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ABSTRACT

This paper presents an algorithm for tracking the left ventricle in
echocardiographic sequences, using multiple models. The use of
multiple dynamic models is appropriate since the heart motion
presents two phases (diastole and systole) with different dynam-
ics. The main difficulty concerns the low contrast and speckle
noise present in ultrasound images. To overcome this problem a
robust multiple model tracker is used, based on a bank of nonlin-
ear filters, organized in a tree structure. This algorithm determines
which model is active at each instant of time and updates its state
by propagating the probability distribution, using robust estima-
tion techniques. It is shown in the paper that the proposed algo-
rithm simultaneously copes with several dynamic models and with
outliers. Furthermore the proposed algorithm provides high level
information that is not available when a single model is used.

1. INTRODUCTION

The evolution of the left ventricle during the cardiac cycle plays
an important role in medical diagnosis. This information can be
retrieved using ultrasound imaging. The estimation of left ventri-
cle by image processing techniques is an important issue, since it
helps medical doctors to interpret the data and allows a quantita-
tive evaluation of the heart dynamic properties, e.g., the ejection
fraction.

Heart segmentation is a difficult problem since ultrasound im-
ages have a low signal to noise ratio, being corrupted by multi-
plicative noise (speckle) and by artifacts. Furthermore, the bound-
aries of the heart cavities are not always visible, since there is a
low contrast between the ventricle and the myocardium (see Fig.
1). This makes the segmentation of the heart contours specially
difficult.

Temporal cues can be used to improve the segmentation re-
sults, since they provide additional information about the heart
cavities. However, the motion of the left ventricle is not well de-
scribed by a linear dynamic model since it presents abrupt changes
corresponding to two phases of the cardiac cycle (systole and di-
astole). Therefore, poor dynamic models are usually used in this
problem.

Several works have been published addressing the estimation
of the left ventricle. Some of them use statistical methods to de-
scribe the heart contour and the tissue properties inside and outside
the endocardium [1, 2]. Markov random fields are used to de-
scribe the endocardium imposing smoothing restrictions in space
and time. The image pixels are considered as independent random
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Fig. 1. Ultrasound image of the left ventricle (a), and the corre-
sponding edge points (b).

variables with Rayleigh distribution. Good segmentation results
have been recently achieved using a biomechanical model of the
heart [3].

This paper proposes a different approach to overcome the diffi-
culties associated with the segmentation of the left ventricle. Swi-
tched dynamic systems are used to represent the heart motion in
both phases. This allows a more accurate representation of the
heart motion, improving the tracking results. To deal with the
speckle noise present in the ultrasound images, middle level fea-
tures (strokes) are used instead of low level ones such as edge
points. Robust filtering techniques are adopted to estimate the
model parameters from noisy data with outliers [4]. The combina-
tion of these techniques (switched multiple models, middle level
features and robust filtering) is explored in this paper.

The paper is organized as follows. Section 2 presents the
problem formulation. Section 3 describes the robust tracker for
switched multiple models, based on the propagation of Gaussian
mixtures. Section 4 presents experiments results and section 5 con-
cludes the paper.

2. PROBLEM FORMULATION

Let xt be a vector describing the position and deformation of the
left ventricle at time instantt. To account for changes in dynamic
behaviour, it is assumed thatxt is described by two dynamic equa-
tions such that only one is active at each instant of time. Therefore

xt = Akt−1,ktxt−1 + wt, (1)

wherewt ∼ N (0, Qkt−1,kt) is a white Gaussian noise,Akt−1,kt

is a matrix andkt ∈ {1, . . . ,m} is the label of the active model at
time instantt; m = 2 is the number of the steady state models.



It is assumed that the label sequencek1, . . . , kt is a random
sequence modeled by a first order Markov process with transition
probability

Tij = p(kt = j | kt−1 = i), (2)

wherei, j ∈ {1, . . . , m}.
Many trackers are based on image features (edge points) de-

tected on search lines, orthogonal to the predicted contour [5].
However, a large number of outliers is obtained when this ap-
proach is used in ultrasound images and the Kalman tracker fails
to estimate the heart contour. To overcome this difficulty two tech-
niques are used. First the edge points are organized in strokes
using simple heuristic rules (see Fig. 2). Stokes are more reliable
than edge points. Second robust filtering techniques are adopted
to estimate the state of the switched dynamic model. Since we
do not know which strokes are valid, a binary label is assigned
to each one. Since the stroke labels are unknown, every possible
combination of valid/invalid labels must be considered. Each se-
quence of stroke labels is called adata interpretation. Confidence
degrees are assigned to each interpretation (association probabili-
ties). Therefore, each interpretation has a different influence on the
shape and motion estimates. The state estimate and the uncertainty
measures are updated using all data interpretations.
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Fig. 2. Stroke detection: (a) edge detection and (b) linking (• -
denote the features obtained in the measurement lines orthogonal
to the predicted contour).

Let y(t) be a set of strokes detected in the image and letyi t

be a vector with the observations classified as valid according in
the i-th interpretation. The sensor model associated with the i-th
interpretation is given by

yi t = Cixt + ηi t (3)

where matrixCi depends on the interpretationi andηi ∼ N (0, Ri)
is a white Gaussian noise.

The switched dynamic system characterized by (1-3) has a hy-
brid statezt = (xt, kt) which includes the state vectorxt and the
label of the active modelkt. The propagation of the hybrid state
distribution is given by

p(zt | zt−1) = p(xt | kt, xt−1, kt−1) p(kt | kt−1, xt−1). (4)

The first term can be obtained from the dynamic equation (1)
and the second term isTkt−1,kt .

3. PROBABILITY DENSITY PROPAGATION

The inference problem can be stated as follows:given a set obser-
vationsY t = {y1, y2, . . . , yt} which contain outliers, what are
the best estimates for the state vector,x̂t, and model label,̂kt.

This is a nonlinear filtering problem. Assuming that the joint
probability density functionp(xt, kt | Y t) is known, the hybrid
state can be estimated using themaximum a posteriori(MAP)
method

(x̂t, k̂t) = arg max
xt,kt

p(xt, kt | Y t). (5)

The a posterioridistributionp(xt, kt | Y t) can be obtained by a
marginalization procedure

p(xt, kt | Y t) =
∑

Kt−1

p(xt,K
t | Y t)

=
∑

Kt−1

cKt p(xt | Kt, Y t) (6)

wherecKt = p(Kt | Y t) andKt = {k1, . . . , kt} is the sequence
of model labels up to time instantt. If p(xt | Kt, Y t) is a normal
distributionN (x̂Kt , PKt), the joint densityp(xt, kt | Y t) defined
in (5) is a mixture of Gaussians, each of them being associated to
a different labeling sequence.

The propagation of thea posterioridensity can be split into the
following steps: multi model prediction and multi model filtering.

The prediction stepaims to computep(xt, kt | Y t−1). This
can be done as follows

p(xt, kt | Y t−1) =
∑

Kt−1

cKt|t−1 p(xt | Kt, Y t−1) (7)

wherecKt|t−1 = P (Kt | Y t−1) is the predicted mixture coeffi-
cient computed by

cKt|t−1 = Tkt−1,ktcKt−1 (8)

whereTkt−1,kt = P (kt | Kt−1, Y t−1). The computation of
the mixture components for knownKt is straightforward:p(xt |
Kt, Y t−1) = N (x̂Kt|t−1, PKt|t−1) with mean and the covari-
ance updated by

x̂Kt|t−1 = Akt−1,kt x̂Kt−1 (9)

PKt|t−1 = Akt−1,kt PKt−1 AT
kt−1,kt

+ Qkt−1,kt (10)

The filtering stepaims to update the mixture coefficients as
well as the state mean and covariance matrix. This can be accom-
plished in a robust way by using the S-PDAF method proposed in
[6]

x̂Kt = x̂Kt|t−1 +

mi∑
i=1

kαi t
kKi t

kνi t (11)

PKt =

[
I −

mi∑
i=1

kαi t
kKi t Ci

]
PKt|t−1

+

mi∑
i=0

kαi t
kx̂i t

kx̂T
i t − kx̂t

kx̂T
t (12)

where x̂i t = E{x(t) | Ii t,K
t, Y t}, αi t � p(Ii t | Kt, Y t)

is the association probability,Ki t, νi t are the Kalman gain and
innovation, associated to the interpretationIi t.

After some manipulation the coefficientscKt can be obtained
as follows [7]

cKt = γ cKt|t−1

∑
i

kαi(t)

M∏
j=1

ej∏
n=bj

kEj
i (sn, t) (13)



whereγ is a normalization constant,cKt−1|t−1 is the predicted
mixture coefficient,αi t is the association probability assigned to
the data interpretationIi t, M is the number of strokes,bj , ej are
the indices of the j-th stroke, andE is a normal or uniform dis-
tribution, depending on the strokej being considered as valid or
invalid in the interpretationIi t. The superscriptk means that the
quantities involved in (11-13) dependent on the label sequence.

The filter defined in (11-13) is denoted asRobust Multi Model
tracker. The computation of (11), (12) and (13) is organized in a
tree structure, each branch being characterized bycKt , xKt and
PKt (Kt defines a tree path from the root to one of the leaves).
The number of leaves (Gaussian modes) in this structure exponen-
tially increases as time passes by. Assuming that we havem label
values, the mixture will havemt modes at timet. In practice, the
number of modes must be limited. Several strategies can be used to
achieve this goal, e.g., by using mode merging or component elim-
ination [8]. The last method is used in this paper by discarding all
mixture components with coefficients smaller than a threshold.

4. EXPERIMENTAL RESULTS

The proposed tracker was tested using sequences of echocardio-
graphic images obtained with an ultrasound probe operating at 1.7
Mhz and sampled at 15 frames/sec. The goal is to track the walls
of the left ventricle in ultrasound images and to estimate the corre-
sponding phases of the cardiac cycle.

It is assumed that the boundary of the left ventricler(s) is
obtained by applying a geometric transformationT to a known
reference shaperr(s) plus a local deformationd(s). Therefore,

r(s) = T rr(s) + d(s), (14)

where

d(s) =

Nc∑
i=1

θiφi(s) (15)

is a weighted sum of basis functions. In this paperrr(s) andd(s)
are represented by B-splines with 25 control points and the heart
motion is represented by an Euclidean transformation with four
degrees of freedom. The reference shape is the boundary of the
left ventricle on the first frame (see [7] for details). The state is
given by

xt = [x1, x2, x3, x4, θx1 , . . . , θxNc
, θy1 , . . . , θyNc

]T (16)

with size(4 + 2 ×Nc) × 1.The observation model is defined by

C =

[
x 1 −y 0 BN×Nc ON×Nc

y 0 x 1 ON×Nc BN×Nc

]
(17)

whereC is a2N× (4+2Nc) matrix,B is aN ×Nc interpolation
B-spline matrix,O is a null matrix with the appropriate dimen-
sions,x,y areN × 1 vectors with the coordinates of the reference
shape (see [5]),1,0 areN × 1 vectors;N = 48 is the number of
samples in the B-spline.

We have used two models to track the boundary of the left
ventricle with dynamic matrices

Am = diag(lm), m = 1, 2 (18)

where lm = [∆m 1] is a (4 + 2Nc) × 1 vector and1 is a
(3 + 2Nc) × 1 vector with∆1 = 0.9, ∆2 = 1.1. These two
models perform an expansion and a contraction of the reference

shape appropriate to represent the heart motion during the systole
and diastole.

Figs. 3, 4 display tracking results obtained with the Robust
Multi Model Tracker (RMMT) during a cardiac cycle.

The cardiac cycle comprises two different phases: diastole (re-
laxation) and systole (contraction). In the diastole the ventricle re-
laxes and the mitral valve is open. In the systole phase the ventri-
cle contracts, and the mitral valve closes. The Robust Multi Model
tracker must choose the dynamic model which describes the heart
motion best at each instant of time. Fig. 3 shows the tracking re-
sults in the systole phase. During the systole the RMMT chooses
the contraction model as expected (model 1). This phase is initi-
ated by the peak of the ECG signal (QRS complex), which rep-
resents ventricular depolarization and ends after the occurrence of
the T wave(see the right bottom figure in 3) which represents the
the ventricular repolarization. Fig. 4 corresponds to the relaxation
phase (diastole). In the diastole the RMMT chooses the expansion
model (model 2). This phase starts after the occurrence of the T
wave(left top figure) until a peak of the ECG is observed (right
bottom figure).

Fig. 5 shows the label estimate obtained with the RMMT dur-
ing 3 cardiac cycles (bottom) and compares these estimates with
ground truth (top). A perfect classification of the motion dynam-
ics is obtained. During the systole phase, the contraction model is
selected while in the diastole phase, the expantion model is cho-
sen. These results were obtained with the probability transitions
pii = 0.8, i = 1, 2 in matrixT .

The robust multi model tracker provides two levels of infor-
mation: the output of the first level is an estimate of the heart
boundary. The output of the second level is a binary signal which
discriminates the two phases of the cardiac cycle. This type of
information can not be obtained if a single model is used.

5. CONCLUSIONS

This paper presents a robust algorithm for tracking the left ven-
tricle in a sequence of ultrasound images, based on switched dy-
namic models. The evolution of the state vector is described by
a bank of two stochastic state equations, switched according to a
Markov process. Furthermore, it is assumed that the visual fea-
tures detected in the image contain outliers, i.e., invalid features
which do not belong to the object boundary and prevent an ac-
curate tracking of the ventricle contour. A robust filtering algo-
rithm is proposed which is able to deal with multiple dynamics
and invalid observations. This is accomplished by propagating the
a posteriori density of the unknown parameters using Gaussian
mixtures. Exact inference is possible if we allow the number of
components to grow to infinity. To prevent this difficulty, pruning
techniques are adopted. Experimental results are presented in the
paper to assess the performance of the algorithm with real data.
It is shown that the proposed method efficiently estimates the best
active model, even in the presence of noisy measurements and out-
liers. The proposed algorithm also provides accurate estimates of
the ventricle boundary. The proposed tracker outputs two levels
of information: shape estimates and a binary classification of the
contour motion, thus providing valuable information concerning
anatomic and functional aspects. This is an important advantage,
obtained by using the multiple models.
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Fig. 3. Tracking in the second cardiac cycle (systolic phase) with
Robust Multi Model: active contraction model, frames 35, 36,
(first row) 37, 38 (second row), 39, 40 (third row).
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Fig. 4. Tracking in the second cardiac cycle (diastolic phase) with
Robust Multi Model: active expansion model, frames 42, 44, (first
row) 46, 48 (second row), 50, 52 (third row).
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Fig. 5. Correct label sequence (top) and estimated label sequence
obtained using the RMMT (bottom).


