientation errors.

1 A minimum amount of pressure is needed however to

guarantee a good acoustic coupling between the ultrasound

probe and the human body.
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2. Alignment-by-reconstruction

Let f ðxÞ be a scalar function describing the

volume reflectivity. It is assumed that this function

is defined by

f ðxÞ ¼ BðxÞTU ð1Þ

where BðxÞ ¼ ½b1ðxÞ; b2ðxÞ; . . . ; bN ðxÞ�T is a vector

of basis functions and U ¼ ½u1; u2; . . . ; uN �T is a

N � 1 vector of coefficients (see Sanches and

Marques, 2000a for details).
The available data, consists of a sequence of

ultrasound images, corresponding to cross-sec-

tions of the body, complemented with the infor-

mation about the position and orientation of the

ultrasound probe for each image. In this way, it is

possible to know the 3D position of each pixel for

each observed image. Therefore, the available data

consists of a set V ¼ fypi ; xpi g where ypi is the in-
tensity of the ith pixel, xpi is a 3D vector with the

pixel coordinates and p is the cross-section label.

In this paper a statistical approach is used to

estimate the volume. It is assumed that V ¼
fypi ; xpi g is a realization of a set of random variables

with a known parametric model which is described

in the sequel.

Let xpi be the 3D coordinate of the ith pixel on
the pth image plane, as before. It will be assumed

that xpi is corrupted by a translation error parallel

to plane associated with the pth cross-section (see

Fig. 4). This assumption is adopted for the sake

of simplicity but it can be generalized if needed.

The measured position of the ith pixel is

x̂xpi ¼ xpi þ ep ð2Þ

where xpi is the true pixel position and ep is the

translation error displacement associated to the

pth plane.

Let �uupx and �uupy be two unit vectors belonging to

the pth cross-section. The translation error can be
expressed as

ep ¼ Kp
x �uu

p
x þ Kp

y �uu
p
y ð3Þ

The alignment algorithm aims to estimate the

displacement coordinates ðKp
x ;K

p
y Þ for each ob-

served plane during the volume estimation process.

This will be done by the MAP method using the

same objective function to estimate the displace-

ments, K, and volume coefficients U. This cost

function is the logarithm of the posterior density,

LðU ;KÞ ¼ log pðU ;KjV Þ
¼ logðpðV jU ;KÞpðUÞpðKÞÞ þ C ð4Þ

where pðV jU ;KÞ is the sensor model, P ðUÞ and

PðKÞ are priors associated to the unknown pa-

rameters U and K, respectively, and C is a con-

stant. This constant will be discard because it is

not relevant for the maximization process. In (4) it

is assumed that U and K are independent random

variables. This is a reasonable assumption since
the 3D function describing the volume is not re-

lated to the measurement error generated by the

spatial locator.

The algorithm proposed in this paper consists

of two steps, as shown in Fig. 5. In the first step,

volume parameters are estimated using the best

estimates for the displacement. The volume esti-

mates are then used in the second step to refine
the displacement parameters. Both steps alternate

during the optimization process until convergence

is achieved. Each step of the algorithm corre-

sponds to a maximization of the objective func-

tion, L, with respect to one set of unknowns U or

Fig. 4. Cross-section displacement. Fig. 5. Estimation process.
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K. The proposed algorithm, denoted as alignment-

by-reconstruction algorithm is given by

Reconstruction:bUU ¼ arg max
U

LðU ;KÞ ð5Þ

Alignment:bKK ¼ arg max
K

LðU ;KÞ ð6Þ

In this paper, it is assumed that the displace-

ment vectors ðKp
x ;K

p
y Þ, are independent and nor-

mally distributed with zero mean, i.e., K � Nð0;RÞ
with R ¼ diagfr2

x ; r
2
yg. Therefore the prior is

pðKÞ ¼
Y
p

1

2prxry
e�ðKp

x Þ2=2r2xe�ðKp
y Þ2=2r2y ð7Þ

Furthermore, the image pixels are assumed to

be independent random variables with Rayleigh

distribution (Burckhardt, 1978; Abbot and Thur-

stone, 1979). This leads to the following model

pðV jU ;KÞ ¼
Y
i;p

ypi
f ðxpi Þ

e�ðypi Þ
2=2f ðxpi Þ ð8Þ

A Gibbs prior is adopted for the volume coef-
ficients (Geman and Geman, 1984)

pðUÞ ¼ 1

Z
e
�a
P

ði;jÞ2C
PiðujÞ ¼ 1

Z
e
�a
P

ði;jÞ2C
ðui�ujÞ2 ð9Þ

where C is the set of all pairs of grid indices ði; jÞ
such that kxi � xjk6D and Z is a normalization

factor (see Sanches and Marques, 2000a, for de-
tails). Replacing (7)–(9) in (4) leads to

LðU ;KÞ ¼
X
p

X
i

log
ypi

f ðxpi Þ

� �""
� ðypi Þ

2

2f ðxpi Þ

#

� log 2prxry

	 

� ðKp

x Þ
2

2r2
x

�
ðKp

y Þ
2

2r2
y

#
� logðZÞ � a

X
g

ðug � ugiÞ2 ð10Þ

The optimization of (10) is addressed in the next

section.

3. Optimization procedure

To solve (5) and (6) stationary points of (4) with

respect to U and K will be computed. This is a

difficult task because the number of unknowns is

very high (e.g. 100� 100� 100) and (4) is a non-

convex function (Li, 1998). To solve this optimi-

zation problem numerical methods are needed.

3.1. Volume reconstruction

Eq. (5) is solved by using the ICM algorithm

(Besag, 1986), i.e., the optimization will be per-

formed by considering one variable at a time,

keeping the others constant. Each uni-dimensional

equation is solved by the Newton–Raphson

method (Press et al., 1994), leading to

nþ1ûup ¼ nûup

þ
0:5
P

i

y2i � 2f ðxiÞ
f 2ðxiÞ

bpðxiÞ � 2aNvðup � �uupÞP
i

y2i � f ðxiÞ
f 3ðxiÞ

b2pðxiÞ þ 2aNv

ð11Þ

where

�uup ¼
1

Nv

X
ug2dp

ug ð12Þ

nûup is the estimate of up at the nth iteration and Nv

is the number of control points inside the neigh-

borhood dp of the pth grid node pðNv ¼ 6Þ.

3.2. Alignment

Eq. (6) is also solved by the ICM algorithm, but

the displacement coordinates associated with each
cross-section are simultaneously estimated. To do

that, a multi-dimensional version of the Newton–

Raphson algorithm is used:

nþ1ðKp
x ;K

p
y Þ ¼ nðKp

x ;K
p
y Þ � ~rrLðU ;KÞ

� HðU ;KÞ�1 ð13Þ

where ~rrLðU ;KÞ is the gradient of L and HðU ;KÞ
is the Hessian matrix. The computation of
~rrLðU ;KÞ and H leads to

nþ1 bKKp
x ¼ n bKKp

x 1

 
� nx

LyLxy � LxLyy

LxxLyy � L2xy

!
ð14Þ
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nþ1 bKKp
y ¼ n bKKp

y 1

 
� ny

LxLxy � LyLxx

LxxLyy � L2xy

!
ð15Þ

where

Lx ¼
1

2

X
i

ai
df ðxpi Þ
dKp

x

� �
� Kp

x

rp
x

Ly ¼
1

2

X
i

ai
df ðxpi Þ
dKp

y

� �
�
Kp

y

rp
y

Lxx ¼ �
X
i

bi
df ðxpi Þ
dKp

x

� �2
 !

� 1

rp
x

Lyy ¼ �
X
i

bi
df ðxpi Þ
dKp

y

� �2
 !

� 1

rp
y

Lxy ¼ �
X
i

bi
df ðxpi Þ
dKp

x

df ðypi Þ
dKp

y

� �
and

ai ¼
ðypi Þ

2 � 2f ðxpi Þ
f ðxpi Þ

2

bi ¼
ðypi Þ

2 � f ðxpi Þ
f ðxpi Þ

3

and nx, ny are update gains.
The sums involved in the previous expressions

are computed for all pixels belonging to the pth

image. The derivatives used in these expression are

given by

df ðxpi Þ
dKp

s
¼ df ðxpi Þ

dxpi

dxpi
dKp

s
¼ ~rrf ðxpi Þu~pps ð16Þ

where ~rrf ðxpi Þ is the gradient of f ðxpi Þ computed

in xpi and ~rrf ðxpi Þu~pps is the derivative of f ðx
p
i Þ along

the ~uups direction.

3.3. Initialization

The alignment-by-reconstruction method is

initialized as follows. During the first 4 iterations

no alignment is performed. The volume coeffi-

cients obtained in this way are then used to esti-

mate the displacement errors.

The optimization of the displacement para-
meters in the initial iteration is performed using a

blurred reconstructed volume (initial volume esti-

mate) since no alignment was performed. In this

iteration the objective function LðU ;KÞ is smooth
as we may observe in Fig. 6d. During the optimi-

zation process the volume estimates improve and

L becomes sharper (Fig. 6e). Therefore, in the first

iterations the algorithm performs a coarse align-

ment while after a few iterations is able to produce
better alignment results.

4. Experimental results

Experimental tests were performed to evaluate

the alignment-by-reconstruction algorithm de-

scribed above. Two types of tests were carried out:
tests with synthetic images and with ultrasound

images. The former allow to assess the algorithm

performance under controlled conditions while the

latter illustrate the results achieved in medical

reconstruction problems.

4.1. Tests with synthetic images

These tests aim to characterized the perfor-

mance of the alignment-by-reconstruction algo-

rithm under controlled conditions. A set of 50

images with white Rayleigh noise were used in

these experiments. Each image corresponds to a

cross-section of a cylinder with radius r shown in

Fig. 7a.

Two experiments are described in the sequel.
The first is a 2D alignment problem in which all

the images are obtained from the same cutting

plane, orthogonal to the cylinder axis. The image

center and pixels are however different for each

image (Fig. 7b). The goal of this experiment is to

reconstruct the whole plane from this set of partial

and misaligned images.

The coordinates of the image center are modi-
fied by a random displacement with normal

distribution Nð0; r2IÞ. The reconstruction was

performed for several values of r2 and for each

value 20 experiments were done. The bias and

standard deviation of the alignment errors were

computed. It was concluded from these experi-

ments that the displacement estimates are unbi-

ased. The standard deviation of the alignment
error is shown in Fig. 8. It is concluded that good

alignment is achieved for r < 0:8r.
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The second experiment aims to reconstruct the

cylinder using 100 cross-sections. In this experi-

ment the image center was corrupted by Gaussian

displacement Kp � Nð0; r2IÞ.
Fig. 9a shows four images from the data set

used to estimate the cylinder. Fig. 9b and c show

the reconstruction results obtained without and

with alignment. Fig. 10 shows two cross-sections

embracing all the volumes of the cylinder obtained

by both methods. The improvement obtained by

the alignment-by-reconstruction algorithm is clear

in both cases.

Fig. 6. Alignment-by-reconstruction: (a) original image; (b and c) cross-sections extracted from the initial (b), and final (c), volume

estimates; (d and e) objective function LðU ;KÞ in the first (d), and 8th (e), iteration.

Fig. 7. (a) 3D tube, (b) position errors.

Fig. 8. Standard deviation of the alignment error.
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In Fig. 11 two rendered surfaces of a 3D cylin-
drical bar are shown. These results are achieved

using both methods (with and without alignment).

4.2. Tests with medical data

To test the algorithm described in this paper

with medical data two sets of images correspond-

ing to cross-sections of human organs were used.
For each test sequence a subset of five images is

shown as well as the corresponding reconstructed

cross-sections. For comparison purposes we have

also included the reconstruction results obtained

Fig. 10. Cross-sections embracing the reconstructed volume.

Fig. 11. Reconstruction results of a cylindrical bar without (a)

and with (b) alignment.

Fig. 9. Reconstruction results with synthetic data (tube).
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without alignment. The sequences used correspond

to cross-sections of a gall bladder (Fig. 12) and a

thyroid (Fig. 13). A cross-section of the whole

estimated volume is also shown for the case of a

gall bladder (Fig. 14). It is remarked that the

alignment-by-reconstruction algorithm manages to

reduce the artifacts which can be observed in the

results obtained without alignment. These artifacts

do not correspond to any anatomic detail but they

are produced by image misalignment.

When the misalignment is strong, as in the gall

bladder experiment (Fig. 12b), the same boundary

may appear several times in the reconstructed

cross-sections. When the misalignment is smaller

Fig. 12. Reconstruction results of a gall bladder; original images (first row) and cross-sections of the reconstructed volume obtained

without alignment (second row) and with alignment (third row).

Fig. 13. Reconstruction of a thyroid: (a) original image (first row); (b) reconstructed cross-sections without alignment (second row)

and (c) with alignment (third row).
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the estimated volume is blurred as it happens in

the case of the thyroid (Fig. 12b).

5. Conclusion

This paper addresses volume reconstruction

from a set of ultrasound images when the probe

position and orientation cannot be accurately mea-

sured. Position and orientation errors produce a

significant degradation of the reconstruction re-

sults, often perceived as a blur effect. To overcome

this difficulty an image alignment method is pro-
posed.

Instead of performing volume reconstruction

and image alignment in two separate steps, a joint

estimation of volume and alignment parameters is

described in this paper. Both steps alternate during

the reconstruction process using a single objective

function. This avoids the use of different and some

times incompatible strategies in alignment and
volume estimation.

The experimental results presented in the paper

show that significant improvements are achieved

by performing the dynamic alignment of the ob-

served images during the reconstruction process.
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