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Abstract—This paper presents a multiscale algorithm for the reconstruction of human anatomy from a set of
ultrasound (US) images. Reconstruction is formulated in a Bayesian framework as an optimization problem with
a large number of unknown variables. Human tissues are represented by the interpolation of coefficients
associated to the nodes of a 3-D cubic grid. The convergence of the Bayesian method is usually slow and
initialization dependent. In this paper, a multiscale approach is proposed to increase the convergence rate of the
iterative process of volume estimation. A coarse estimate of the volume is first obtained using a cubic grid with
a small number of nodes initialized with a constant value computed from the observed data. The volume estimate
is then recursively improved by refining the grid step. Experimental results are provided to show that multiscale
method achieves faster convergence rates compared with a single-scale approach. This is the key improvement
toward real-time implementations. Experimental results of 3-D reconstruction of human anatomy are presented
to assess the performance of the algorithm and comparisons with the single-scale method are presented. (E-mail:
jmrs@alfa.ist.utl.pt) © 2002 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Three-dimensional (3-D) free-hand ultrasound (US) aims
to reconstruct the geometry and acoustic properties of
human organs from a set of US images obtained during
a clinical session. These images are associated with
nonparallel planes with known position and orientation
(Quistgaard 1997; Rohling and Gee 1996) (see Fig. 1).
The reconstruction algorithm must be able to interpolate
the data in regions that are not intersected by any inspec-
tion plane, and must also be able to reduce the multipli-
cative noise associated with the observed images.

Several algorithms have been proposed for 3-D
ultrasound (3DUS) imagin (Rohling et al. 1999a). These
algorithms usually perform volume reconstruction in two
steps (Nelson et al. 1999; Carr 1996; Steen and Olstad
1994), using a voxel representation of the region-of-
interest (ROI) (Chen et al. 1985). In the first step, voxels
are filled with the data obtained from the inspection
planes. In the second step, an average value is computed
in the intersected voxels and an interpolation method is
adopted to fill empty voxels.

3-D reconstruction of medical objects has also been
addressed in a Bayesian framework by Sanches and
Marques (2000b). Reconstruction is formulated as an
huge optimization problem where the unknown variables
are to be estimated based on a set of incomplete and
noisy data (US images). The images were obtained using
a free-hand commercial US equipment with a spatial
locator attached to the US probe (Polhemus 1993). In this
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Fig. 1. US cross-sections.
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way, the positions and orientations of the cross-sections
are stored together with the images and used during the
estimation process. This approach has a sound theoretical
basis and compares well with other reconstruction tech-
niques, as show by Sanches and Marques (2000b). How-
ever, the Bayesian method exhibits a slow convergence
rate.

This paper tries to overcome this difficulty by using
a multiscale strategy in the volume estimation.

First, a rough estimate of the volume is obtained
with a small number of parameters. The volume is ap-
proximated by an interpolation of the intensity values
associated with a coarse cubic grid. Then, the grid step is
recursively reduced, leading to more accurate estimates
of the volume of interest.

This approach has two benefits. First, it significantly
reduces the computational time. The first iterations esti-
mate a small number of coefficients (few dozens), being,
therefore, much faster. Only the last iterations optimize
the objective function with respect to a large number of
coefficients (millions). Therefore, significant computa-
tional gain is achieved by using the multiscale approach.

Second, the use of low-resolution descriptions in the
first iterations allows a faster propagation of information
along the 3-D lattice, which helps to overcome the prob-
lem of missing data in specific 3-D regions.

SINGLE-SCALE ALGORITHM

This section summarizes the MAP algorithm de-
scribed by Sanches and Marques (2000b) used for a
single-scale (SS) description of the volume of interest.

The comparison of the method with others (Nelson
et al. 1999; Carr 1996; Treece et al. 1999; Nelson and
Pretorius 1997; Rohling et al. 1999b) is performed by
Sanches and Marques (2000b). It is concluded that the
MAP method performs better, but it is much slower.

The multiscale approach presented in the next sec-
tion will overcome this drawback.

Let f be a function describing the acoustic properties
of the tissue in a given ROI, � � R3. It is assumed that
f is a linear combination of basis functions (interpolation
functions) �i: � 3 R, i.e.;

f� x� � �� x�TU (1)

where �(x) � [�1(x), �2(x), . . . , �N(x)]T is a vector of
basis functions and U � [u1, u2, . . . , uN]T is a N � 1
vector of coefficients that defines the volume of interest.

The basis functions, �p(x), are obtained by shifting
a function h: R3 3 R according to:

�p� x� � h� x � �p�, (2)

where �p � R3 are the nodes locations of a 3-D cubic grid
(see Fig. 2) defined in � and h(x) is a trilinear interpo-
lation function defined by:

h� x� � ��k�1

3 �1 �
�xk�
� �

0

x � �

otherwise
(3)

where xk is the k th coordinate of x, � � [��, �]3 and �
is the grid step (see Fig. 3).

A spatial locator is attached to the US probe (see
Fig. 4). This accurately measures the position and orien-
tation of the inspection plane, provided that a careful
calibration procedure is performed (Prager et al. 1998).

Fig. 2. 3-D grid and voxel representation.

Fig. 3. 1-D basis function.
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This makes it possible to compute the 3-D positions of
the pixels associated with all the observed slices.

Therefore, the available data are

V � 	 yi, xi,


where yi is the intensity of the ith pixel and xi is its
corresponding 3-D position. The 3-D coordinates xi are
assumed accurately known.1 Only the image intensities
yi are considered to be random variables. The 3DUS
problem aims at the estimation of coefficients U, given
V. This can be addressed using a MAP method, as
follows (Sanches and Marques 2000b):

Û � arg max
U

ln(p�V�U� p�U�), (4)

where p(V�U) is the sensor model and p(U) is the prior
density.

Suitable probability distribution must be defined for
p(V�U) and p(U). This topic will be addressed below.

In this paper, pixel intensities are considered to be
independent random variables with a Rayleigh distribu-
tion leading to the likelihood function;

p�V�U� � �
i

yi

f� xi�
e�

yi
2

2f� xi�, (5)

where f is the function to be retrieved.

These assumptions are not always true, but they
provide an acceptable model for the observed data that
allow us to derive analytic expressions for the estimates.
Several authors consider the pixel intensities to be sta-
tistically independent (Dias and Leitão 1996), although
the point spread function is sometimes greater than the
interpixel distance. The Rayleigh model is one of the
models used in US imaging (Burckhardt 1978; Abbot
and Thurstone 1979; Wells and Halliwell 1981), and it is
assumed to be appropriate for the examples treated in
this paper.

Intensity errors in US images are due to construc-
tive/destructive interference phenomenon appearing in
the US images as a kind of multiplicative noise (the US
wave is a coherent radiation producing effects similar to
those obtained in laser systems) (Abbot and Thurstone
1979; Achim et al. 2001). The Rayleigh model arises if
the number of scatters per resolution cell is large, the
echo complex magnitude components, in phase and
quadrature, are normally distributed and the complex
phase is uniformly distributed. When the number of
scatters is small or some of them are stronger than the
others (which happens in strong specular reflections as-
sociated with the organ boundaries), the Rayleigh model
is no longer valid. In these cases, other distributions
should be used to describe the observed data (e.g., the
K-distribution) (Jakeman and Pusey 1976). Furthermore,
the US equipment usually performs a preprocessing of
the raw data to reduce the dynamic range of the RF signal
for visualization purposes. This operation modifies the
data distribution. However, it is possible to estimate the
preprocessing function from the observed data and to
compensate for the preprocess compression, obtaining an
estimation of the original raw data (Sanches and
Marques 2001).

In this paper, it is assumed that the original data are
described by the Rayleigh model and that the observed
data are decompressed.

The prior P(U) plays an important role in the re-
construction process because it introduces a interpolation
effect that makes it possible to recover the function
coefficients even when there are no data in its vicinity.
This is the basic mechanism that makes it possible to fill
the volume gaps that were not intersected by any cross-
section. Furthermore, the prior P(U) also helps to avoid
unstable behavior during the optimization process (Kat-
saggelos 1991).

In this paper, a Gaussian prior is used (Geman and
Geman 1984):

p�U� �
1

Z
e���

g�G
�
i��g

�ug�ui�2
(6)

1The registering problem is not treated in this paper. This prob-
lem was published by Sanches and Marques (2000a, 2002).

Fig. 4. Measurement of plane position and orientation.
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where G denotes the grid nodes, �g are the neighbors of
the gth node (see Fig. 5), and Z is a normalization factor.
This prior models the correlation among intensity coef-
ficients on the volume of interest, �. In the Bayesian
context, this prior takes into account the a priori knowl-
edge about the volume to estimate. The adoption of this
prior is equivalent to considering f to be bandwidth-
limited (i.e., neighboring nodes should have similar val-
ues).

This model depends on a parameter � that accounts
for intensity changes between neighboring nodes. Each
grid node is connected to six neighbors, except boundary
nodes. The � parameter controls the strength of each
connection. High values of � correspond to imposing
strong connections between neighboring nodes, and low
values of � correspond to imposing weak connections.
Therefore, choosing large values of � leads to smooth
estimates, and small values of � lead to noisy estimates
of the volume, with sharper transitions. The choice of �
is a trade-off between noise reduction and the ability to
cope with intensity transitions. Furthermore, a high value
of � makes it possible rapidly to fill the gaps (i.e., regions
that were not intersected by any cross-section). In this
paper, the � parameter was obtained by trial and error
and is sometimes modified during the estimation process,
starting with high values being gradually reduced.

The MAP reconstruction is the output of an optimi-
zation problem:

Û � arg max
U

L(U), (7)

where L(U) � ln(P(V/U)P(U)) is the objective function
to maximize. Using eqns (5) and (6), we obtain:

L�U� � �
i� ln� yi

f� xi�
� �

yi
2

2f� xi�
� � ��

g�G
�
i��g

�ug � ui�
2.

(8)

The optimization of eqn (8) with respect to U is a
difficult problem because the number of parameters to
estimate is very large (typically millions of coefficients).
Furthermore, L(U) is a nonconvex and nonlinear func-
tion, for which there is no close form solution (Li 1998).
Therefore, numerical methods should be considered.

To solve eqn (7), the ICM algorithm proposed by
Besag (1986) is used, where the joint optimization prob-
lem is converted into a sequence of 1-D optimization
procedures. In each iteration, this method considers the
objective function L(U) as being a 1-D function depend-
ing on a single parameter, keeping all the others constant.
During the iterative process, all the parameters to esti-
mate are updated sequentially until convergence is
achieved.

Let L(up) denote the objective function as a function
of up coefficient, keeping all the others constant. To
maximize L(up), the following stationary condition must
be met:

	L�up�

	up
� 0. (9)

After straightforward manipulation, this leads to:

1

2 �
i

yi
2 � 2f� xi�

f2� xi�
�p� xi� 
 2�N��up � u� p� � 0,

(10)

where N� is the number of neighbors of up, �p(xi) is the
basis function associated to the pth node computed at xi

and u�p �
1

N�
�i��p

.ui is the mean intensity associated to

the pth node neighbors.
This equation can be numerically solved by using

the fixed point method (Press et al. 1994) leading to:

n�1ûp �
1

4�N�
�

i

yi
2 � 2f� xi�

f2� xi�
�p� xi� 
 u� p, (11)

where f(x) and u�p are computed by using the estimated
values computed in the previous iteration.

MULTISCALE ALGORITHM

As stated previously, the Gibbs prior has a stabili-
zation effect in the convergence process of the algorithm,
having, at the same time, a regularization effect in the

Fig. 5. Neighborhood representation.
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final solution. This last effect can be controlled through
the � parameter, which plays a key role in enforcing the
convergence of the algorithm, as well as in reducing the
multiplicative noise present in US images. However, the
prior leads to a decrease of the convergence rate of the
optimization algorithm, due to the propagation of infor-
mation along the lattice nodes. This effect increases with
the increase of � because an increased dependence is
enforced among neighboring nodes. Figure 6 shows the
evolution of the objective function during the iterative
process using synthetic data, for two different values of
�, �0 and 50�0. As shown, convergence rate for 50�0 is
clearly smaller than that for � � 10�12.

To overcome this difficulty (Herman and Kuba
1999), a multiscale (MS) approach is proposed to speed
up the convergence of the sequence defined in eqn (11).

The idea is simple. First, we start with a low reso-
lution grid (e.g., eight nodes) and compute the node
intensities for this grid. Then, we increase the number of
nodes during the optimization process until the final
resolution is achieved. The initial volume for each reso-
lution is computed from the final estimate obtained in the
grid with lower resolution.

It will be shown that this strategy improves the
convergence rate of the algorithm.

To implement this strategy, it must be guaranteed
that the objective function does not change during the
grid refinement. This is achieved if the following condi-
tions are met in every scale change (see Appendix B):
1. The resolution doubles from one grid resolution to the

next.
2. The � parameter is proportional to the step of the grid.

The first condition guarantees that the vectorial
spaces are nested (i.e., the nth vectorial space is a subset
of the (n � 1)th space), as is shown in Appendix A. In
this case, the ratio of discretization steps in two consec-
utive scales is:

r �
�n

�n�1 � 2, (12)

where �n and �n � 1 are the steps associated to grids n
and n � 1, respectively. With this strategy of grid re-
finement, the number of nodes per coordinate increases
from two like 2,3,5,9,17,33,65,129, . . . , N, 2N �
1, . . . . The initialization of the volume in the grid n �
1 is easily computed from the estimated volume in grid
n by keeping unchanged the nodes that already belong to
nth grid and interpolating between them to compute the
value of the new ones, as shown in Fig. 7.

To met the second condition, let us consider the
simplest case in which grid step is the same for the 3-D
and equal to �n for the highest and final resolution grid,
and �i for the grid step of one of the intermediate
resolution grids. Let us use, for each resolution grid i,
different prior parameters defined as:

�i �
�i

�n�, i � 1, . . . , n. (13)

Therefore, the MS strategy is implemented as fol-
lows:
1. The algorithm starts with a low resolution grid (e.g.,

2 � 2 � 2).
2. The ith grid is obtained from the previous one by

doubling its resolution, see eqn (12). The nodes of the
new grid are preinitialized with the values of f(x)
computed in the previous grid, see eqn (1), at the
locations of the new grid nodes (see Fig. 7) (i.e.,
(up)0

i � fi�1��p
i �, where �p

i is the 3-D location of the
up

i node.

Fig. 6. Evolution of L(U) along the iterative process for � �
10�12 and � � 5.10�11 using synthetic data.

Fig. 7. Interpolation method to propagate the volume estimated
in resolution grid n to the next resolution grid.
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3. For each grid, the new estimation of U is obtained
using eqn (11), where the � parameter is given by eqn
(13).

In this way, the objective function is invariant under
grid refinements as required. Only one iteration is per-
formed per grid scale during the first n iterations. The
scale is then kept constant until a stop condition is met.
The � parameter used in eqn (13) is defined by the user
and it is obtained by trial and error. It was concluded,
however, that the reconstruction results are not strongly
influenced by the choice of � when the multiscale ap-
proach is used.

In the first iteration, each grid coefficient is initial-
ized according to:

up
0 �

2y� 2

�
, (14)

where y� is the mean value of the observed data in the
volume of interest �.

This estimate is derived from the expression of the
expected value of a set of variables with Rayleigh dis-
tribution:

E� x� � 	�f

2
. (15)

The MS approach also simplifies the initialization
procedure because only 8 (2 � 2 � 2) nodes must be
initialized. Furthermore, this initialization is always ob-
tained from the observed data, see eqn (14), because, in
the first resolution level (coarser grid), all nodes are
intersected. On the contrary, in the SS method, the ini-
tialization procedure is more complex because it is nec-
essary to adopt a strategy to fill the gaps corresponding to
the nodes that were not intersected by any cross-sections.

EXPERIMENTAL RESULTS

The multiscale and single-scale algorithm are eval-
uated based on three figures of merit: the a posteriori

probability L(U), see eqn (7), the signal-to-noise ratio
(SNR) of the reconstruction results, and the number of
iterations needed to achieve convergence.

Three examples are presented. The first two exam-
ples use synthetic data (i.e., cross-sections extracted from
a single cube or from a set of cubes). The third example
uses a set of medical data corresponding to cross-sec-
tions of a gall bladder.

Fig. 8. Synthetic image with Rayleigh noise. (a) Background
noise; (b) cube intersection.

Fig. 9. Reconstruction results with � � 10�12. (a), (b) Cross-
sections extracted from the estimated volume obtained with SS
algorithm and MS algorithm, respectively. (c) Intensity profiles
along the diagonal for the SS algorithm (thin line) and MS

algorithm (thick line).

Fig. 10. Reconstruction results with � � 5.10�12. (a), (b)
Cross-sections extracted from the estimated volume obtained
with SS algorithm and MS algorithm, respectively. (c) Intensity
profiles along the diagonal for the SS algorithm (thin line) and

MS algorithm (thick line).
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In all these experiments, a grid with 65 � 65 � 65
nodes is used to reconstruct the data in the volume of
interest. This means that 274,625 coefficients have to be
estimated. The reconstruction process is performed dur-
ing 15 iterations for the synthetic data and during 20
iterations for the medical data. From the figures repre-
senting the evolution of the objective function along the
iterative process, it is possible to conclude whether con-
vergence was or was not achieved and how far it is from
the convergence.

Example 1
The first set of tests used a sequence of 50 parallel

cross-sections extracted from a synthetic cube. Images
with 128 � 128 pixels were computed by corrupting the
cross-sections with Rayleigh-distributed noise. Figure 8
shows images corresponding to two different cross-sec-
tions, one extracted from the background and one inter-
secting the cube.

The cube was reconstructed with the MAP algo-
rithm for three values of � (� � 5.10�12, 10�11, 5.10�11)
after 15 iterations.

Figures 9–11 show the reconstruction results for
� � 10�12, 5.10�12 and 10�11, respectively. These fig-
ures show two cross-sections of the reconstructed vol-
umes using the SS and MS algorithms and the intensity
profiles along the main diagonal of the images.

Both methods provide similar results for small val-
ues of � (� � 10�12) but the reconstruction results
become different for larger values of �.

Better results are always achieve by the MS method,
which shows a smaller bias.

Fig. 11. Reconstruction results with � � 10�11. (a), (b) Cross-
sections extracted from the estimated volume obtained with SS
algorithm and MS algorithm, respectively. (c) Intensity profiles
along the diagonal for the SS algorithm (thin line) and MS

algorithm (thick line).

Fig. 12. Convergence of the single-scale (SS) and multiscale
(MS) algorithms. (a) � � 10�12; (b) � � 5.10�12; (c) � �

10�11.

Table 1. Simulation results using a synthetic cube for � � 10�12, 5.10�12 and 10�11

� � 10�12 � � 5.10�12 � � 10�11

SS MS SS MS SS MS

SNR (dB) 18.03 18.15 17.12 20.20 11.61 15.13
L(U) � 10�6 �8.277 �8.277 �8.302 �8.299 �8.313 �8.306
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This difference can also be observed in Table 1,
which shows the SNR and the L(U) values for each
experiment. The MS method achieves the best scores for
all values of �. Figure 12 represents the evolution of the
objective function along the iterative process for both
methods, considering three values of �. It is visible, from
these plots, that the MS approach converges faster than
the SS algorithm, achieving higher values of the objec-
tive function. The differences in the convergence rates
are larger when the prior is stronger. Large values of �
produce a long-range smoothing, which is easily propa-
gated using the low-resolution grid adopted in the first
iterations of the MS method.

Example 2
Instead of considering an homogeneous cube as

before, the volume of interest, �, is now filled with
nonoverlapping cubes with two intensity levels. Three
cases were considered, ranging from a small number of
cubes (8) to a high number of cubes (512) inside �.

Figure 13 shows three cross-sections extracted from
the three volumes (left column) as well as the corre-
sponding images corrupted with Rayleigh noise (right
column).

Each volume was then reconstructed using � �

Fig. 13. Cross-sections extracted from three volumes with
different number of transitions with no noise (left column) and
corrupted by Rayleigh noise (right column) for the original

volumes with (a) 8 cubes, (b) 32 cubes and (c) 256 cubes. Fig. 14. Evolution of the objective function along the iterative
process for the original volumes with (a) 8 cubes, (b) 64 cubes

and (c) 512 cubes.

Table 2. Simulation results for three volumes filled with homogeneous cubes

8 cubes 64 cubes 512 cubes

SS MS SS MS SS MS

SNR (dB) 10.21 12.77 10.52 11.32 10.78 11.08
L(U) � 10�6 �8.58 �8.56 �8.34 �8.32 �8.59 �8.58
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5.10�11 by both methods using 50 parallel cross-sections
of the volume of interest with 128 � 128 pixels. Table 2
shows the SNR and L values obtained for each experi-
ment. Better results were achieved by using the MS
method, as in the previous example.

This experiment also shows that the improvement
obtained with the MS approach is data-dependent. The
improvement is higher when the number of transitions is
small. This can be explained from the structure of the
objective function L. The difference is more pronounced

(2.5 dB) when the volume exhibits large homogeneous
regions that are better represented with small-resolution
scales. The multiscale method makes it possible to
achieve reasonable reconstruction results, in this case,
after the first two iterations, using low-resolution models.
This is not true when the volume of interest exhibits a
large number of transitions. In this case, higher resolu-
tion models are required to approximate the function f.

Figure 14 shows the evolution of the objective func-
tion along the optimization process. Faster convergence
rates are obtained by the MS approach. The convergence
rate of the MS approach does not depend on the exper-
iment, and the SS method converges slower when the
volume of interest has large homogeneous regions (small
number of transitions). It should also be stressed that
each iteration in the MS scheme is faster than in the SS
method, during the first stage of the optimization process
corresponding to a computational gain.

Example 3
The experiments with real data were performed

using a set of 62 images with 176 � 176 pixels corre-
sponding to nonparallel cross-sections of a gall bladder
obtained with an US probe.

Figure 15a shows two US images belonging to the
data sequence and the corresponding cross-sections ex-
tracted from the estimated volumes using the SS (Fig.
15b) and MS (Fig. 15c) approaches. Both methods lead
to similar reconstruction results. However, the MS ap-
proach is faster and achieves a higher value for the
objective function (see Fig. 18). Figure 16 shows the
main diagonal profiles extracted from the images dis-

Fig. 15. (a) Two cross-sections belonging to the data set. (b),(c)
the corresponding cross-sections extracted from the estimated

volumes using the SS and MS approaches, respectively.

Fig. 16. Profiles extracted from the cross-sections displayed in
(a) the first row and (b) second row of Fig. 15. US-ultrasound
image; SS-reconstructed volume using the SS approach; MS-

reconstructed volume using the MS approach.

Fig. 17. Representation of the surface of the gall bladder
extracted from the estimated volume using ray-casting tech-

niques.
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played in Fig. 15 and Fig. 17 shows a 3-D surface
reconstruction of the gallbladder extracted from the es-
timated volume computed using the MS approach. This
figure was obtained by applying a data segmentation
algorithm and using ray-casting techniques.

The evolution of the objective function along the
optimization procedure is displayed in Fig. 18 for both
methods (SS and MS).

CONCLUSIONS

This paper presents a Bayesian multiscale algorithm
for 3-D reconstruction of human organs from a set of US
images. 3-D data are approximated using a sequence of
nested spaces with increasing resolution. Each space is
spanned by a set of basis functions associated to the
nodes of a cubic grid. An optimization method is pro-
posed, making possible to: 1. estimate a linear combina-
tion of the basis functions for each resolution and 2.
predict the value of the coefficients in a space with higher
resolution. These two steps alternate starting from a
low-resolution space until the desired resolution is
achieved.

In this paper, volume reconstruction is performed
using a set of cross-sections of the region of interest. The
position and orientation of each cross-section is mea-
sured by a spatial locator sensor and assumed without
errors. This assumption is not always valid in practice.
The 3-D measurements provided by the Polhemus sensor
used in this work are accurate. However, the pressure of
the US probe against the human tissues causes geometric
deformation that cannot be ignored. This problem has
been addressed by several authors (Nelson et al. 1999;
Treece et al. 2001; Rohling et al. 1998) and by us in

previous work (Sanches and Marques 2002). The meth-
ods described by Sanches and Marques can be easily
incorporated in to the MS algorithm described here.

Experimental tests are presented to evaluate the
algorithm with US data. It is concluded that the multi-
scale concept leads to fast convergence rates. Conver-
gence of the estimates using the MS method is achieved
in less than 10 iterations, suggesting the possibility of
using Bayesian estimation methods for interactive 3-D
US imaging.

The initialization procedure is also simplified using
the MS method. In fact, only the eight nodes of the
coarsest grid (MS) must be initialized, instead of the
million nodes of the finest grid (SS). Initialization of
these eight nodes with a constant value, computed from
the observed data, avoids the adoption of complex strat-
egies to initialize the millions of nodes of the SS method,
where some of them are not intersected by any cross-
section.
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APPENDIX A

Refinement
In this Appendix, we will show that doubling the resolution of

the 3-D grid leads to a sequence of nested vector spaces. Any function
defined in a low-resolution space can be easily expressed as a linear
combination of the basis function associated with a high-dimension
space.

Consider a new 3-D grid formed by a set of nodes at locations
� � (x0 � i�x/2, y0 � j�y/2, z0 � k�z/2), where (x0, y0, z0) is the
coordi nate of the bottom left corner of the (ROI).

To prove that the new set of basis functions span a vectorial
space that contains the older, we just have to show that any basis
function defined in the nth grid can be expressed as a linear combina-
tion of the basis functions defined in the (n � 1)th grid.

Let:

�n
1� x� � h� x/�n

1� (A.1)

be the first component of the basis function defined in the nth grid.
Thus

�n�u� � �n
1�u1��n

2�u2��n
3�u3�, (A.2)

where u � (u1, u2, u3) and

h� x� � 
i�1
3 �1 � �xi�� x � �

0 otherwise . (A.3)

We shall assume, without lack of generality, that �n
1(x), repre-

sented in Fig. 3, is centered at the origin, because any other basis
function can be obtained by simply shifting it.

It is easy to show that (see Fig. 3):

�n
1� x� � �

i��1

1

�n
1� i

�n
1

2 �h� x � i�n
1/ 2

�n
1/ 2 � (A.4)

where

h� x � i�n
1 / 2

�n
1 / 2 � � ��n�1�

1 � x � i��n�1�
1 � (A.5)

is the first component of the basis function defined in the (n � 1)th grid
and �n

1(i�n
1/2) is the value of the first component of the nth grid basis

function calculated at the nodes of the (n � 1)th grid. Replacing eqn
(A.4) in eqn (A.2) leads to:

�n�u� � �
i��1

1

��n
1��i

1���n�1�
1 �u1 � �i

1��

�
j��1

1

��n
2��j

3���n�1�
2 �u2 � �j

2��

�
k��1

1

��n
3��k

3���n�1�
3 �u3 � �k

3��, (A.6)

where �g � (�i
1, �j

2, �k
3) is the position of the gth node in the (n � 1)th

grid. After rearranging the terms, the basis function defined in the nth
grid can be written as follows:

�n�u� � �
g��i, j,k�

�n��g���n�1��u � �g� (A.7)

Equation (A.7) shows that a basis function defined in the nth grid
can be obtained as a linear combination of the basis functions associ-
ated to the (n � 1) th grid, where the coefficients are the values of the
n th grid basis function calculated in the positions of the nodes of the
(n�1) th grid. This means that the space defined in the n th grid is
nested in the space defined in the (n�1) th grid.

APPENDIX B

Invariance of the objective function under grid refinement
Let us consider a general Gibbs distribution:

P� f � �
1

Z
e��E� f �, (B.1)

with energy defined by:

E � �
R��

��f� x��2d�, (B.2)

where f�x� � �p upbp�x�.
Let us discretize this integral using a 3-D grid with step (�1, �2,

�3.) The approximated value is:

E � �
p�G

��fd� xp��2�1�2�3, (B.3)

where G is the set of all index of the grid and xp is the 3-D position of
the p th node.

The gradient can be approximated by first order backward dif-
ferences,
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�fd� xp� � 
�up � s1�/�1

�up � s2�/�2

�up � s3�/�3� , (B.4)

where s1, s2, s3 are the neighbors of up (see Fig. 5).
Substituting eqn (B.4) in eqn (B.3) leads to:

E � �
p

Cx�up � s1�
2 
 Cy�up � s2�

2 
 Cz�up � s3�
2 (B.5)

where C1 �
�2�3

�1
, C2 �

�1�3

�2
and C3 �

�1�2

�3
.

When �1 � �2 � �3 � �, eqn (B.5) takes the next form:

E � ��
p
�

i
�up � si�

2 (B.6)

and substituting in eqn (B.1) leads to:

P�U� �
1

Z
e����

p
�

i
�up � si�

2. (B.7)

Therefore, instead of using eqn (6) to define the prior to perform
the MAP estimation, we should use the eqn (B.7), which is a better
approximation of eqn (B.5), which is independent of the discretization
grid.

Furthermore, this approximation depends on the error by approx-
imating f(x) by fnd(x) and the gradient �f(x) by eqn (B.4). However, in
this case,
1. Because we are dealing with functions belonging to a finite dimen-

sion vectorial space, see eqn (1) with linear derivatives with respect
to the coefficients, and

2. the vectorial space associated to nth grid is nested in the vectorial
space associated to the (n � 1)th grid (as proved in Appendix A),
then

Ed
n�Un� � Ed

n�1�U�n�1�� (B.8)

where Ed
n(Un) and E(n�1

d (U(n�1)) are the approximated discrete ener-
gies computed in n th and (n � 1) th grids, respectively.

Thus, our discrete energy, Ed
n(Un), that is to be maximized is kept

constant under a grid refinement.
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