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Abstract

Cells exhibit complex behaviour in response to mechanical stimuli, which is not yet fully understood.

Studying how cells with defective mechanotransduction affect their neighbours and how this response

propagates within a monolayer can help shed light on mechanisms of cellular stability and cell-cell inter-

actions, with an impact on the study of diseases such as laminopathies or cell invasion during cancer.

Here, NRK-52E cells transfected with lamin A Del50, which significantly stiffens the nucleus, were

sparsely placed in a monolayer of normal, non-expressing NRK-52E cells. Through morphometric anal-

ysis and tracking, the nuclei, which play a pivotal role in mechanoresponse, were characterized and

compared to a control monolayer. A method for a detailed analysis of the spatial aspect and tempo-

ral progression of the nuclear boundary was developed and used to achieve a full description of the

phenotype and dynamics of the monolayers under study.

Our findings reveal that cells are highly sensitive to the presence of mechanically impaired neigh-

bours, leading to generalized loss of coordination in collective cell migration and significant changes

in nuclear morphology, but without seemingly affecting the dynamics of nuclear lamina fluctuations of

non-expressing cells. Interestingly, some characteristics of the behaviour of these cells appear to be

dependent on the distance to a mutant cell, pointing to compensatory behaviour in response to force

transmission imbalances in a monolayer.
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Resumo

As células exibem respostas complexas a estı́mulos mecânicos, que ainda não são completamente

compreendidas. Descrever a forma como células com mecanotransdução deficiente podem afetar

células vizinhas, e como este efeito se propaga numa monocamada celular, pode elucidar sobre mecan-

ismos de estabilidade celular e interações célula-célula, com impacto no estudo de condições como

laminopatias ou invasão em cancro.

Aqui, células NRK-52E transfectadas com lamin A Del50, cujo efeito inclui o aumento da rigidez

nuclear, foram colocadas numa monocamada de células NRK-52E normais, não transfectadas. Através

de análise morfométrica e rastreamento, os núcleos, que possuem um papel central na resposta a

estı́mulos mecânicos, são caracterizados e comparados com os de uma monocamada controlo. Foi

desenvolvido um método que permite uma análise detalhada do aspeto espacial e progressão temporal

do contorno nuclear, utilizado para a obtenção de uma descrição completa do fenótipo e dinâmica das

monocamadas sob estudo.

Os resultados da análise revelam que as células são extremamente sensı́veis à presença de vizin-

hos com resposta mecânica comprometida, provocando uma perda de coordenação generalizada na

migração celular e a diferenças significativas na morfologia nuclear, sem no entanto parecer afetar a

dinâmica das flutuações da membrana nuclear. Curiosamente, foram observados efeitos dependentes

da distância a uma célula comprometida, indiciando um comportamento compensatório que pretenderá

dar resposta a defeitos mecânicos numa monocamada em equilı́brio.

Palavras Chave

análise de bioimagens; mecanotransdução; morfometria nuclear; dinâmica de monocamadas; HGPS.
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1.1 Motivation

Basic and clinical research based on imaging has allowed for the study of numerous biological pro-

cesses. Computational processing of this data has lead to remarkable advances, as it often allows for

the extraction of relevant features, making use of effective and more objective methods [1]. As imaging

technology improves and techniques for better manipulation of biological material are developed, the

volume of data easily acquired for a study increases. This might contribute to statistical robustness of

observations, but demands a method of analysis that can encompass large data inputs and produce

significant results.

Numerical-based feature extraction can provide large data amounts at low computational expenses.

Data preprocessing, involving the segmentation of cells or nuclei and appropriate tracking, emerges as

a bottleneck step [2]. However, intensity patches of the Region of Interest (ROI)s and respective coor-

dinates over time constitute a database with light storage demands but numerous analysis possibilities.

Because morphology is so closely related to function in numerous cellular mechanisms [3], an objec-

tive, quantitative description of such features can give insight into mechanisms or effects of observable

phenomena, as well as reveal new phenomena which cannot be easily captured by manual analysis.

In the field of cellular research, a large array of computational methods can be applied towards

achieving a more complete and objective characterization of the architecture and flow of a monolayer of

cells. Complex mechanisms modulate cellular stability and structure, but the mechanical balance of a

monolayer can be easily affected by the presence of disrupting factors such as abnormally responsive

cells [4]. Those changes in behaviour are at the origin of pathological phenomena such as cellular

extrusion upon metastasis [5], involving force transmission imbalances within the tissues.

Laminopathies are yet another example of how impaired mechanoresponse can have serious con-

sequences in the viability of tissues [6] as well as life expectancy [7]. These are diseases in which the

stiffness of the nucleus may be out of the physiological range. This subcellular component plays a pivotal

role as a mechanosensor [8] and it is largely responsible for modelling cellular response to mechanical

changes in the environment, but many questions remains unanswered regarding the mechanisms by

which cells sense and adjust to their surroundings. How can one defective cell affect monolayer dynam-

ics and force transmission? And, if such effects are observed, what is the range of impact? Learning

the answers to these questions can boost the understanding on cellular homeostasis and disease pro-

gression.

Nuclear mechanoresponse can involve shape deformation and variation of relative position in the

cell [9]. Furthermore, because the nucleus is intimately related to efficiency of cell migration [10], relating

morphological alterations with nuclear motion can shed light on the mechanisms affected by abnormal

mechanosensing and response; consequently, studying mechanotransduction mechanisms can involve

characterizing nuclear phenotype and motion.

3



1.2 Original contributions

The characterization of nuclei from cells with Hutchinson-Gilford Progeria Syndrome (HGPS), a laminopa-

thy where the nucleus is stiffer, has been widely described [11–13]. Nonetheless, it is yet unclear how

the presence of a mechanical impaired cell - where a mutation is affecting nuclear stiffness - can affect

the behaviour of its healthy neighbours.

This work analyses the nuclear phenotype, morphology dynamics and nuclear motion in a mono-

layer of normal Normal Rat Kidney Epithelial (NRK-52E) cells, with a roughly estimated density of 10%

of NRK-52E cells which have been transfected with lamin A Del50 (a mutation responsible for the HGPS,

causing the nucleus to stiffen). We seek to determine if and how the presence of these Mutant (M) cells

affects monolayer dynamics by comparing observations to a control condition, a monolayer containing

only normal, Wild Type (WT) NRK-52E cells. This analysis is achieved using a high-throughput method-

ology, with minimal human intervention. A detailed characterization of nuclear edge shape and dynamics

is conceptualized and developed, and these results are crossed with features from monolayer dynamics.

We also investigate whether distance to an M cell affects nuclear behaviour.

The conceptualization of new features to assess spatial progression of the nuclear boundary - a

proxy for its shape and roughness - as well as its temporal progression - how the boundary is changing

over time, unveiling a detailed quantification of nuclear membrane fluctuations - becomes an important

tool towards nuclear and cellular characterization, with many potential applications. As such, a complete

portrait of nuclei behaviour is accomplished here, unveiling mechanisms of cell-cell interactions and

response to mechanical stimuli, with implications on the study of disease progression and modelling.

The main findings in this work are to be submitted for publication soon [14].

1.3 Thesis Outline

The present dissertation is organized as follows: first, in Chapter 2, a brief introduction on the current

knowledge on mechanotransduction mechanisms, related pathologies and implications is presented, as

well as a brief review of the state-of-the-art of computational methods of analysis of fluorescent mi-

croscopy images. Chapter 3 describes the methodology and techniques used for data acquisition and

processing, specifying the different sets of features calculated and what information can be extracted.

Next, Chapter 4 presents all the significant findings, correlating them with the biological processes un-

derlying the conditions under study. Finally, in Chapter 5, a summary of the findings and suggestions on

future directions of related research are presented.
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2.1 Mechanotransduction

Cells are highly sensitive to their physical environment. The mechanisms by which they adapt to me-

chanical stimuli, such as extracellular forces exerted by neighbouring cells or intracellular forces stem-

ming from responses to substrate or Extracellular Matrix (ECM) stiffness, are part of a process called

mechanotransduction [8]. The mechanosensitive feedback which is generated is responsible for modu-

lating vital cellular functions such as proliferation and differentiation, migration and apoptosis [15].

Mechanical stimuli in an epithelial monolayer can be propagated through the activity of myosin pro-

teins, cell-cell adhesion and cytoskeletal remodelling [16]. The nucleus, however, is at the center of

cellular response to mechanical changes in the environment and it is often seen as a mechanosensor

of high importance for normal cell behaviour [8]. Understanding how this component senses and ad-

justs to physical cues begins with understanding its architecture and how it interacts with the remaining

structural elements of the cell.

2.1.1 Nuclear Structure

The nucleus, in eukaryotic cells, is generally the largest and stiffest organelle, where the genome is con-

tained and transcription takes place. This organelle is composed of two regions, nuclear envelope and

nuclear interior, whose structure and function differ [8]. The nuclear interior includes the DNA, binded to

histones and organized into dynamic chromatin structures which can be more or less condensed during

the cell cycle, as well as several other nuclear elements such as Cajal bodies or structural proteins.

Conversely, the nuclear envelope includes a well-defined double-membrane (two phospholipid bilayers,

inner and outer membrane, where nuclear pores allow for molecular transport) and the nuclear lamina,

a dense network of proteins underlying the inner nuclear membrane.

The nuclear lamina is mainly composed of the lamins, which can also form structures in the nuclear

interior. Lamins are type V intermediate filament proteins which can determine nuclear morphology

but whose functions range from regulation of DNA replication and repair [17] to nuclear positioning and

mechanosensing [9]. They can be divided into subtypes A (lamins A and C, which result from the

alternative splicing of the LMNA gene) and B (LMNB1 and LMNB2 genes).

Lamins of subtype B are expressed in adult animals and in all cells during development [8]. While

B-type lamins can increase nuclear rigidity, they seem to have less influence in determining nuclear

stiffness when compared to A-type lamins [18]. In contrast, lamins of subtype A are found in the majority

of differentiated cells and regulate nuclear shape, structure and stability [19]. They have been reported

to also influence gene expression through mechanisms which involve chromatin [20], since the nuclear

lamina binds to heretochromatin via Lamin Binding Proteins (LBPs).

This element has been shown to be essential for maturation and cellular survival under mechanical

7



stress [9]. In fact, by modulating nuclear stiffness, the lamina contributes significantly to the structural

integrity of a nucleus [8]. Interestingly, nuclear rheology can be modelled using a spring-dashpot circuit,

where lamin A/C are responsible for viscosity and B-type lamins generate elastic responses to stretching

[21].

2.1.2 Nuclear-cytoskeleton coupling

Figure 2.1: Pathways of force transmission from the extracellular matrix to the nucleus. Retrieved from [8]. Plectin,
a cross-linker, can interconnect actin filaments, intermediate filaments, and microtubules and binds to
nesprin-3, while nesprin-1/2 binds to actin filaments. SUN proteins connect nesprins to the nuclear
envelope, via lamins, which in their turn bind to chromatin and DNA. External forces, such as substrate
strain or fluid shear stress, can then be transmitted to the nuclear interior.
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The cytoskeleton is a complex heterogeneous structure which consists mainly of three elements: actin

microfilaments, microtubules and intermediate filaments. These components provide support to the cell,

allowing for protein and organelle movement, influence cell shape and play an important role in mechan-

ical stability [8]. When force is transmitted to the cell, the components of the cytoskeleton reorganize

and compensate for this stimulus.

A-type lamins are involved in nuclear-cytoskeletal coupling and mechanical stress transmission through

the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex [22]. Lamins in the inner nuclear mem-

brane are connected to SUN (SUN1 and SUN2) proteins. These proteins connect with Nesprin1 and

Nesprin2, which bind to F-actin at the outer nuclear membrane, or to Nesprin3, which binds, via plectin,

to intermediate filaments [22], thus creating a physical connection between the nuclear interior and the

cytoskeleton. Figure 2.1 illustrates briefly which elements are involved and how they interact. Due

to the role of lamins in nuclear integrity and morphology, force transmission to the nuclear interior via

lamin-cytoskeleton coupling can induce the deformation of the nucleus [19].

This deformation is essential for cell survival in response to mechanical stress, but proper flexibility

of the nuclear envelope and adequate nucleus-cytoskeleton coupling also come into play during cell

motion.

2.1.3 The role of the nucleus in collective cell migration

A large number of physiological processes are dependent on the ability of cells to move within their

environment. Cell migration plays an important role in tissue development and repair, but it can also be

impacted in pathological conditions such as cancer [23].

Upon cell migration, the cytoskeleton and the nucleus adjust their structure and positioning, allow-

ing for the establishment of cell polarity. More specifically, nuclear positioning is the result of a dy-

namic interaction between the cytoskeleton and the LINC complex which is influenced by the process

of mechanosensing in cell-cell junctions (which connect cells to eachother in a monolayer) and focal

adhesions (which connect cells to the ECM) [23].

During collective cell migration, the nucleus is usually positioned in the back of the cell, a rearward

movement caused by an actin retrograde flow. Transmembrane Actin-associated Nuclear (TAN) lines are

composed of LINC complex proteins and actin filaments and allow this movement to occur by connecting

the lamina to the actin filaments [23]. Other elements of the cytoskeleton may also come into play,

as both microtubules and intermediate filaments have been associated with nuclear translocation and

rotation [24].

Perturbations to nuclear integrity and structural coupling have clear implications in a cell’s ability to

move [24]. However, in spite of important findings regarding the internal organization and interaction of

cell components, the mechanisms of nuclear positioning during cell motion are not yet entirely under-
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stood.

Collective cell migration is driven by active forces generated within each cell, as described above, but

many extra factors come into play, namely neighbour cells’ deformability and polarization and cell-cell

adhesion and signaling [25]. Force transmission between adjacent cells occurs at cell-cell junctions,

which link to actomyosin within each cell [26], creating cohesion energy and surface tension in a mono-

layer. Due to cytoskeleton elasticity, cell-cell repulsion also occurs and an efficient collective migration

requires these forces to be balanced. More details on force balance in a monolayer can be seen in

Figure 2.2 which, in a simplified scheme, illustrates the wide range of forces and cellular structures in-

volved in a monolayer in equilibrium. Because the cellular interior is tightly connected with its exterior,

mechanical changes in either cell components or in the substrate or neighbouring cells will influence

cellular response and ability to migrate.

Figure 2.2: Schematic representation of the forces and interactions of migrating cells in an epithelial monolayer, re-
trieved from [26]. Internal force generation and transmission is dependent on cell-cell and cell-substrate
interactions. Biological structures involved are illustrated, as well as some of the forces which are com-
monly involved in migratory equilibrium. Variables used to characterize cell motion are also included.

Nuclear elasticity has been shown to influence migration speed, with higher nuclear stiffness being

associated with smaller migration rates [10]. Because lamins A/C are coupled with structural elements of

the cell, disturbances in their distribution lead to a defective functional organization of the cytoskeleton,

which affects cell dynamics. In fact, LmnA -/- cells have decreased migration speed as a consequence of

decreased cell contractility [27]. Deformability of the nucleus, which has been mentioned to be regulated

by lamins, has also been found to be a rate-limiting feature for migration [18].

Interestingly, Graham et al. [27] describes the nucleus as a non-essencial component for two-dimensional

(2D) migration and cell polarization; however, their findings reveal that regulation of cell contractility and
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the activation of mechanosensitivity pathways are dependent on this element of the cell.

2.1.4 Laminopathies

The important role of the nuclear lamina in mechanotransduction, nuclear shape and migration has

been described above. Mutations in the LMNA gene (which codes for lamins A and C) are called

laminopathies. These diseases include several forms of muscular dystrophy, such as Emery-Dreifuss

or limb girdle muscular dystrophy, dilated cardiomyopathy or Hutchinson Gilford progeria syndrome,

discussed below.

The specific molecular mechanisms through which some of these diseases take effect are still not

fully known [8], but nuclear mechanosensing, morphology, stiffness and fragility appear to be affected [6].

Actin cytoskeletal organization, which is involved in cellular mechanoresponse and migration, has also

been shown to be affected in laminopathies, with significant consequences in cell functioning. Moreover,

the disruption of the levels of lamin-A is strongly related to several other human diseases. The stiffness

of a tissue has been shown to scale with the levels of lamin-A [17], but abnormaly lower or higher levels

of lamin-A have been correlated with cancerous cells [28].

A nucleotide substitution (GGC to GGT) is the most frequently reported cause of HGPS, which leads

to the deletion of 50 amino acids near the C-terminus of the lamin A molecule, often designated lamin

A Del50 or progerin [7]. HGPS cells have increased levels of lamin A near the nuclear envelope, which

results in nuclei that are stiffer [11]. Patient cells are characterized by defects in nuclear structure and

morphology, with HGPS cells often displaying lobulated nuclei [29], even upon introduction of lamin A

Del50 into normal cells by transfection [11]. These cells usually have higher values of circularity [4, 12],

due to inability to properly elongate, but exhibit a more concave morphology due to the presence of

micro-dysmorphic shapes [13]. These differences in nuclear shape could be associated with changes in

lamin organization [4].

Further morphological and mechanosensing differences may be attributed to the impact of the mu-

tation on mechanical properties of the nucleus, which are conveyed by chromatin arrangement and

structure [30]. Because lamins A/C bind to chromatin, they can be linked to chromatin organization,

transcription regulation and DNA repair [7].

HGPS cells have been shown to have impaired migration, with increased nuclear defects as a con-

sequence of attempting to migrate through small spaces [13]. This reduced cell motility could result from

increased nuclear resistance and decreased actin-myosin force generation. Due to the previously men-

tioned decrease in nuclear deformability, three-dimensional (3D) cell migration is significantly affected,

and 2D traction force is also reduced. Additionally, HGPS affects the establishment of cell polarity [31],

since rearward nuclear movement, typical during cell migration, is inhibited in these cells. This could be

attributed to the overaccumulation of SUN1 proteins – proteins which are a part of the LINC complex -,

11



which induces excessive association of microtubules with the nucleus and causes polarity defects [32].

Philip and Dahl [4] demonstrated that both normal cells and cells transfected with the lamin A Del50

mutation increase lamin concentration in the nuclear periphery in response to shear stress. However,

the same study reports that the presence of 30% of transfected cells co-existing in a normal (non-

expressing) cell population is sufficient to produce an abnormal response to stress in the normal cells.

Interestingly, the peripheral lamin increase in these cells is less pronounced when compared to both

normal and transfected cells, reflecting decreased lamin A/C remodeling. In line with these findings, the

total lamin intensity, which reflects expression of lamins, increases more in response to prolonged shear

stress in normal cells than in transfected and normal cells co-existing.

Morphological nuclear changes in response to shear stress were also significantly more pronounced

in the control cells than in the co-existing condition. While normal cells become less circular and more

elongated, changes in shape in transfected cells are much less pronounced; remarkably, the circularity

of non-expressing cells practically does not change, but elongation does. These observations reinforce

the premise that the presence of stiffer nuclei with impaired mechanoresponse can have an impact on

how nearby normal cells respond to stress, attenuating their ability to adjust to the stimulus in an even

more pronounced manner than cells with the lamin A Del50 mutation.

Considering the current knowledge on structure, physiology and mechanisms of mechanotransduc-

tion in a monolayer presented in this section, there are reasons to believe that both nuclear morphology

and nuclear motion dynamics will be affected in the presence of cells with stiffer nuclei and impaired

mechanoresponse, due to imbalance of forces.

2.2 Computational methods in biological analysis

Computational microscopy bioimage analysis has long been established as a tool for cell characteriza-

tion and used in basic and clinical research. Intensity values and distribution, cell or nuclear morphology

and migration can all be assessed using computational analysis in a high-throughput manner. As an

alternative to manual analysis, it is less cumbersome, more objective and large volumes of image data

can be processed efficiently, possibly minimizing erroneous conclusion stemming from outlier behaviour.

These tools allow inference about cellular phenotype and behaviour, molecular landscape and complex

physiological mechanisms, in spite of the many technical drawbacks which can still be pointed out.

The general workflow involved in the computational processing of microscopy bioimages is described

in Figure 2.3. Upon the collection of biological data, computational processing will often involve 3 steps:

collection of objects/ROIs, feature extraction and feature selection. The most common techniques are

presented below.
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Figure 2.3: Workflow for the generation of cellular or nuclear phenotypic profiles, adapted from [33].

2.2.1 Nuclear segmentation and tracking

Once biological data is imaged, namely regarding monolayers of cells or tissues, segmentation and

tracking of cells or nuclei is commonly the following step in the analysis. For segmentation, two main

tasks are required - nuclear discrimination from the background and nuclear separation. Tracking in-

volves associating segmentation masks along time. These are often bottleneck stages in image pro-

cessing, where both biological and technical variability can hinder performance.

These tasks will usually either require high levels of human input or high levels of configuration and

customization for each individual experiment. This is antagonist to the development of high-throughput

methods of segmentation. Some of the most popular bioimage processing tools [34] which help with

automation include Fiji [35], CellProfiller [36] and Icy [37].

Two main approaches are used for segmentation. The edge-based approach locates discontinuities

in the image, assumed to correspond to the border of the ROI; the region-based approach, alternatively,

achieves segmentation by assuming homogeneity of the ROI [2]. Methods commonly used for segmen-

tation of fluorescent microscopy image data include filtering (gaussian blur for smoothing, variance for

edge enhancement), which is often a preprocessing stage along with techniques for Signal-to-Noise Ra-

tio (SNR) enhancement; global or local adaptive thresholding [38]; watershed [39]; or active contour [40]

algorithms. While many tools are available, and even if image data collection is performed to the best of

the available conditions, segmentation will usually involve manual adjustment of parameters, either ac-

cording to the dataset or even within one dataset, due to heterogeneity of the samples or the occurrence

of technical artifacts [41].
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Cell tracking in turn requires identification of ROIs and maintaining of their identity throughout the

image data sequence. Challenges to cell tracking, namely in fluorescent microscopy, relate to the low

SNR, non-homogeneous transfection or staining, photobleaching or uneven background, among others

[42]. Manual tracking is possible, but cumbersome and with low precision.

Tracking models can usually be placed into two categories: tracking by detection (where the first step

consists on the detection of the ROIs in every time frame, and the second step involves an optimization

strategy which determines correspondence of ROIs across time) [43] or tracking by model evolution (both

tracking and segmentation are performed simultaneously, and the final result of one frame is used as the

initial condition of the following frame) [44]. Many techniques are available, however, often integrated in

the aforementioned bioimage analysis software [45].

Ideally, a segmentation and/or tracking model should be able to properly segment nuclei without the

need for manual adjustment, regardless of the image type or experimental conditions - fully automated,

generic and robust. Modern approaches to the segmentation and tracking problem often make use of

machine learning strategies [46], or even deep learning [47]. While these models have been shown

to perform better than other classical methods [48], annotation of datasets and training of the net is

burdensome and technical variability in data collection continues to be a challenge due to overfitting.

2.2.2 Nuclear morphometry

The characterization of cell phenotype and dynamics can be used to describe cell mechanisms and

processes (such as the cell cycle), to monitor cell development (cell differentiation and aging) or as

a tool for diagnosis [1]. Nuclear shape varies according to cell type and stage of the cell cycle, but

these organelles are generally ellipsoid or spheroidal [8]. However, shape can change in accordance to

functionality of the cell, e.g. to potentiate transmigration [13]; these alterations may also be indicative

of pathology. Namely in cancer, cells are usually identifiable by displaying abnormal morphology or

stiffness [3,28]. Nuclear morphometric analysis, then, emerges as a powerful resource due to the ability

to relate the shape of the nucleus with several physiological or pathological mechanisms [49].

A quantitative, objective description of nuclear shape and trajectory can easily be achieved and

unveil phenomena which cannot be detected by observation. Machine learning can also be applied for

this type of analysis, namely for feature selection, dimensionality reduction or outlier detection [33]. More

recently, 3D dynamic shape analysis [50] opens the path to a more detailed understanding on how cell

shape varies according to physiology and function.

The present work makes use of a large array of computational feature extraction methods in order

to capture the complexity of nuclear morphology and dynamics. While common methods are used, a

technique to provide detail on the evolution of the nuclear boundary is also developed. A more detailed

description and background are provided in Chapter 3.
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3.1 Preparation and acquisition of biological data

Data collection and processing can be divided into three main stages: preparation of biological data and

imaging (each image contains a time series of one Field-of-View (FOV) of interest), preparation of digital

data (preprocessing to obtain nuclear intensity masks and coordinates of nuclear centroids over time)

and processing (with the aim of analysing nuclear morphology and dynamics, including collective cell

migration). Methodology is described with detailed in the sections below.

3.1.1 Cell Culture and Transfection

Normal Rat Kidney Epithelial (NRK-52E) cells were cultured in DMEM media (Thermo Fisher) supple-

mented with 10% FBS and imaged +2 days after plating. For the mutant nuclear variant, cells were

transfected with a plasmid for Del50-LMNA-TagRFP [20] +1 day after plating, using standard lipofection

according to manufacturer protocols.

Two types of cell culture were prepared: one setting contained only normal NRK-52E cells; the

second contained both normal, non-expressing NRK-52E cells and a small percentage of transfected,

mutant NRK-52E cells, sparsely placed.

3.1.2 Imaging

Prior to imaging, cells were stained with 0.2µM Hoechst 33342 (1:5000 dilution) in DMEM media for 10

minutes. Subsequently, cells were washed with PBS and imaged in OptiKlear imaging media (VWR).

Imaging was conducted on a Leica DMI 6000B with incubation at 37◦C, using a 40X 1.25 NA objective,

at 3 minute intervals over the course of 1 hour following a previously published protocol [20].

Each image collected represented a time-series composed of a a total of 21 frames. The dimensions

of each frame are 696x520 px (2.1705 pixel/µm) in a total of 5 Z-slices.

A set of 10 images (each corresponding to one temporal sequence) was collected regarding the con-

trol monolayer (Control (C) or WT cells) and two sets (9 and 5 images, respectively) were collected in the

monolayer with M cells and Non-expressing (NE) cells (M +NE condition), minding the placement of M

cells in two ways: firstly, the M cell(s) in-frame should be as close to the center as possible; secondly, as-

suring that out-of-frame M cells were not close to the imaged area. This allows for a distance-dependent

analysis of the behaviour of NE cells surrounding M cells. The images for the first condition images (C

cells) display only the blue (Hoechst 33342) channel, whereas the second condition (M + NE) includes

both blue and red (expression of Del50-LmnA-TagRFP) channels, which allow for the segmentation of

nuclei and identification of lamin A Del50 expressing cells. The red channel is used only for the latter

purpose and following sections refer to processing on a grayscale image corresponding to the Hoechst

33342 channel.
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3.2 Data preprocessing

The biological data collected contains 3 groups of nuclei whose characterization is of interest. First,

one would like to study the behaviour and features of nuclei in a control setting, i.e. normal cells in a

monolayer. This group (C) will allow for the assessment of how the second condition under study, the

presence of mutant cells within a monolayer of normal cells, affects nuclear behaviour and characteristics

of the monolayer. Thus, the second condition yields two groups of interest: cells with stiffer nuclei (M) and

normal cells surrounding the monolayer defects (NE). Preprocessing of the images, segmentation and

tracking of the nuclei were performed using the same methods across all groups of interest, with maximal

automation, in order to guarantee consistency in data collection and minimize erroneous conclusions

stemming from human verification errors.

An overview of the process can be seen in Figure 3.1. This is the result of an empirical approach to

image analysis, with a starting point defined by some of the most frequently used methods for segmenta-

tion and tracking but where the aim was to both automatise but standardise the processing methodology,

i.e. finding a method which is able to segment nuclei in all the images collected, instead of changing

the approach from one dataset to another, whilst requiring minimal manual input. While both software

used (Fiji and Icy) provide plug-ins which can achieve segmentation and tracking, the combination of the

two (Icy offers an interface with ImageJ - on which Fiji is based - so processing can take place all in the

same application) was able to provide the best results.

3.2.1 Contrast Normalization

The first preprocessing steps towards achieving an accurate segmentation and tracking were performed

using Fiji [35], an open-source Java-based ImageJ software commonly used for the analysis of biological

images. Since a 2D analysis of a time series was the objective, a Z-projection of the images was

required, in order to collapse this dimension. The method used for flattening the images was maximum

intensity projection, where each pixel of the resulting image represents the maximum value of all the

pixels in the same position, along the Z direction. While this assures that the nuclei are flattened in

such a way that conserves their brightness in all their area, the maximum intensity projection will also

conserve information from out-of-focus planes and the resulting image may appear ”blurry” as a result.

In order to circumvent this fact, only planes where the majority of the nuclei were in focus were kept

and used for projection. Because analysis of intensity distribution on the nuclei was not intended, but

rather an analysis of shape and morphology, inconsistencies on the number of Z planes included in each

image do not influence downstream analysis.

Following this step, image contrast normalization is applied. This method is based on the calculation

of block statistics from summed-area tables, using integral filters [51]. The block radius used was 10
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Figure 3.1: Overview of image processing methods used to obtain the intensity masks of each nucleus. A prepro-
cessing step on ImageJ includes contrast normalization of the image stack (A), which is then input to
Icy, where the remaining preprocessing takes place. Initial segmentation is achieved by the use of a
Hierarchical K-means (HK-means) method (B), which serves as reference for the application of an Ac-
tive Contour plug-in, accomplishing accurate segmentation and tracking of nuclei across the 21 frames
(C). Finally, the region outside of the nuclei masks is zeroed and an image stack containing only the
nuclei of interest is obtained, which is used for processing and feature extraction.

pixels in both x and y dimensions, and centering was applied. Integral images are at the basis of

methods such as Speeded-Up Robust Features (SURF) [52], used for object recognition and tracking;

in this particular case, it reduces the contrast between the nuclei and the background but the blurring

caused by the projection of out-of-focus nuclei takes values of intensity which are smaller(darker) than

those of the nuclei and the background (see Figure 3.1 A). While previously the blurring resulted a

gradual decrease of intensity from the ROI - the nucleus - to the background, the normalized image

contains ROIs where borders are now defined by abrupt decreases in the value of intensity. One can

theorize that this fact will contribute to the success of the application of the Active Contour plug-in, further

detailed below.

3.2.2 Hierachical K-Means Segmentation

The normalized 2D time series, for this and following steps, are processed using Icy [37], also an open-

source Java-based platform which specializes in biological image analysis and offers a number of plug-

ins.

Figure 3.1 B illustrates the result of using HK-means [53] to obtain an initial set of segmentation

19



masks for each of the images. This is a region-based segmentation method which takes the histogram of

intensities of an image and produces a predefined number of clusters which represent different intensity

classes. Each of these clusters corresponds to a threshold for which a binary image can be produced.

A minimum and maximum dimensions of the objects of interest can be set by the user. A bottom-up

approach is adopted as each threshold is applied to the image and only objects within the dimension of

interest are kept.

An additional parameter was used to define the initial masks: minimum object intensity, which ex-

cluded segmentation areas corresponding to the background. The use of this method, although more

practical and with better performance than the use of manual thresholding, comes with a few drawbacks,

namely difficulty in separately segmenting nuclei that are very close/overlap and difficulty in properly seg-

menting a very heterogeneous nucleus - since there are many different intensity levels, one nucleus can

be defined by several segmentation masks. As a consequence, following the application of HK-means

there is the need to manually adjust the initial masks, by removing those who do not refer to ROIs and

separating those who refer to nuclei that are close but do not overlap.

On this note, segmentation and tracking are also hindered by characteristics of image collection

and biological behaviour. The main factors contributing to invalidate segmentation include: non-uniform

distribution of average intensities of nuclei, i.e. in the same image, different nuclei will have the different

intensity levels, which sets back the use of a straightforward thresholding method to segment all nuclei;

the occurrence of overlapping nuclei along the time series; and the existence of ”floating” stain speckles,

of high intensity and whose migration is unlike that of the nuclei, which can also partially overlap with

one or several nuclei along the time series and hamper segmentation, by being interpreted as a part of

the nuclear shape.

3.2.3 Active Contour Model

The final segmentation masks (which correspond, in fact, to outline polygons of the ROIs - see Figure 3.1

C) are obtained using the Active Contours (AC) plug-in [44], on Icy. This model, also called snakes, was

initially proposed by Kass et al. [40] and has shown great results as a segmentation method [2]. It uses

discrete explicit representations of the curves (contours in 2D, surfaces in 3D) in an energy-minimizing

framework. Energy, here, is defined by internal terms - regarding deformation/evolution of the curve,

namely smoothness and continuity - and external terms, referring to data from the image (intensity,

gradient). Segmentation is achieved via the minimization of this energy function, which will converge to

a local minimum if using the Euler-Lagrange steepest gradient descent.

The method is initialized with the HK-means masks, in the first frame of each image, from which

the contours are drawn before they begin progressively deforming into the edges of the nuclei. The

AC method is relatively fast, as it takes the contours of a previous frame as reference for tracking and
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segmenting in the following frame.

Due to prior image preprocessing, the default user-defined parameters selected to run the AC method

are used. Edge and region weights represent the expected intensity difference at the border of the ROI

and the homogeneity of intensities within the ROI, when compared with the background. The values

0 and 1 were used, respectively, indicating minimum intensity difference and maximum intensity homo-

geneity - which could potentiate a conservative approach to contour evolution. The contour smoothness

([0, 1]) was set to 0.05 - although nuclear shape is mostly smooth, it is useful to run the algorithm with

little assumptions on nuclear shape, in order to avoid biasing the results. Finally, evolution parameters

define contour sampling precision (2 px), evolution time step (0.1) and convergence criterion (0.001 - a

higher value leads to a faster run time but may cause loss in performance).

While this method performs quite well and runs relatively fast, several nuclei were poorly segmented,

mainly due to the previously mentioned overlap of nuclei and of debris. Therefore, manual correction

was necessary for this step as well, excluding all of the nuclei in which segmentation in any of the 21

frames was not satisfactory. While some cases of mitosis can be successfully segmented and tracked

using the proposed pipeline, for the purposes of the downstream analysis this data was not necessary

and thus all the nuclei in mitosis during the time series were excluded as well.

Furthermore, for the images with the M+NE nuclei, NE nuclei with a distance to the image border

inferior to 50 µm were excluded, thus conserving only nuclei more close to the center of the image,

in order to not jeopardize a distance-dependent analysis by the presence of closer but out-of-frame M

cells.

From the remaining contour curves, two types of data were extracted: the nuclear intensity masks

(Figure 3.1 D), where to each nucleus correspond 21 binary masks (one per time frame), which are zero

everywhere outside of the ROI and whose dimensions are those of the bounding box of the ROI for each

frame; and the centroid of each bounding box along the time series, in order to account for tracking.

Because the contour (obtained with the AC plug-in) is defined by a number of points which varies in

proportion to perimeter, and because these points don’t have to overlap with pixels but can be placed

anywhere in the image, both the bounding boxes and the centroids have decimal precision.

3.3 Feature Extraction

The intensity matrices and tracking information were analysed and processed using Python. Because

intensity distribution was not the main focus of the analysis, but rather morphology and migration, there

was no need to normalize nuclear intensity across datasets. As was mentioned, three groups of interest

were analysed: C (control, all-normal monolayer) nuclei, M nuclei and NE nuclei.

In order to characterize the monolayer from both a static and dynamic perspectives, three main sets
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of features were extracted (see Figure 3.2): migration features, static shape/morphological features and

dynamic shape/morphological features (or morphological variation features). Below is a brief description

of the calculation and interpretation of each one.

Figure 3.2: Three sets of features are extracted from the nuclear masks and centroid coordinates obtained from the
preprocessing of data. Nuclear motion is characterized from the evolution of centroid positions (blue
box) and the intensity masks provide both the basis for the nuclear morphometric analysis (orange box)
and for the nuclear boundary extraction, which allows for the analysis of spatial and temporal evolution
of the nuclear membrane (green box).

3.3.1 Monolayer Dynamics Features

In order to understand how the presence of mutant cells is influencing monolayer dynamics, some fea-

tures can be calculated regarding cell motion speed and direction. Formulas are displayed on Table 3.1.

Orientation of the nuclei is defined by the angle between the horizontal axis and the major axis of

the ellipse that has the same second moments as the region. It ranges from −π/2 to π/2, counter-

clockwise. Absolute orientation variation is calculated by the absolute difference in orientation in subse-

quent frames, divided by the interval in minutes between frames. It characterizes rotation changes in a

nucleus, giving a sense of ”velocity of rotation”.

Direction is similar to orientation but it describes orientation of motion rather than rotation of the

nucleus. It is measured as the angle between the horizontal axis and the vector whose start and end
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Table 3.1: Nuclear motion features calculated for each nucleus.

Feature Formula

Absolute N - total number of frames

Orientation ∆t - time (in min) between frames

Variation (rad/min)

∆φ =
1

∆t

∑N−1
n |φn+1 − φn|

(N − 1)
φn - orientation on frame n (rad).

Direction ψn – direction of trajectory, defined

Variation as the angle between position on

(rad/min)

∆ψ =
1

∆t

∑N−2
n (ψn+1 − ψn)

(N − 2)
frame n and position on frame n+ 1 (rad).

Mean Step xn, yn - coordinates of the nucleus

Displacement centroid on frame n.

(µm/min)
v =

1

∆t

∑N−1
n

√
(xn+1 − xn)2 + (yn+1 − yn)

2

(N − 1)

Total Distance

(µm)
DT =

∑N−1
n

√
(xn+1 − xn)2 + (yn+1 − yn)2

Net Displacement

(µm)
DN =

√
(xN − x1)2 + (yN − y1)2

Migration Efficiency ηD =
DN

DT

points are the centroids of the nucleus in subsequent frames. So, while orientation refers to nuclear

rotation, direction reflects nuclear translation. Accordingly, direction variation is the absolute difference

between trajectory direction in subsequent frames, divided by the interval in minutes between frames.

Mean step displacement characterizes translation velocity. It is given by the euclidean distance

between the position of the centroid of the nucleus in subsequent frames, divided by the interval in

minutes between frames. Total distance takes into account only translation distance, and it is the sum

of all the nuclear (euclidean) displacements in a time series. Conversely, net displacement is simply the

euclidean distance between the initial and final coordinates of each nucleus, not reflecting intermediate

nuclear motion. Finally, migration efficiency measures the ratio between net motion and total motion:

if the nucleus moves in a straight line, efficiency is 1. If, however, the trajectory includes changes in

direction, causing total distance to increase, migration efficiency will decrease as a consequence.

3.3.2 Morphometric Features

Table 3.2 contains the formulas used to analyse and compare nuclear morphology, based on the nuclei

intensity patches. These features were calculated for all nuclei, across all time frames. Figure 3.3
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illustrates in a scheme the main geometrical concepts involved in the calculation of these features.

Table 3.2: Morphological features calculated for each nucleus. Illustration of variables in Figure 3.3.

Feature Formula

Area A =
∑
i bi bi - value of pixel i in nucleus binary mask ({0, 1}).

Perimeter P =
∑
i ci ci - value of pixel i in nucleus contour binary mask, using

a 4-connectivity({0, 1}).

mAL – Minor Axis Length of the ellipse that has the same
normalized second central moments as the region.

Aspect Ratio AR =
mAL

MAL MAL – Major Axis Length of the ellipse that has the same
normalized second central moments as the region.

Eccentricity E = FD
MAL

FD – Focal Distance of the ellipse that has the same
second-moments as the region.

Circularity C =
4× π ×A

P 2

Roundness R =
4×A

π ×MAL2

Smoothness SP =
PC

P
Pc – Perimeter of convex hull.

Solidity SA =
A

AC
Ac – Area of convex hull.

Aspect ratio provides a sense of how elongated the nucleus is. Higher aspect ratios point to less

elongated nuclei. Eccentricity, similarly to aspect ratio, refers to the general shape of the nucleus, which

is approximated to an ellipse. In this case, FD is 0 if the nucleus is circular (zero eccentricity) and

its value increases as the shape becomes more elongated. As such, eccentricity and aspect ratio are

nearly inverse: a more elongated nucleus will have higher eccentricity but lower aspect ratio.

Circularity is a measure of area-to-perimeter ratio. For a perfect circle, circularity is 1. Circularity can

decrease as the nucleus becomes more elongated; however, as perimeter increases or area decreases

(due to a more irregular boundary or shape), circularity will decrease as well, reflecting concavity of

the nucleus. The feature roundness is similar to circularity but, unlike the latter, where the area of the

nucleus is compared with its perimeter, the calculation of roundness compares the area of the nucleus

with its “convex perimeter” – where the nucleus is assumed to be circular and taking its major axis length

as a measure for the diameter. This makes roundness insensitive to perimeter irregularities and thus a

more direct measure of structural shape.

Finally, smoothness and solidity make use of the calculation of the convex hull of the region and

reflect ratios between its perimeter and area and the perimeter and area of the original ROI. Smooth-

ness is also known as “convexity”. A completely convex shape will take the value 1, and smoothness
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Figure 3.3: Main geometrical definitions for the calculation of morphometric features. The nucleus is represented
in light blue, with the centroid as a black dot. Area and perimeter are directly measured from the binary
mask of the nucleus. The convex hull corresponds to the smallest convex polygon that encloses the
region of interest. From the ellipse that has the same normalized second central moments as the region
(pink, upper right), major and minor axis length can be determined, as well as Focal Distance (FD)
(distance between focal points, such that for any point p of the ellipse the sum of the distances to the
focal points is a constant. In a circle, FD is zero because the two focal points overlap with the centre).

decreases as the nucleus becomes more concave or its boundary more irregular. Similarly, solidity mea-

sures ”density” of a nucleus. While a solid object (such as a circle) will have solidity equal to 1, more

irregular nuclei will have lower solidity values. The two features are related but reflect different shapes.

For example, a nucleus whose boundary is very irregular but these irregularities have very small ampli-

tude (i.e. numerous but small blebs) will have solidity close to 1 (the convex hull and original shape have

similar values for area) but a lower value of smoothness, as the perimeter of the original shape is higher

than that of the convex hull.

3.3.3 Contour-based Features

Membrane fluctuations have been shown to reflect mechanical properties of cellular components and

many methods have been developed with such purpose [54]. Here, a contour analysis is performed from

fluorescence microscopy data, with the objective of characterizing the nuclear boundary in more detail

and to provide a more intricate numerical description of morphology dynamics.

First, the boundary for each nucleus was transformed in polar coordinates (ρ, θ), according to dis-

tance to the nuclear centroid, for each time frame. This corrects contours for translation (Figure 3.4 I

a)). Then, the contours are corrected for rotation, i.e. all the nuclei are rotated until their major axis

corresponds to the vertical axis (θ = ±π/2 = ±180◦) (Figure 3.4 I b).

In order to numerically compare the boundaries for each nucleus across time, and in order to com-

pare different nuclei within the same group and across groups, a cubic spline interpolation (more details

on Figure A.1) was applied to the polar coordinates, and every boundary became defined by a set of
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100 points, corresponding to the same values of θ (Figure 3.4 II)).

Figure 3.4: Data processing for numerical contour feature extraction. I) Polar representation of nuclear boundaries.
Each curve corresponds to the boundary in one frame, with the centroid in (0, 0). Position of the original
centroid of each frame in relation to the average centroid location of the nucleus can be seen as data
points of the corresponding color; a) represents translation correction and b) corresponds to rotation
correction. Angles in degrees, distance to centroid is in µm. II) Cubic spline interpolation results, for
one nucleus. Curves represent initial contours and markers represent new contours, after interpolation,
defined by 100 datapoints. III) Matrix representation of temporal and spatial progression of the nuclear
boundary, coloured according to distance to centroid. Green arrows help interpretation of matrix-like
representation of the contour profile.
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Several features can now be calculated, regarding spatial and temporal progression of the nuclear

boundary. One can imagine this progression represented in a N×M matrix, where N represents the total

number of frames in the time series (21) and M represents the total number of points in the boundary

(100), referring to the θ variable (Figure 3.4 III)). Contour magnitude is represented as values in this

matrix. Analysing row-wise gives spatial progression or contour ”static” regularity, i.e. how distance to

the centroid varies for different values of θ. Column-wise analysis will provide information on temporal

progression or contour ”dynamic” regularity, i.e. for the same θ, how distance to the centroid evolves

over time. A completely homogeneous matrix, for instance, would represent a perfectly circular nucleus

which is absolutely rigid, meaning its boundary does not change over time. Table 3.3 contains the

formulas used to quantify boundary aspect and fluctuations, with analogous sets of features for spatial

and temporal progression. These features are further illustrated in Figure 3.5.

Table 3.3: Contour-based features calculated for each nucleus. rm,n is the contour value, or distance to the centroid
(ρ), for boundary position m at time n (in µm).

Feature Formula

Contour Range Rs =
1

N

∑N
n

rmax,n − rmin,n
rmax,n

rmax,n,rmin,n - maximum
(resp. minimum) radius across
boundary for time frame n.

Contour Amplitude ∆s =
1

N × (M − 1)

∑N
n

∑M−1
m |

rm+1,n − rm,n
rm,n

| M – total number of points in
spatial boundary (100).

Contour Abruptness Sa =
1

N

∑N
n max |

rm+1,n − rm,n
rm,n

| m ∈ [1,M − 1]

m ∈ [1,M − 1]
Curvature ∂s(n,m) =

rm+1,n − rm,n
rm,n n ∈ [1, N ]

Contour Concavity C∂ =
1

N

∑N
n

∑M−1
m [∂s(n,m) < 0]

Temporal Contour Range Rt =
1

M

∑M
m

rm,max − rm,min
rm,max

rm,max,rm,min - maximum
(resp. minimum) radius in each
boundary point m, across time.

Temporal Contour Amplitude ∆t =
1

M × (N − 1)

∑M
m

∑N−1
n |

rm,n+1 − rm,n
rm,n

|

Temporal Contour Abruptness Ta =
1

M

∑M
m max |

rm,n+1 − rm,n
rm,n

| n ∈ [1, N − 1]

Contour range is the difference between maximum radius (ρ, the distance from the centroid to the

nucleus boundary) and minimum radius, divided by maximum radius for normalization purposes. A

perfect circle would have zero amplitude, while a very concave or elongated nucleus will have large
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contour amplitude. This is, then, a measure of spatial progression and could be related to concavity of

the nucleus.

Figure 3.5: I) Simplified representation of contour-based features from Table 3.3, for a nucleus with 4 time frames
(I-IV). Centroid in dark red. ∆s is the difference in radius between subsequent points of the nuclear
boundary. The maximum difference for one time frame is Sa. Rs is the difference between maximum
and minimum radii. Temporal analysis concerns one boundary point across time. ∆t is the difference
between subsequent frames. The maximum ∆s corresponds to Ss. Rt is analogous to Rs but across
time. Note that features used in the analysis are averages across time or space and are normalized,
unlike what is shown here. II) Illustration of nuclear aspect for different values of spatial features.

Contour amplitude, in turn, is the difference between subsequent radius (rm,n, characterized by a

position m at time point n), divided by rm,n (again, for normalization purposes). This value is averaged

across the boundary and across time, to provide a sense of mean spatial progression of the nuclear

boundary. Very abrupt contours will have high values of contour amplitude.

Contour abruptness relates to contour amplitude. It is defined by the maximum contour amplitude

between subsequent points of the nucleus boundary. A nucleus with abrupt irregularities will have

a higher value of abruptness, whereas a smooth nucleus will display lower abruptness. Note that a
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very concave nucleus (high contour range) can have low contour abruptness, if the range of variation

observed stems from a smooth boundary spatial progression (see Figure 3.5 II).

Curvature is a proxy for boundary derivative, as the relative changes in boundary radius are calcu-

lated. A nuclear boundary can be represented in a N×M matrix, and its curvature will be fully char-

acterized in a N×(M-1) matrix. This will provide a sense of contour regularity. Following this definition,

concavity is the time-average of the number of negative deflections in the boundary, i.e. the total number

of negative values in the curvature for a given frame n.

Temporal contour range, here, serves as a measure of temporal progression. It will give a sense

of ”boundary softness” or ”flexibility”, i.e. how much the nucleus can change over time. It is equivalent

to the feature Rs, but considers the general evolution of the nuclear boundary time-wise rather than

space-wise.

Temporal contour amplitude and temporal contour abruptness are analogous to contour amplitude

and contour abruptness, but for temporal rather than spatial progression. While temporal contour range

defined how much nuclei are changing, amplitude defines how they are changing. Nuclei with a more

constricted boundary will have smaller amplitudes of variation. Temporal contour abruptness contem-

plates both nuclear stiffness and regularity. If amplitude is low and abruptness is high, then the nuclear

boundary mostly oscillates smoothly over time but maintains flexibility. If both values are low, then the

ability of the nuclear envelope to adjust its shape may be impaired, which could be indicative of higher

nuclear stiffness.

At this point, an additional, automatic step of segmentation verification can take place. Considering

the temporal amplitude of each boundary of each nucleus, one can relate abnormally high values of

amplitude to incorrect segmentation rather than nuclear behaviour, as these boundary fluctuations would

be outside of physiological ranges expected in either of the conditions analysed. To the best of our

knowledge, the physiological range values of nuclear boundary fluctuations have not been published, so

an empirical approach was adopted.

Calculating the maximum value of temporal amplitude for each nucleus, the obtained distribution is

heavily skewed to the right (as most nuclei will have small amplitudes of fluctuations). As such, an upper

limit for outlier detection (UL) was defined as can be seen below (Equation (3.1)):

UL = Q3 + 1.5e3MCIQR (3.1)

where MC corresponds to the medcouple, often used to measure skewness, Q3 is the third quartile and

IQR is the interquartile range [55].

Abnormally segmented nuclei were detected if their temporal variation across the boundary crossed

the UL value in more than 5% of the boundary extension (an example can be seen on Figure 3.6).

These nuclei were excluded from the analysis, providing a method of segmentation verification which is
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automatic.

Figure 3.6: Example of nucleus excluded by automatic criteria post-feature extraction. Angles in degrees, distance
to centroid is in µm. Nuclear shape evolution can be seen as curves in different colours.

3.4 Statistical Analysis

Confidence intervals for motion and morphological features are calculated as in Equation (3.2):

CI = X ± Z σ√
n

(3.2)

where n is the number of observations, X is the mean, σ is the standard deviation and Z is the Z-

score value for the confidence level pretended [56]. A 95% Confidence Interval (CI) was used (Z = 1.96).

If not represented in the figures, such intervals can be consulted in the tables on Appendix A.

All groups under study had n > 30 except for the mutant cells (n = 20, although for the static

morphological analysis - Section 3.3.2 - all 21 frames of all nuclei were considered independent samples,

thus for M nuclei n = 420). As such, under the Central Limit Theorem, normal distribution of values was

assumed and statistical significance was assessed using a two-tailed unpaired t-test, without assumption

of equal variance. P-values are represented using the standard scale (ns − p > 0.05, ∗p ≤ 0.05, ∗ ∗ p ≤

0.01, ∗ ∗ ∗p ≤ 0.001, ∗ ∗ ∗ ∗ p ≤ 0.0001).
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The following sections present the main findings of the present work. Detailed averages and signif-

icance testing can be found in Appendix A. These results reflect dependent phenomena (e.g. efficient

cell movement requires nuclear motion and change in shape [23]) and, while causality is difficult to as-

sess, the discussion will contemplate an overview of the phenotypic differences and how they could be

correlated.

4.1 Data collection

Segmentation and tracking rendered a total of 2240 nuclei, after manual exclusion of nuclei with faulty

segmentation and automatic exclusion of contour outliers. Population distribution per group can be seen

on Table 4.1.

Table 4.1: Population of nuclei collected for each group, after exclusion of incorrect segmentation and tracking and
automatic contour outlier detection.

Group Population Population (%)

C 918 40.98

M 20 0.89

1302 58.13

NE40 142 6.34

NE80 368 16.43

NE120 384 17.14

NE160 288 12.86

NE

NE160+ 120 5.36

In each image, an average of 57.27% and 63.11% of NE and C nuclei, respectively, were properly

segmented and tracked. This is a rough estimate from the ratio between properly segmented nuclei

across all 21 frames over the number of nuclei in the first frame of each image. Due to the high variabil-

ity shown in performance by different segmentation and tracking methods, which depend on the proper

selection of parameters and often cannot be generalized to any image type, it is difficult to compare the

performance of the chosen method for segmentation and tracking with other state-of-the-art methods

available. Such task would require burdensome testing of different approaches on the dataset used for

analysis, and adjustment of parameters to maximize the performance of each approach. Given than

segmentation and tracking were not the focus of the current work, but rather the analysis of morphologi-

cal and dynamic features of a statistically significant population of cells, such testing was not carried out.

Manual segmentation of nuclei could also have been performed and compared with the masks obtained
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from the methodology used for the present work, in order to objectively measure segmentation accuracy,

but the same justification applies.

Proper segmentation requires nuclei to stay in-frame and to not overlap with other nuclei or with stain

speckles. Frequent instances of small high-density nuclear clusters, as well as nuclear overlap (partially

caused by the projection of the data into a 2D image), lead to a lower percentage of success. Note that,

because morphology was a fundamental element of the analysis, algorithms used for discrimination of

nuclei in a cluster (such as the watershed algorithm) could underperform or bias the results regarding

shape deformation. As such, the option of not including nuclei which overlap was adopted.

Contour-based automatic exclusion was applied conservatively, in order to avoid excluding nuclei in

which abrupt boundary shape changes were physiological and thus only 21 C nuclei and 24 NE nuclei

were excluded using this process, with all the M nuclei conserved.

For the distance-dependent analysis, each NE nucleus was characterized by the minimum euclidean

distance between its centroid and the centroid of an M nucleus in-frame (see Figure 4.1). A 40 µm radius

difference was used to separate the group, as this guaranteed a minimum of 50 NE nuclei per distance-

group per preparation (two M+NE monolayer preparations were analysed), except for the NE160+ group

in the second preparation, which rendered only 14 nuclei. Group are named according to cell type +

maximum nuclear distance, i.e. NE40 represents NE nuclei which are less than 40 µm apart from an

M nucleus, NE80 contains nuclei which are between 40-80 µm and NE160+ includes all nuclei whose

distance to an M nucleus is superior to 160 µm.

Figure 4.1: Illustration of group division in distance-dependent analysis. Top: schematic representation of how
distance (d) between an M nucleus (red) and an NE nucleus (blue) is calculated. Bottom: nuclei within
each coloured ring are part of a group characterized by a distance to an M nuclei between lmin and
lmax of that ring. Where rings overlap, nuclei are attributed to group that is closer to an M nucleus.
Rings are not to scale.
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4.2 Monolayer dynamics

Collective cell motion was initially analysed and interesting differences were found between both mono-

layers, which are illustrated on Figure 4.2. Net displacement and total distance were normalized to the

maximum value of the respective feature, in order to facilitate representation of the calculated features.

Figure 4.2: Monolayer dynamics are affected by the presence of M cells. I) On the left, a monolayer of normal cells
(C), and on the right, a monolayer with normal cells (NE,blue) and one lamin A Del50 cell (M, red). Ar-
rows are coloured and have a magnitude in proportion to normalized net displacement. Direction of ar-
rows is determined by direction of net displacement vector. Bars represent 50µm. II) Migration ”clouds”,
where the trajectory of each nucleus is represented and is coloured according to total distance. x and
y coordinates are in µm. III) Net displacement is lower for both preparations of the M+NE monolayer,
when compared to the control monolayer. IV) Direction of migration is less homogeneous in the M+NE
nuclei than the C monolayer. Unpaired two-tailed t-test: ∗ ∗ p ≤ 0.01, ∗ ∗ ∗p ≤ 0.001, ∗ ∗ ∗ ∗ p ≤ 0.0001.

35



Nuclear motion appears to be less coordinated in the M + NE monolayer. As a consequence, direc-

tion of movement is less homogeneous and net displacement decreases (Figure 4.2 I)). Figure 4.2 II)

further supports these findings, by analysing both the shape of the ”migration cloud” - which represents

direction of trajectories from its initial point, set at coordinates (0, 0) - and its colour - which represents

magnitude of total displacement. The NE nuclei cloud is more circular and nuclei with smaller values

of total distance of migration are more prominent than in the C nuclei cloud. Interestingly, some NE

nuclei have very long trajectories, indicating that both direction and magnitude of nuclear motion are

more heterogeneous in the M+NE monolayer. Figure 4.2 III) reinforces the findings that the decreased

net displacement is a consequence of the presence of M cells rather than a consequence of biological

or experimental variability, as this phenomenon can be observed in both M+NE monolayer preparations

(labelled A and B).

The Coefficient of Variation (CV) is defined as the ratio between the standard deviation and the mean

value of a feature. It represents how ”spread” the values for that feature are - a smaller CV corresponds

to a more homogeneous population. Figure 4.2 IV) shows the average CV for net direction of motion

within one image. The direction of motion (angle between initial and final positions of each nucleus)

of NE nuclei is less defined (the motion in that monolayer of cells is less coordinated), whereas the

monolayer with only normal cells has nuclei which move in unison.

A distance-dependent analysis provides further insight into the dynamics of the monolayer and me-

chanical force transmission, as well as energy release (Figure 4.3). First, the findings already mentioned

for the all-normal monolayer are confirmed. C nuclei move faster, rotate less than NE nuclei and change

direction significantly less. As a consequence, migration efficiency is the highest amongst all groups

analysed. By contrast, M cells have severely impaired nuclear movement. Their nuclei move slower

than C nuclei, rotate significantly less and change direction more. Efficiency appears to be higher than

NE cells, but it does not mean these cells are moving more but rather that the ratio between net displace-

ment and total distance is superior to that of NE nuclei, implying that, while impaired, nuclear motion is

still somewhat efficiently performed. NE nuclei, however, present a very curious behaviour. On aver-

age, these nuclei move faster than M nuclei but slower than C nuclei. They rotate and change direction

more than both M and C nuclei, which in its turn leads to lower values of migration efficiency. However,

the distance-dependent analysis reveals that this behaviour is not monotonously evolving in proportion

to distance to an M nucleus, but rather there seems to be a compensatory and counter-compensatory

behaviour which tends to balance abnormal motion introduced by the mechanically defective M cells.

This can be observed both for the motion velocity (mean step displacement), direction variation and

absolute orientation variation, although less pronounced in the latter. The closest nuclei to an M cell

(NE40) move faster, rotate more and change direction more than the following group (NE80), which

moves slower, rotates less and changes direction less than the next group (NE120).
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Figure 4.3: Distance-dependent analysis of migration features calculated. I) Mean step displacement (µm/min). II)
Absolute orientation variation (rad/min). III) Direction variation (rad/min) and IV) Migration efficiency
(%). n values indicated in I).

4.3 Nuclear morphology

Nuclear motion is seen to be impaired in the monolayer where stiffer nuclei are sparsely included. In

order to understand the causes of this behaviour, or which other features could be correlated with the

differences observed, it is interesting to first analyse nuclear morphology, as it is closely related with

efficiency and coordination of the motion of the nucleus [57].

4.3.1 Morphometric feature analysis

Results regarding morphological features are presented in Figure 4.4. These reflect the average shape

of the nucleus, described by numerical features often found to characterize shape.

M nuclei, due to the physiological consequences of the lamin A Del50 mutation, are expected to

have a different aspect from normal or non-expressing cells [11]. Here, they are larger in size, but closer

than NE nuclei to normal cells in terms of shape. Remarkably, NE nuclei are considerably different from

both M and C cells, shape-wise. While the presence of M cells does not appear to impact NE nuclear

area (120.2 ± 0.3929µm2), which is similar to that of C (122.3 ± 0.5334µm2), NE nuclei are considerably

rounder (less eccentric) than both M and C nuclei. They are less concave than M nuclei, indicating that

boundary irregularities may occur less or have smaller amplitude.

A more detailed description of the boundary shape and how this shape is changing over time may

be provided by the morphological contour analysis, described below.
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Figure 4.4: Distance-dependent analysis of static morphology features calculated. I) x-axis: Area (µm2); y-axis:
Roundness. II) x-axis: Circularity; y-axis: Solidity. Blue arrows and icons indicate shape differences
according to the value of that features.

4.3.2 Spacial progression contour-based analysis

With the polar representation of the nuclear boundary, further insight may be provided into the average

morphological characteristics of the nuclei of each group. Figure 4.5 displays a distance-dependent

analysis of contour-based features which reflects spatial progression of the contour i.e. a detailed anal-

ysis from a static perspective.

Boundary irregularities seem to occur in larger amplitudes in C nuclei, when compared to both M and

NE nuclei (Figure 4.5 I)). It is of note the growing tendency which can be observed in contour amplitude

for the NE nuclei in a distance-dependent perspective, indicating that this particular effect of contour

smoothing may decrease as distance to a mutant cell increases. For contour concavity (Figure 4.5

II)), M nuclei will not be commented due to the high heterogeneity of their phenotype. Few differences

can be found between C and NE. These nuclei have similar values for contour concavity, indicating

that this is not a discriminatory feature. Taken together, the results from this and the previous section

indicate that C nuclei are more elongated and have a rougher boundary when compared to NE nuclei.

Solidity is smaller for C nuclei, which is in line with the results for contour amplitude and abruptness

(not shown), indicating that the amplitude of nuclear concavities is higher in a monolayer of normal cells,
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when compared to the phenotype of NE nuclei.

Figure 4.5: Distance-dependent analysis of static contour-based features calculated. I) Contour amplitude. II)
Contour Concavity. III) Polar representation of the mean contour of each group (left) and of the time-
averaged contour of each of the M nuclei (right). Different nuclei represented in curves in different
shades of orange. Distances to the centroid in µm.

Figure 4.5 III) roughly illustrates the findings enumerated above. It depicts a representation of the

average nuclear shape, by taking the time-average radii for each of the 100 contour points, for all the

nuclei within the population of the groups under study (C, M, NE); of course, due to the large number of
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cells included in the analysis, much contour detail is lost. In any case, while the area of C and NE nuclei

is similar and smaller than that of M nuclei, NE nuclei do appear to be rounder than C nuclei. Note that,

from the right figure in III), the representation of the time-averaged contour of all the M nuclei depicts

one nucleus which is much larger than the remaining nuclei and very eccentric, which may be biasing

the characterization of this group described above.

4.4 Nuclear dynamics, or temporal progression contour-based anal-

ysis

The results shown above hint that both morphology and migration of NE cells are affected by the pres-

ence of mutant, stiffer cells in the monolayer. A further insight could be provided by investigating if the

nuclear membrane fluctuations, which determine shape alterations, are affected as well, which could

reveal whether the flexibility of the nuclear envelope is maintained in NE nuclei or if these nuclei become

unable to adjust to mechanical stimuli.

Figure 4.6 I) and II) shows that, as expected due to prior knowledge on the properties of HGPS

cells [11], M nuclei have impaired morphological dynamics when compared to C cells, with significantly

smaller amplitudes of temporal variation (i.e. due to the stiffness of their boundary, the ”speed” by

which the boundary changes is much smaller). Contrastingly, NE and C cells have very similar nuclear

dynamics. Temporal abruptness (maximum radius variation from one frame to the other, or how abruptly

the boundary can change) is not significantly different between both groups, indicating that the boundary

stiffness is not altered in NE cells, and temporal contour amplitude (average radius variation between

subsequent frames, or how the boundary fluctuates on average), while slightly inferior, is very close in

average value.

The features shown reflect nuclear boundary averaged across time, but also across the boundary. A

different analysis of nuclear dynamics can be performed without averaging temporal boundary variation

across the spatial dimension, but rather only across time. For that, two metrics were defined, which are

just variations of the calculation of temporal contour amplitude ∆t (Table 3.3), but are a function of the

spatial boundary m.

Relative temporal variation is calculated in a very similar way to the ∆t, but it is not averaged across

the boundary (Equation (4.1)):

∆t,rel(m) =
1

N − 1

N−1∑
n

|
rm,n+1 − rm,n

rm,n
| (4.1)

where n is one frame of N = 21 total frames, m is one boundary point of M = 100 boundary points,

and rm,n is the distance to the nuclear centroid at that point (µm). Normalization, here, is necessary due

40



to differences in area in different groups (Figure 4.4 I)).

Figure 4.6: Group-based analysis of nuclear contour dynamics. I) Temporal contour abruptness. II) Temporal
Contour Amplitude. Average value displayed on the bar. III) Average relative temporal variation, for
different nuclei groups. Boundary points represented as oval shape. Magnitude (colour) reflects relative
temporal variation. IV) Average absolute temporal variation (in µm), for different nuclei groups. Unpaired
two-tailed t-test: n.s.− p > 0.05; ∗ ∗ ∗ ∗ p ≤ 0.0001.

Conversely, to get a sense of the absolute variation, one obtains the average differences in boundary

radius over time, in µm (Equation (4.2)).
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∆t,abs(m) =
1

N − 1

N−1∑
n

|rm,n+1 − rm,n| [µm] (4.2)

For each nucleus, ∆t,rel(m) and ∆t,abs(m) are fully characterized by 100 datapoints (length of nu-

clear boundary). From this, one can obtain Figure 4.6 III) and IV), which reflect temporal progression

over the spatial distribution of the boundary. Each nuclear shape represented (left to right, M, NE, C)

corresponds to the average temporal variations for all nuclei of the respective group. Results as repre-

sented in oval shape to facilitate interpretation. Refer to Figure 3.4 for an illustration of nuclear boundary

alignment. Figure A.3 contains an alternative representation the results in Figure 4.6 III) and IV).

Figure 4.6 III) indicates that the range of boundary variation is much smaller in M cells but similar

in magnitude between C and NE nuclei. Furthermore, M nuclei have a much more heterogeneous

distribution of nuclear membrane fluctuations. C and NE cells, however, have corresponding regions

where the relative temporal variation of nuclear radius is quite homogeneous in magnitude. Note that the

regions where this magnitude is higher correspond to regions where the radius is smaller (as described

in Chapter 3, all the nuclei are aligned so that their major axis corresponds to the vertical direction;

as such, the minor axis will the correspond to angles ±180◦ and 0◦). Note that these results refer to

radius variations which are relative to the absolute values of radii in the boundary (∆r/r). So, when r

is smaller (as in the minor axis), the observed higher magnitudes of ∆t,rel may actually correspond to

similar variations (∆r) across the entire boundary.

In order to verify such hypothesis, ∆t,abs(m), or absolute variation of boundary, is displayed in Fig-

ure 4.6 IV). While M cells continue to show a very spatially heterogeneous distribution of nuclear tem-

poral variation, it appears to be more homogeneous across the boundary in C and NE nuclei, with the

exception of boundary points near the −π/2 (−90◦) region, where the major axis is defined. Such higher

magnitudes of variation could be due to nuclear motion, with the major axis corresponding to the leading

edge.

Another interesting analysis of nuclear boundary dynamics, though less detailed, can be performed

by investigating how the numerical features calculated regarding nuclear morphology are changing over

time. So, for feature F , feature variation is calculated as (Equation (4.3)):

∆F (%) =
1

N − 1

N−1∑
n

|
Fn+1 − Fn

Fn
| × 100 (4.3)

where Fn is the value of feature F in time frame n. Figure 4.7 allows for a distance-dependent

analysis of feature variation.

The heterogeneity in behaviour between different groups occurs in this case as well. In NE cells,

area (I) appears to change less in the proximity of an M cell, although C nuclei-like variations can be

seen as distance to a mutant cell increases. Nuclear eccentricity (II), in turn, varies more in NE cells
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Figure 4.7: Distance-dependent analysis of dynamics of morphological features, in percentage of relative variation.
I) Area. II) Eccentricity. III) Circularity. IV) Smoothness.

when compared to C cells, but the trend seen for increasing distance is similar to that of area.

Circularity (III), which relates shape and area-to-perimeter ratio, varies in a similar way in both C

nuclei and all the groups of NE nuclei. When comparing these results with those for smoothness (IV),

which measures perimeter irregularities, one can see that the trend observed for NE distance-dependent

groups (increase followed by decrease in variation) is opposite to that of area (decrease followed by in-

crease in variation). Because circularity relates these two variables, this could explain why the variations

in circularity are so similar for C and NE nuclei across all the different subgroups. Again, what has been

described points to a distance-dependent compensatory dynamic behaviour in NE cells. M nuclei, has

would be expected, display inferior levels of variation of morphological indicators, due to the stiffness of

the boundary.

Note that Figure 4.6 refers to the details of the dynamics and boundary mechanics by which nuclear

shape is changing, but it does not reflect the net changes in nuclear morphology. Figure 4.7 comple-

ments this analysis by giving an overview of how these dynamics are affecting the overall shape of the

nuclei.
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4.5 Discussion

Regarding group sample distribution, which influences robustness of downstream analysis, one should

mention the small number of samples composing the M cell group (n = 20), which amounts to less

than 1% of the total number of nuclei analysed. The characterization of HGPS cells has been studied

extensively [12, 58], and it was not the main focus of the present work, which intended to describe

monolayer-level alterations stemming from the introduction of a small percentage of mechanodefective

cells. Nonetheless, data for M nuclei was included in the results, providing a reference for the behaviour

of these cells. Furthermore, one should note that the distance-dependent division of the NE cell group

produces 5 groups of cells which have large number of samples but non-uniform distribution (nmin =

120, nmax = 384, see Table 4.1). Confidence intervals are in inverse proportion to group size, contributing

to a critical analysis of the phenotype and behaviour observed.

A summary of the findings in this work is presented in Table 4.2. In addition to the data presented in

Chapter 4, Appendix A.6 contains similar results for an alternative subgroup division of NE nuclei, which

corroborates the main conclusions from the present work.

Table 4.2: Summary of findings for C and NE nuclei (rows) for each of the feature sets analysed (columns). Trends
that mention distance refer to observed values of that feature for different subgroups with increasing
distance to a mutant cell.

Nuclei

Feature Nuclear Morphology Nuclear Lamina Fluctuations Nuclear Motion

• Elongated • Flexible nuclear boundary
• Coordinated motion

(↑ speed, ↓ direction changes)
C

• Rough boundary
• Establishment of ”leading edge”,

with ↑ lamina fluctuations
• High migration efficiency

• Round • Flexibility similar to C
• Uncoordinated motion

(↓ speed, ↑ direction changes)

• Smooth boundary

( ↓ with distance)
• ”Leading edge” also observed

• Low migration efficiency

(↓ with distance)NE

Distance-dependent effects in nuclear motion and fluctuations, as compensatory mechanism

Regarding nuclear morphology, NE nuclei are similar in size but more round than C nuclei. These

cells also have less concave nuclei (higher solidity).

Data for M nuclei, both due to their small sample size and to their heterogeneous appearance, were

included in the analysis but interpreted carefully (see Figure 4.5 IV - one nucleus is significantly larger

in size than the remaining nuclei of that group, which will certainly have an impact on the average value

of morphometric features such as area). Overall, however, taking into account these factors, M nuclei

analysed in the present study were larger, with similar shape to that of C nuclei (but more eccentric than

NE nuclei) and with lamina irregularities which have higher amplitude than those of NE nuclei. Choi et
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al. [12] describes these nuclei as smaller, more round and less solid, with a large number of small blebs.

Goldman et al. [58], however, studies how the accumulation of mutant lamin A Del50 can influence

nuclear shape and describes decreases in circularity with increased passage number, which result from

perimeter increases (due to nuclear lobulation becoming more prominent) as well as an increase in area

(although less pronounced than the perimeter increase, hence the observed decrease in circularity).

The phenotype described in the present study would be consistent with the accumulation of the mutant

lamin, but in order to take robust conclusions regarding the nuclear shape of M cells, the number of

samples should be increased.

Philip and Dahl [4] shows that NE nuclei are more circular than C cells, which is in line with the

findings described here. Regarding the analysis of the progression of the polar description of nuclear

boundary, some interesting conclusions can be drawn. The growing trend of contour amplitude (equiv-

alent to increasing roughness) observed for the NE subgroups indicates that this morphological adap-

tation of NE cells to the environment may depend on distance to a mechanically impaired cell. The

values for this feature, however, are still significantly inferior to the contour amplitude of C cells, indi-

cating that smoother nuclei (lower contour amplitude) are a monolayer-level implication of the

insertion of defective nuclei. M nuclei appear have a higher value of contour concavity, which points

to the existence of the nuclear lobulations, typical of this mutation.

Still regarding morphometric analysis, but considering the dynamics by which nuclear shape ad-

justs over time, NE nuclei behave in a distance-dependent manner, and either preferably change

shape/aspect ratio or smoothness/perimeter, resulting in similar values of circularity variation for NE

cells across the whole M+NE monolayer.

Interestingly, the mechanisms of nuclear membrane fluctuation do not appear to be affected in NE

cells, while for M cells, due to increased nuclear stiffness, these nuclei are considerably less flexible.

These results indicate that while NE cells adapt through various mechanisms to the mechanical

imbalances caused by the presence of M cells, membrane flexibility is not affected. The calcula-

tion of the correlation between subsequent nuclear boundary curves, which can be seen in Figure A.4,

further illustrates these findings.

Upon collective cell migration in a monolayer, the large-scale reorganization required is largely regu-

lated by mechanisms of mechanical force sensing and response [59], where propagation of these signals

is taking place through cell–cell junctions [16]. Mitosis and apoptosis events may cause perturbations

to the dynamics of the monolayer, but the correlation between velocity vectors is usually high, indicat-

ing that a coordinated motion takes place. As was mentioned in Chapter 1, the nucleus and nuclear

stiffness play an important role in cell migration [23], and HGPS cells migrate deficiently, which could

be attributed to a decrease in nuclear deformability, decreased actin-myosin force generation [13], or

inadequate establishment of cell polarization [31]. The formation of an actin-cap has been shown to be
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fundamental for efficient nuclear motion [57] and in HGPS cells this component is often disorganized or

absent [60], so impaired migration is to be expected.

Indeed, here, a decrease in motion velocity and coordination can be observed for the M+NE

monolayer. Collective migration efficiency is significantly lower for NE nuclei, on average, and it ap-

pears to decrease with distance to the defect until a distance superior to 160µm from a mutant nucleus.

This is a consequence of a lower net displacement to total distance ratio. Mean step displacement

(motion velocity, a proxy for total distance) increases for a distance superior to 80 µm from a mutant

nucleus, hinting that the hindering of nuclear motion may be a short-range effect. However, migra-

tion efficiency does not increase because net displacement (data now shown) does not increase, as a

consequence of decreased coordination in collective cell migration. This implies that while the nuclei

recover mobility potential when velocity starts increasing, their motion is still be impaired due to deficient

force transmission or mechanoresponse from other neighbour NE cells, which is reflected in the poor

coordination. It is important to note that net displacement reflects only the relation between initial and

final positions, so it does not necessarily reflect the trend seen for either direction variation or absolute

orientation variation, although these two features can be related to how coordinated cell motion is.

In a coordinated monolayer, cells will tend to elongate and align along preferential directions [59].

This would explain the average morphology observed for C nuclei, with NE cells having a rounder nu-

cleus as a potential consequence of less defined direction of motion. In any case, it appears as though

there is a preferential region for nuclear boundary changes in C and NE cells (Figure 4.6 IV)), indicating

that monolayer dynamics and collective migration are dependent on the adjustment of the major axis

of the nucleus and subsequent change in diameter along that direction. Cell polarization and nuclear

rearward motion are to be expected in normal cells [23], and the lack of an adequate nuclear arrange-

ment which can be observed for M cells may be related to their reported inability to establish

proper cell polarization [32].

In a stable monolayer, contractile and extensile forces are balanced [59]. Force imbalance may

occur in normal monolayers as a consequence of misalignment points, locations with undefined local

cell orientation axes (also called topological defects). For the M+NE monolayer, however, potentially

due to abnormal force transmission by M cells, these sites become sources of force imbalance, thus

disturbing collective cell migration in neighbouring areas.

The aforementioned study by Philip et al. [4] had observed the attenuation of response to shear stress

in NE cells, but the cause of this behaviour is unclear. Curiously, lamin reorganization and upregulation

in NE cells appears to be impaired to a greater degree than both control and mutant lamin A Del50 cells.

Cell-cell signaling (gene expression is affected in HGPS cells [61]) or the alteration of the flow patterns of

the monolayer (due to the connection between lamins and the cytoskeleton, which is deficient in HGPS

cells [11]) could be at the origin of the findings in this and in the present work.
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Overall, collective cell migration is impaired in the M+NE monolayer and trajectories are more scat-

tered and disordered due to higher changes in direction and slightly higher rotation speeds. From the

nuclear lamina fluctuations observed, it appears that NE nuclei maintain the ability to adjust to mechan-

ical stimuli; as such, what is causing the differences in nuclear shape and motion could be related to

abnormal internal force generation and transmission in the M+NE monolayer (an interesting analysis of

the discriminatory features for C and NE nuclei can be seen in Figure A.5). Nevertheless, due to the

large number of factors which are altered in HGPS cells and due to the complexity of cell-cell interac-

tions, it is yet unclear which are the underlying causes for the phenotype observed and what is the ”chain

of events” leading to the morphological and behavioural differences described above.
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5.1 Conclusion

The work presented here provides methods for the analysis and complete description of nuclear be-

haviour in a monolayer. A large array of techniques for image analysis and processing were used, in an

attempt to objectively quantify phenotypic differences.

The conceptualization and extraction of features from the nuclear boundary provides a better under-

standing of shape and dynamics of nuclei, with great potential for elucidating how nuclear morphology

evolves and adjusts to the environment. While the full analysis involved the calculation of a set of fea-

tures larger than that presented here, only those deemed more significant were kept for analysis, mostly

due to redundancy.

The main challenges in performing an analysis such as this relate to both the extraction of segmen-

tation masks and appropriate tracking, which is inevitably a potential source of error or bias, and the

translation of numeric, quantitative features into concrete, qualitative phenotype. However, by using the

same methods across all preparations to achieve the first task, with minimal manual input, any potential

bias is propagated throughout the entire dataset and thus differences found between groups should not

be a consequence of the pipeline used for segmentation and tracking.

Tracking nuclear position and maintaining identity has allowed for a dynamic study of shape evolu-

tion and nuclear motion. Because both dimensions are interdependent - nuclear motion depends on

adaptation of nuclear shape and migration depends on nuclear lamina fluctuations - a better portrait of

mechanoresponse and nuclear behaviour can be obtained. Indeed, we note that both migration and

morphology are affected in normal cells by the presence of M nuclei. Velocity of nuclear motion is infe-

rior across the monolayer, when compared to a monolayer of normal cells. The shape of NE nuclei is

rounder, which could be causing the decreased velocity or could be caused by the decreased motion

coordination (i.e. because direction of migration varies, nuclear shape does not align with preferred di-

rections of motion). While membrane fluctuation potential points to nuclear flexibility not being affected

by the presence of M cells, previous studies [4] had noted that lamin reorganization is impaired in NE

cells, which could be leading to the inhibition of nuclear eccentricity and having consequences at a mi-

gration level. Distance-dependency of some of the effects observed indicates that neighbouring cells

sense a mechanical imbalance and try to compensate by exhibiting abnormal behaviour which then

propagates throughout the monolayer.

By laying a basis for the understanding on nuclear behaviour in conditions of abnormal force trans-

mission, the present work consists of yet another step in the direction of finding the principles which

govern cell and tissue biomechanics, including the complex mechanisms of cellular behaviour, sensing,

and interaction of internal and external stimuli. Downstream applications may include the study of mech-

anisms of disease onset and dissemination, with the development of better therapeutic alternatives.
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5.2 Future Work

The present analysis could be expanded to reveal the mechanisms underlying the phenotype observed

and the extent of the influence of mechanically impaired cells - topological defects - in a monolayer.

Because of the microscopy amplification used and the density of M cells in the M+NE monolayer,

one cannot evaluate the total range of the effect of one isolated defect in a monolayer of normal cells.

Some of the differences found in the present work could fade as distance to a stiff nucleus increases,

but for this analysis the density of mutant cells did not allow such conclusions to be taken.

In line with such studies, varying the density of M cells in the monolayer could also shed light on the

mechanisms governing the behavioural changes observed. The present work analysed a monolayer with

a roughly estimated density of M cells of 10%, and this was sufficient to produce generalized differences

between the M+NE and the control settings. What would be the effect of an isolated M cell, both in the

behaviour of this cell and its neighbours, and what could be the range of influence? Do the values of

some features scale proportionally to the density of M cells (e.g. would migration be further debilitated

and uncoordinated, would morphology become more radically different)?

It could also be interesting to analyse how morphological features and motion features correlate,

by performing a cross-correlation analysis of the temporal evolution of nuclear shape and trajectories.

Nuclear morphology and cell migration have been proven to be correlated [57], but such relation may

not be found in M or NE nuclei due to impaired mechanoresponse.

A more complete characterization of the cellular response of NE cells to the presence of M cells

could be achieved by staining and tracking other elements of the cell. Nuclear description could include

a quantification of chromatin distribution and condensation within the nucleus. This is yet another com-

ponent of the cell which is intimately related with mechanotransduction and could be at the origin of the

phenotype observed [20]. Tracking of chromatin could also be included in the analysis.

Staining of the lamins, namely lamin A, could also give insight into the mechanisms controlling cel-

lular response, due to the influence of this component on nuclear stiffness. Finally, by staining the cell

membrane, conclusions could be drawn from the relative positioning of the nucleus in the cell (which

influences cell migration) and from the strength of cell-cell junctions, involved in force transmission and

monolayer integrity.

Force transmission and nuclear stiffness could also be investigated by using techniques like Atomic

Force Microscopy (AFM).

Finally, a 3D analysis could be performed to provide a new perspective on mechanoresponse in a

tissue and how cells interact to compensate for topological defects.
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[31] C. Östlund, W. Chang, G. G. Gundersen, and H. J. Worman, “Pathogenic mutations in genes

encoding nuclear envelope proteins and defective nucleocytoplasmic connections,” Experimental

Biology and Medicine, vol. 244, no. 15, pp. 1333–1344, 2019.

[32] W. Chang, Y. Wang, G. W. G. Luxton, C. Östlund, H. J. Worman, and G. G. Gundersen,
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A
Supplementary Material

A.1 Numerical Averages and Statistical Significance

The following tables (Table A.2, Table A.3, Table A.4, Table A.5, Table A.6, Table A.7) contain the nu-

merical averages and respective confidence intervals for all the data shown in Chapter 4. Differences

between the control condition and other groups are tested for statistical significance using a two-tailed

unpaired t-test, and the p-value is reflected in the colouring of the cell, according to Table A.1. Colour

reflects how the average value of that feature compares between that group and the control group (green

if greater than C, red if lesser than C) and the tone reflects statistical significance.

Table A.1: Colour to p-value correspondence, used to represent statistical significance and average value evolution.
Green is used to represent groups whose average is greater than that of the control condition, and red
represents groups with smaller average.

> C (p > 0.05) > C (0.01 < p ≤ 0.05) > C (p ≤ 0.01) < C (p > 0.05) < C (0.01 < p ≤ 0.05) < C (p ≤ 0.01)
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Table A.2: Average value and 95% CI for Figure 4.2.

Group Normalized Net Displacement CV of direction of motion

C 0.3097± 0.008864 0.7323± 0.1208

Del50A 0.2166± 0.008091

Del50B 0.239± 0.01239

NE 1.683± 0.5139

Table A.3: Average value and 95% CI for Figure 4.3.

Group Mean Step Displace-

ment (µm/min)

Absolute Orientation

Variation (rad/min)

Direction Variation

(rad/min)

Migration Efficiency

(%)

C 0.3894± 0.001315 0.02728± 0.00163 0.4684± 0.002419 63.68± 0.2756

M 0.3343± 0.006984 0.01095± 0.0009742 0.5265± 0.01443 58.5± 2.137

NE40 0.3407± 0.003957 0.03168± 0.004275 0.5747± 0.008887 56.96± 0.8409

NE80 0.3247± 0.002154 0.03026± 0.00275 0.5362± 0.004236 54.79± 0.5178

NE120 0.3351± 0.001985 0.03085± 0.00274 0.5688± 0.005974 52.14± 0.4854

NE160 0.3498± 0.002624 0.02854± 0.002701 0.5373± 0.006019 49.88± 0.5547

NE160+ 0.3555± 0.003992 0.04046± 0.005862 0.5232± 0.009274 51.62± 0.8166

Table A.4: Average value and 95% CI for Figure 4.4.

Group Area (µm2) Roundness Circularity Solidity

C 122.3± 0.5334 0.6285± 0.001331 0.8643± 0.0007447 0.9688± 0.0002025

M 179.4± 6.326 0.6273± 0.01003 0.8614± 0.005638 0.9738± 0.001912

NE40 122.7± 1.284 0.6746± 0.003795 0.8853± 0.001817 0.9718± 0.0004766

NE80 118.1± 0.6991 0.6649± 0.002165 0.8819± 0.00106 0.971± 0.000262

NE120 124.3± 0.7179 0.6729± 0.001974 0.8854± 0.0008996 0.9725± 0.0002297

NE160 119.3± 0.8528 0.6716± 0.002274 0.8870± 0.001108 0.9726± 0.0002784

NE160+ 113.0± 1.27 0.6732± 0.00388 0.8876± 0.001769 0.9722± 0.0003981
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Table A.5: Average value and 95% CI for Figure 4.5 and Figure A.4.

Group Contour Amplitude Contour Abruptness Contour Concavity Mean Cross-Correlation

C 0.02199± 2.083× 10−5 0.06172± 0.00181 49.58± 0.3127 3570.0± 74.14

M 0.0199± 3.547× 10−4 0.06677± 0.0218 51.7± 2.199 5325.0± 916.6

NE40 0.01895± 1.037× 10−4 0.05296± 0.003646 48.99± 0.7685 3587.0± 178.8

NE80 0.01899± 6.721× 10−5 0.05461± 0.002138 49.59± 0.5015 3446.0± 97.32

NE120 0.01905± 4.539× 10−5 0.05175± 0.001867 49.6± 0.4738 3638.0± 100.1

NE160 0.0191± 7.381× 10−5 0.05211± 0.002306 49.3± 0.5429 3485.0± 118.6

NE160+ 0.01917± 3.209× 10−4 0.05351± 0.003236 50.46± 0.8105 3289.0± 176.4

Table A.6: Average value and 95% CI for Figure 4.6.

Group Temporal Contour Abruptness Temporal Contour Amplitude

C 0.08448± 0.001533 0.02909± 0.00002774

M 0.05903± 0.007521 0.02011± 0.0005585

NE 0.08461± 0.001478 0.02861± 0.00003246

Table A.7: Average value and 95% CI for Figure 4.7.

Group Area Variation

(%)

Eccentricity Variation

(%)

Circularity Variation

(%)

Smoothness Variation

(%)

C 1.941± 0.02473 1.59± 0.03997 1.554± 0.0185 0.2179± 0.0059

M 1.028± 0.09503 0.8891± 0.09405 1.099± 0.08726 0.07262± 0.01982

NE40 1.625± 0.05494 2.157± 0.1336 1.541± 0.0449 0.186± 0.01325

NE80 1.572± 0.03494 1.931± 0.07423 1.527± 0.02824 0.2017± 0.008736

NE120 1.521± 0.03191 1.941± 0.07156 1.531± 0.02853 0.2014± 0.008783

NE160 1.754± 0.04332 2.133± 0.1043 1.534± 0.0322 0.1879± 0.009156

NE160+ 1.899± 0.0755 2.704± 0.2954 1.591± 0.05161 0.1775± 0.01386
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A.2 Nuclear Boundary Interpolation

In order to perform the contour-based analysis, all the nuclear boundaries (21 for each nucleus) were in-

terpolated into 100 datapoints, as is explained in Chapter 3. This allows contours to be easily compared

and a large set of features to be calculated. However, interpolation may be poorly implemented and lead

to loss of information. As such, different methods of interpolation were compared using Mean Squared

Error (MSE), which calculates the differences between the original datapoints r(m) and the correspond-

ing values in the interpolated contour ri(m) for all M points of each nuclear boundary (Equation (A.1)):

MSE =
1

M

M∑
m

e(m)2 =
1

M

M∑
m

(ri(m)− r(m))2 (A.1)

The results for the different groups of nuclei, for a cubic, quadratic and linear spline interpolation can

be seen in Figure A.1. Cubic spline interpolation was used, as the error was minimum.

Figure A.1: MSE for different interpolation methods (cubic, linear, quadratic) and different nuclei groups. Data for
rm in px, representing distances to the nuclear centroid.

A.3 Monolayer Dynamics

The calculation of the time-averaged Mean Square Displacement (MSD) can further illustrate differences

in collective cell migration across the two conditions studied. Taking the position of the centroid on each

nucleus i at time t, p = (xit, y
i
t), time-averaged MSD is calculated as can been seen in Equation (A.2):

MSDi(τ) =< ∆pi(τ)2 >=< (xit+τ − xit)2 + (yit+τ − yit)2 > (A.2)

where <> represents a time-average over t and τ stands for lag time. The values of MSD obtained
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for each group (Figure A.2) are the result of averaging the MSD(τ ) for each value of τ .

Figure A.2: Time-averaged mean square displacement across groups. x-axis: lag time (τ ), in minutes. y-axis:
MSD(τ), in µm2. Both axis shown in logarithmic scale.

The decreased mean square displacement is observed across all subgroups in the M+NE monolayer,

much like what had been seen in Chapter 4. Collective cell migration is impaired by the presence of

progeria-like cells.

A.4 Dynamic contour-based analysis

The two sections below are concerned with the dynamic analysis of nuclear lamina fluctuations, provid-

ing alternative forms of interpreting data from the present analysis.

A.4.1 Nuclear membrane fluctuations

The data from Figure 4.6 III) and IV) is presented in a ring-like shape to facilitate interpretation of contour

variation. Here, those results are displayed as a two-dimensional plot, which may assist their interpreta-

tion (Figure A.3). The same conclusions can be drawn: the profile of nuclear membrane fluctuations is

very similar between C and NE nuclei, and of noticeable inferior magnitude for M nuclei.
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Figure A.3: Relative (top) and Absolute (bottom) temporal variation, as a function of boundary position (θ, in radi-
ans), for all groups of interest (C, M and NE).

A.4.2 Temporal cross-correlation

In addition to the data regarding the temporal variation of the polar representation of contours, additional

features can be calculated to give a sense of nuclear shape variation, namely similarity features such

as cross-correlation, euclidean distances or cosine distances. In order to further illustrate the results

of Chapter 4 regarding nuclear lamina fluctuations, one can calculate temporal cross-correlation in a

nucleus (Equation (A.3)). Let rn(m) be a vector corresponding to the nuclear boundary in frame n

(m ∈ [1, 100]). Cross-correlation γ can be calculated as:

γ(k) = (rn+1 ? rn)(k) =
∑
m

rn+1(m)rn(m+ k) (A.3)

Where rn+1(m) is the complex conjugate of rn+1(m). Because rn(m) corresponds to a ”spatial

series”, not a time series, cross-correlation was analysed only at the point of maximum overlap (zero lag,

k = 0). So, each nucleus is defined by 20 values of temporal cross-correlation, which can be averaged

to give a sense of how much nuclear boundary is changing in subsequent time frames (Figure A.4).

In line with what could be observed for Figure 4.6, the temporal variation of the nuclear boundary is

more significant for C and NE nuclei than for M nuclei (note that cross-correlation measures similarity,
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Figure A.4: Mean cross-correlation at displacement k = 0, across groups.

whereas temporal contour abruptness and amplitude measure differences between subsequent nuclear

boundaries), and it is very similar for C and NE nuclei, further supporting the idea that, while nuclear

shape may be different, the mechanisms by which shape fluctuates remain unchanged.

A.5 Feature Selection

In order to understand how features are related and how nuclear boundary dynamics could be translated

through a distribution of data points in the feature space, a Principal Component Analysis (PCA) was

performed. This is a very popular linear method for dimension reduction, but it may also be used for

exploratory data analysis. It results in a set of orthogonal basis vectors (each a Principal Component

(PC)), ordered by explained variance and representing directions of progressively smaller variance [2].

It can also be used for data visualization, by projecting all the multi-dimensional data points into a 2D

plot where the two first PCs are represented. By analysing which features correlate the most with these

two directions, one can get insight into how features relate and which could be used as discriminatory

features across groups of analysis (C and NE, particularly).

Contour-based features (from the polar representation of the nuclear boundary) have the particularity

of allowing the study of both spatial and temporal evolution of the contour. Seven numerical features

have been described in Table 3.3, and the projection of the 7-dimensional data from C and NE nuclei

(n = 2020) in the first two PCs (cumulative explained variance of 59.4%) can be seen in Figure A.5.

Two clusters are readily observable, each regarding one group of nuclei. When contemplating the

distribution of the projection of datapoints in each PC axis, the first principal component (PC1) shows

almost no overlap (good separation of groups) whereas PC2 shows significant overlap between distri-

butions. Table A.8 displays the correlation between each one of the features considered and the two

first PCs. It can be seen that the first PC has higher magnitude projections over features which relate
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Figure A.5: Projection of C and NE nuclei datapoints in a 2D plane formed by the first two PCs. Curves representing
the projected distribution of points on each axis are plotted on top (PC1) and right (PC2) of the figure.

to spatial progression of the contour (contour range and contour amplitude) whereas PC2 has higher

magnitude in the direction of temporal progression related features (temporal contour range and tempo-

ral contour abruptness). In Figure 4.5 and Figure 4.6 it can be seen that, while nuclear boundary aspect

differs between C and NE nuclei, nuclear lamina fluctuation is not greatly affected by the presence of M

nuclei. Data visualization using PCA provides an alternative analysis which reflects analogous findings,

where spatial variation can be seen as a discrimination criteria, but temporal progression of the nuclear

boundary is similar between both groups.

Table A.8: Direction of the two first principal components in each of the contour-based features. Highlighted in
green are the two features whose projection of that PC is maximum.

PC Contour
Concavity

Contour
Range

Contour
Amplitude

Contour
Abruptness

Temporal
Contour
Range

Temporal
Contour
Amplitude

Temporal
Contour
Abruptness

1 0.0049 0.5933 0.5966 0.2673 0.2396 0.3463 0.2078

2 -0.0055 -0.2624 -0.2623 0.1437 0.6414 -0.0457 0.6542
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A.6 Distance-dependency in alternative subgroup division

All the results thus far presented in this work, in which the distance to an M nucleus is taken into account

to form different subgroups of NE nuclei, are based on a 40 µm radius difference. Figure A.6 and

Figure A.7 illustrate results similar to those in Figure 4.3, Figure 4.5 and Figure 4.7 but for a 25µm

radius difference (NE25 includes nuclei whose centroid distance to an M nucleus, d, is d ≤ 25µm;

NE50 is for nuclei with 25 < d ≤ 50µm, etc.). This analysis can reveal differences in behaviour at a

slightly smaller scale, and help understand the compensatory/counter-compensatory mechanism that

the results in Chapter 4 appear to suggest.

Figure A.6: Distance-dependent analysis of migration features calculated. I) Mean step displacement (µm/min). II)
Absolute orientation variation (rad/min). III) Direction variation (rad/min) and IV) Migration efficiency
(%). n values indicated in I).

The behaviour of the nuclei closest to M nuclei becomes more evident as a compensation mecha-

nism for the disruption of force transmission and mechanical sensing caused by M cells. This can be

seen in nuclear motion, by higher velocity of translation and rotation, as well as in changes in eccentric-

ity. The compensatory/counter-compensatory behaviour which appears to emerge from this monolayer

imbalance is confirmed and particularly evident for mean step displacement (velocity) and direction vari-

ation, as well as area variation. The decrease in motion efficiency and increase in abruptness of the

contour (contour amplitude) with distance can still be observed, even at this smaller scale for subgroup

division, confirming that these features have a mostly monotonous progression in relation to distance to

a mechanical defect.
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Figure A.7: Distance-dependent analysis of static contour-based features calculated (I and II) and of dynamics of
morphological features, in percentage of relative variation(III and IV). I) Contour amplitude. II) Contour
Abruptness. III) Area (%). IV) Eccentricity (%). n values indicated in I) and III).
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