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Abstract 
 
One of the most used vigilance tests is the psychomotor vigilance test, known by its sensibility to fatigue. However, 
the test only allows getting accurate information in a limited time basis and requires full commitment of the user, 
making it not optimal for continuous monitoring. Therefore, in order to overcome these limitations this thesis deals 
with the problem of quantifying readouts of attentional processes in a continuously basis. A mathematical formulation 
for estimating readouts of attention is proposed using only limited reaction responses distributed randomly in time. 
The relation between encephalography’s metrics and attention is one of the most reviewed in the literature. An 
experiment was designed to evaluate if the encephalography’s metrics related to attentional processes can be 
modelled by limited reaction responses. Recruited volunteers performed the main task, a TETRIS game with 
embedded reaction tests, and simultaneous acquisition of encephalogram at the Institute of Systems and Robotics. 
Features related to gamma and alpha band are the optimal ones to be modelled by the reaction times, achieving 
medium/strong correlation (p<0.05) between the estimation and their value. The TETRIS framework showed 
potential to be a possible attention test and not just a means to achieve validation of the proposed mathematical 
formulation for vigilance monitoring. Feature extraction techniques based on control theory are proposed to extract 
relevant characteristics from time dynamics of the output estimation of the power of low gamma band. Lastly, the 
obtained results and limitations are discussed and possible future work is proposed.  
Keywords: Attention, Continuous Reaction Times, Encephalogram, TETRIS, Feature Contenders, Kalman Filtering 
 

1. INTRODUCTION 

Different activation states of the cerebral cortex impact the 
ability to process information in our daily life. The scientific 
community has been using terminologies like alertness, 
vigilance and attention over the years. These terminologies 
are used differently in distinct scientific fields and scopes, 
making a general and accepted definition of these concepts a 
difficult task (Oken, Salinsky, and Elsas 2006).  Most models 
in the field consider alertness the higher-level attentional 
processes, where alertness is the organism’s physiologic and 
behavioural to respond to any type of stimulation. Alertness 
can be divided in two categories: phasic and tonic alertness. 
Tonic alertness is the individual’s responsiveness in long 
intervals (minutes to hours)(Degutis 2010). Phasic attention 
can be defined as an individual’s momentary changes in 
responsiveness and receptivity to different stimulations 
(within milliseconds). (Degutis 2010; Oken, Salinsky, and 
Elsas 2006)(Sohlberg and Mateer 2001). Some attentional 
processes are listed: 
Focused Attention (Orienting Attention) – It is related to the 
basic responsiveness to stimulation. It is closely linked to 
phasic alertness. 
Sustained Attention (Vigilance) – It is the ability to preserve a 
consistent behavioural response during a continuous and 
repetitive activity. In these tasks, stimuli occur randomly and 
infrequently relative to the main task.  

Selective Attention – It refers to the maintenance of attention 
under the presence of competing or distracting stimuli.  
For matters of simplicity, in this paper the concept of 
attention will be interchangeable with selective/focused 
attention. The same is done between vigilance and long-term 
sustained attention (hours). In this work, short-term sustained 
attention (minutes) is considered outside the scope of 
vigilance and considered to be included in attention. When 
the concept of attentional processes is mentioned, it refers to 
the mechanisms listed above.  
Thus, attention can be defined as the process by which we 
are able focus on behaviourally relevant information, to select 
and enhance specified information processing while 
suppressing the rest that is irrelevant to the goal in hand. 

2. MOTIVATION 

In nowadays society, there are several situations that can 
lead to impairment of attentional processes. The biggest 
contributors are the individual’s levels of fatigue (mental, 
physical or psychological) and sleepiness. Research points 
that fatigue is most prevalent among long-distance truck 
drivers, being responsible for 20 to 30% of crashes involving 
commercial road vehicles in Europe and the United States. 
(World Health Organisation and Who 2004)(Boksem, 
Kostermans, Tops, & De Cremer, 2012). In aviation, pilots 
are subjected to long and unpredictable duty hours, 
insufficient sleep and multiple time zone changes. Fatigue is 
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a major contributor to aviation accidents (Borghini et al. 
2014)(Caldwell et al. 2009)(Petrilli et al. 2006). 
Several studies point that understanding mechanisms of 
attention has the potential to give insights about cognitive 
disorders and attention deficits, such as Narcolepsy and 
Attention deficit hyperactivity disorder (ADHD) (Allahverdy, 
Nasrabadi, and Mohammadi 2011; Naumann, Bellebaum, 
and Daum 2006; Rieger, Mayer, and Gauggel 2003). Thus, 
there are several fields where quantification of attention 
and/or vigilance can bring important contributions. It is in field 
of quantification of attentional processes this paper is 
focused on. 

3. CONTINUOUS REACTION TIMES 

Psychomotor vigilance test (PVT) is one common tool to 
tackle vigilance deteriorations. It is a computerized reaction 
time task that measures vigilance by recording response 
times (RT) to visual (or auditory) stimuli that occur at random 
inter-stimulus intervals. For example, PVT has been used to 
evaluate pilot’s sustained attention, performing the test a few 
times during the task’s duration. However, it has limitations. It 
requires full engagement of the subject to perform the PVT 
test, imposing an execution interruption of the main task, 
such as driving and piloting. Despite providing accurate and 
valuable information, the test only provides information in a 
short time window that corresponds to its duration. 
These two limitations make the PVT not suitable for 
continuous fatigue monitoring, especially in critical tasks. 
Therefore, the main objective of this paper is to develop a 
minimum intrusive approach of vigilance quantification 
through sparse and non-uniform time distributed reaction 
stimuli responses. In this approach, a subject has to react 
occasionally to stimuli while performing his/her main task. 
This methodology allows the subject to maintain its primary 
task while continuously quantify the levels of tonic alertness. 
The price to pay is a higher variance/uncertainty on each 
measurement when compared to traditional PVT. The overall 
accuracy is improved by taking into account all 
measurements under the adoption of smooth constraints for 
the vigilance levels across time. In other words, there is a 
trade-off between information resolution (degree of accuracy 
of each measure) and time resolution (time window of 
available data). A mathematical formulation to estimate 
readouts of attentional processes (vigilance, selective 
attention, etc.) is proposed using only continuous reaction 
times (CRT). This way the main drawback of the proposed 
sampling methodology, the degree of accuracy of each 
measurement (reaction time), is overcome. This estimation 
problem was formulated using Kalman filtering, where the 
variance of the noisy continuous reaction times (CRTs) is 
minimized in order to model attentional processes (target 
variable), Figure 1 and Figure 2.  

 
 

Figure 1 – Schematic of the process of estimating attentional 
processes using only limited reaction times 

 
An experimental design is built to validate the mathematical 
formulation. This procedure is based on a TETRIS game. 
The game simulates a general task where attention is 
requested, simulating workers in high attention demand 
tasks. During the game, and without having to stop it, the 
subject responds to random stimulus embedded in the game. 
As the main goal of this paper is to validate the potential of 
the mathematical formulation to estimate attentional 

processes and because vigilance tasks are not simple to 
design, an experiment was built to measure attention. 
 

 
Figure 2 – Representation of the estimation problem dealt in the 

thesis. The limited and noisy reaction times (blue curve) are used to 
estimate the time dynamics of readouts of attentional processes (red 

curve). In black it is represented the estimation output. 
 
As Encephalography is one of the electrophysiological 
signals most related to attention, EEG metrics are used as 
target variable for KF estimation.  

4. EEG AND RELATIONSHIP TO ATTENTION 
 
EEG is generally defined as electrical activity of an 
alternating type recorded from the scalp surface, subdurally 
or in the cerebral cortex (Teplan 2002). The fluctuations of 
the recorded electrical activity can be spectrally analysed in 
different standard EEG bands: Delta (δ), Theta (ϴ), Alpha 
(α), Beta (β) and Gamma (ɣ). Literature reportes the 
involvement of some of these bands in attentional processes, 
but alpha and gamma band are the most consensual in the 
scientific community. 

4.1. Alpha Band 

Alpha activity occurs in the frequency range from 7 Hz to 
14 Hz. It has been reported lower amount of alpha activity in 
higher attention demand tasks, while higher alpha activity is 
associated with signs of fatigue and sleepiness (Borghini et 
al. 2014)(Voytek et al. 2010). One of the most essential 
components in attention is the availability of cortical 
resources for task-relevant processes. The inhibition of non-
relevant stimulus is crucial to not compromise task 
performance and to facilitate these task relevant processes. 
Neurophysiological systems achieve this inhibition of 
irrelevant task processes through alpha synchronization in 
cortical areas not relevant for the role in hand. Alpha 
synchronization has been consistently correlated with 
inhibition of task-irrelevant sensory areas (Mazaheri and 
Picton 2005) (Doesburg et al. 2008)(Clayton, Yeung, and 
Cohen Kadosh 2015)(Lopes da Silva 2013).  For example, if 
auditory or somatosensory attention is required, these areas 
express alpha desynchronization, while the visual cortical 
area express higher alpha activity. Similarly, if visual 
attention is demanded, alpha desynchronization is expressed 
in cortical areas that demand visual processing, while 
auditory and somatosensory areas show alpha 
synchronization. In a recent review, it is stated that alpha 
phase also plays an important role in modulating information 
processing, where the phase of the alpha rhythm can reliably 
predict the detection of upcoming visual stimuli. Furthermore, 
it stresses that higher alpha activity power promotes the 
inhibition of cortical excitability (Lopes da Silva 2013). Other 
alpha related metrics have been suggested. High coupling 
between posterior gamma amplitude and anterior alpha 
phase is associated with an improvement in error detection, 
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task accuracy and lower mental fatigue (Voytek et al. 2010) 
(Cohen and Van Gaal 2013). 

4.2. Gama Band 

Gamma oscillations occur in the frequency range 
approximately 30–100 Hz. Gamma rhythms are suggested to 
represent the rhythmic synchronization of different 
populations of neurons together with the goal of carrying out 
cognitive functions, such as working memory and attention. 
Indeed, it is believed the gamma oscillations are closely 
linked to the activation of task relevant cortical areas 
(Kahlbrock et al. 2012)(Müller, Gruber, and Keil 
2000)(Herrmann, Munk, and Engel 2004). Gamma 
synchronization leads to faster response times and accuracy 
in visuospatial tasks. Literature also points higher gamma 
activity promotes visual attention processes, for example: 
orientation discrimination and shape-tracking (Taylor-Phillips 
et al. 2015)(Gregoriou et al. 2014)  Moreover, findings show 
the lateral pre frontal cortex (LPFC) has an intimate 
connection with gamma activity in the visual cortex. Similarly, 
gamma power in auditory areas is increased during extended 
auditory attention tasks. Furthermore, it is suggested that if 
multiple visual features are competing for attention allocation, 
the attended one gets a competitive advantage over the rest 
by gamma band synchronization (Fries et al., 2001, 2008). 
(Clayton, Yeung, and Cohen Kadosh 2015) 

5. MATHEMATICAL FORMULATION TO ESTIMATE 
READOUTS OF ATTENTIONAL PROCESSES 

 
A mathematical formulation is proposed to minimize the 
variance of the measurements of CRT using Kalman Filtering 
(KF). The chosen formulation is a constant acceleration 
Kalman estimator, where EEG metrics are modelled as a 
physical particle that follows motion equations with n states 
and m measurements. The state-space model of the system 
(EEG’s metrics position, velocity and acceleration) can be 
expressed as in equation 1:  
 

 
𝒙 =   

𝑥 
𝑥
𝑥

 
(1) 

The KF model assumes the true state (x) at time k is evolved 
from the state at (k − 1) according to equation 2. 

 𝒙!!! = 𝑭!𝒙! +𝒘! (2) 

Fk is the state-transition model, equation 3, modelled by a 
state transition matrix, n x n matrix, applied to the previous 
state space, xk-1. ∆𝑡 represents the time difference between 
stimuli. The process noise, wk, is modelled by a probability 
distribution with normal distribution of mean zero and 
covariance matrix of Qk, equation 4. 
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(4) 

The KF model assumes that the measurements zk at time k 
results from the true state xk according to equation 5. 

 𝒛! =  𝐻!  𝒙! + 𝒗!    (5) 

Hk represents the observation model, modelled by the 
measurement emission matrix, m x n matrix, which 
transforms the state space at time k, xk to the observation 
space zk. As the state space’s derivatives are assumed to be 
directed observable, Hk is formulated as in equation 6. 

 

 
𝐻! = 𝑎 𝑏 𝑐   (6) 

The observation noise, vk, is modelled by a normal 
probability distribution with zero mean Gaussian white 
noise with covariance Rk. As the only measurement is the 
CRTs, the measurement covariance matrix is a single value, 
equation 7. 
 

 𝑹! =  𝜎!! (7) 

As a result, attention modulation ends up being an estimation 
problem. A total of seven parameters need to be estimated 
(vector ϴ, equation 8), which include measurement and 
process noise, the initial state space,𝑥!|!  , the initial state 
covariance matrix, 𝑃!|!  , and three coefficients of the 
observation space. The optimal parameters were optimized 
using Least Mean Error (LMS). 

 
 𝜽 =  𝑥!|! 𝑃!|!   𝜎!! 𝑞 𝑎 𝑏 𝑐  (8) 

6. METHODS 

An experiment was designed where subjects perform a task 
with embedded continuous visual stimuli (TETRIS) and 
simultaneous acquisition of EEG.  

6.1. Hypotheses 

Three main assumptions were formulated 
H1 - Some EEG features are more suited to be modelled by 
the CRT than others (Feature Contenders - FC); 
H2 - The CRT can estimate the time dynamics of the FCs 
with statistical significance; 
H3 - The CRT can estimate EEG's metrics related to 
mechanisms of attentional processes 

6.2. Population 

The experiment was performed in 14 healthy subjects 
(24.3 ±3.6 years). The task was performed around 15 
minutes. All subjects were male in order to reduce sample 
variance. None of the subjects had neuropsychiatric 
diseases, expect one who noise contaminated and was 
excluded of further analysis. Two of the readings are 
considered partial readings (Subject 1 and 2 with a time on 
task lower than 10 minutes), as the time of acquisition could 
not be the same as the others due to technical issues.  

6.3. Acquisition 

A 2 channel EEG was recorded (Fz and Pz channels – 
sampling frequency of 250Hz) with hardware from LASEEB 
(Laboratório de Sistemas Evolutivos e Engenharia 
Biomédica) at Instituto de Sistemas e Robótica (ISR). The 
acquisition platform was a polysomnography Sonolab 620C 
from Meditron. The reference electrode was placed in the 
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back of the subject’s earlobe. The ground electrode was 
placed in the subject’s left mastoid. A sampling frequency of 
250Hz was deployed to ensure the Nyquist Theorem. As few 
channels were used, it was not possible to apply 
sophisticated artefact rejection algorithms, such as 
independent component analysis. A simple threshold of 
100uV was used to reject EOG, movement and EMG 
artefacts. No approach was followed to tackle possible 
artefacts from intracranial EMG, which overlaps with high 
frequency bands (Muthukumaraswamy 2013). Several 
authors suggest that the frontoparietal neuronal network is 
one of the major players in attention. Thus, it was decided to 
measure the cortical activity of the region with Fz and Pz 
channels (Corbetta and Shulman 2002; Greene and Soto 
2014). The EEG files were recorded in SOMNIUM 
environment in EDF format in order to be imported and 
analysed in MATLAB. All TETRIS files are saved in an Excel 
file. The TETRIS game was played in a different computer in 
order to visualize of EEG signal simultaneously. 

6.4.  Feature extraction 

Before the extraction of EEG’s metrics, an initial pre-
processing of EEG’s raw signal was made using several 
signal processing tools. First, each recording was bandpass 
filtered with a 100th order FIR filter of low cut-off frequency of 
0.5Hz (avoid DC information) and high cut-off frequency of 
45 Hz. Each of the 13 recordings were segmented in 2 
seconds time duration with 50% overlap between them. 
Segments with amplitude over 100uV, it would be considered 
noise or EOG/movement artefact and excluded from 
posterior analysis as explained previously. Then, for each 
extracted window several features were obtained: Time 
domain – In this category, time domain metrics such as the 
Hjorth parameters, which include Activity, Mobility and 
Complexity, and fractal dimensions, Higuchi and Katz, were 
extracted; Time-frequency – Time frequency analysis was 
performed through STFT using EEG related features from 
the standard frequency bands (Delta, Theta, Alpha, Beta, 
lower Gamma), including spectral power, phase and band 
ratios. Moreover, characteristics from Alpha, Beta and 
Gamma sub-bands were considered. A total of 58 metrics 
(time and time-frequency domain) were extracted for each 
channel. Upper gamma of the EEG was not chosen for 
analysis because of not only the spectral leakage of 50Hz 
interference, but also as the spectral power of upper gamma 
is very low compared to other bands, if the ratio of Gamma 
power over noise is not optimal it can compromise the band’s 
information. Therefore, all signals were filtered at 45 Hz. 

6.5. Data mining strategy 

A data mining feature selection was developed to validate 
H1. This strategy computes Pearson and Spearman 
correlation between the EEG features and the CRTs to 
compute a final score. Also, the cost of aligning the CRT and 
each of the EEG features is computed with dynamic time 
warping (DTW). The output of each of the 3 metrics is used 
to compute a qualitative score for each feature, where the 
minimum score is 1 and the maximum score is equal to the 
number of features. The final score of each metric is 
computed by summing each of the ranking scores. The 
features with the highest scores are the candidates for 
Kalman optimization (Feature Contenders - FCs). Kalman 
Filter assumes Gaussian noise for both measurements and 
state space and both update and prediction steps are ruled 
by linear equations. So, it is desirable to have a higher linear 
relationship between the CRTs and the EEG metrics, which 
is evaluated with Pearson coefficient. Using Pearson and 

Spearman may seem redundant but if non-linearities exist 
between the CRTs and the metrics of EEG, it can only 
tracked with Spearman coefficient. As none of these two can 
evaluate time delays, DTW is necessary. Higher DTW costs 
means the 2 sequences are more time delayed than 
sequences with lower cost. EEG metrics that have lower cost 
of aligning themselves with the CRT make the Kalman 
estimation easier because it lowers the dependence of the 
velocity and acceleration states. DTW formulation can be 
accessed in the indicated literature (Ratanamahatana and 
Keogh 2004). 
The scores were calculated at the level of the population and 
not individual to ensure statistical significance for each 
correlation (843 degrees of freedom in population analyses). 
A simple example of this process is explained with 3 
hypothetical features in order to make it more 
understandable for the reader: 
 
Table 1 – Score of each feature for each category 

 Feature 1 Feature 2 Feature 3 
Pearson 1 (rp = 0.2) 2 (rp = 0.4) 3 (rp = 0.7) 

Spearman 1  (rs = 0.25) 2 (rs = 0.4) 3 (rs = 0.7) 
DTW 1 (cost =0.9) 2 (cost = 0.7) 3 (cost = 0.1) 

 
In Table 1, each metric is computed between each feature 
and the CRT (rs, rp and cost). Then, a ranking is built for each 
resemblance metric (qualitative score between 1 and 3, 
where 3 the number of features). Each of these qualitative 
scores is summed as shown in Table 2. 

 
Table 2 – Final Score of each feature of the example 

 Feature 1 Feature 2 Feature 3 
Final Score 1+1+1 = 3 2 + 2 +2 = 6 3 + 3 +3 = 9 

 
In this example, if a threshold of 7 is chosen, only feature 3 is 
considered as a FC and chosen for Kalman estimation. The 
same procedure is used for two different analyses. For one 
hand, instead of 3 features, the procedure is adopted to the 
58 EEG features extracted (maximum final score of 174). 
From the 58, the group with scores higher than 160 are 
considered as FCs for posterior Kalman estimation (Case 1). 
On the other hand, instead of 3 features, the procedure is 
also adopted across the frequency spectrum (45 features, 
each feature is 1 individual frequency from 1Hz to 45Hz). The 
goal is to understand if there is or not a spectral tendency of 
the scores. In order words, the three resemblance metrics 
are computed between the power of each individual 
frequency and the CRT. A cut-off threshold of the final score 
>100 is used to comprehend which frequency ranges are 
most relevant (Case 2).  

6.6. Kalman Filtering 

This step is essential to validate H2. The FCs are used as 
target variables of the Kalman Filter. Several performance 
metrics are computed to evaluate how the well the CRTs can 
model the optimal features: Pearson Correlation, Spearman 
Correlation and DTW between the Kalman estimation and 
the true EEG metric value (same as the previous section). 
FCs that achieve statistical significance are compared with 
the literature to evaluate if they are related to attentional 
processes or not. If yes, H3 is validated. The optimization of 
the seven parameters, vector ϴ in equation 8, is made 
through least mean square (LMS) for each FC. Cross 
validation strategy is adopted. Leave Out One Cross 
Validation Strategy is pursued where from N subjects, N-1 
are used as training set for the Kalman Filter. The test set 
includes the individual that is not used in the training set. 
Also, a one-way Kruskal-Wallis test was conducted between 
the FCs (for each performance metric) to determine if the 
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performance of one or more FC is statistically better than the 
others.  

6.7. Feature extraction of the FCs 

One of the FCs is chosen analysed in this section. As it will 
be shown in the results section, the chosen FC was low 
gamma power. Three strategies are proposed to extract 
relevant information of the estimated curve estimated gamma 
(output of Kalman estimation). However, as the sampling 
times between stimuli are unequal, time-frequency analysis is 
not feasible. The estimated curve is thus represented across 
the number of stimulus responded (CRT-domain instead of 
time-domain). In the CRT domain samples have the same 
interval between them and time frequency analysis is 
possible (CRT-frequency analysis). By evaluating visually 
different subjects, there are individuals who have a constant 
rise of estimated gamma, EG, (Subject 6 and 7 and 9) while 
others have a more oscillating behaviour (all others), which 
were named undamped and damped group respectively by 
this property. All proposed strategies have the goal of 
discriminating these two groups. 

 
Figure 3 - Time evolution of the estimated gamma power (EG) of two 

subjects of two distinct groups (blue – Subject 3 – Damped group; 
red – Subject 6 – Undamped group 

 
• 1st Strategy 

In this first strategy, for each individual, several 
metrics of the estimated curve of the chosen FC are 
extracted (6 at total). The population curve of the estimation 
of gamma power is displayed to exemplify the representation 
of each one. In the  Figure 3, the population’s time evolution dynamics is built 
according to the data’s mean and standard deviation in the 
CRT domain. 

 
Figure 4 – Population curve in the CRT domain of the estimation of 
the optimal feature. 4 of 6 listed metrics are represented. Only ZCR 

and normalized peak time are not represented. 
 

The six metrics include: 
Rising time (RT) - Rising time corresponds to the time the 
signal crossed the y-axis for the first time. In other words, the 
first time the signal crosses its mean value if the signal is not 
z-normalized;  

Peak time or Maximum time (PT or MT) - The peak time 
corresponds to the time the max value is achieved; 
Zero Crossing Rate (ZCR) - The zero crossing rate 
corresponds to the ratio of number of times the signal 
crossed the y-axis over the number of CRT answered; 
Difference between MaxValue and FinalValue - The 
difference between the maximum value of the signal and its 
value at the end; 
Difference between MaxValue and InitialValue - The 
difference between the maximum and initial value of the 
signal; 
Normalized peak/maximum time – Ratio between maximum 
time (feature 2) and number of CRT answered.  
 
Before extraction of the six features, the data was Z-
normalized to scale all signals to the same order. A two-way 
t-test was performed for each feature to determine if the any 
of these features is statistically different between the 
undamped and damped group. A scoring system was 
developed using principal component analysis (PCA). The 
features that rejected the null hypothesis were Z-normalized 
and used as input in PCA. The first principal component is 
selected and used as a scoring scale for undamped and 
damped subjects.  
 

• 2nd Strategy 

In this second strategy, each estimated curve of estimated 
gamma is modelled through an AR-model (3rd degree). The 
coefficients were obtained by least mean square 
optimization. The AR-model of the signal is used to obtain its 
filter response. Phase response of the filter is computed for 
each subject. As the signal is discrete, the phase is 
represented from –π to + π (-180 and 180 degrees), Figure 5. 

 
Figure 5 - Phase response. Undamped subject is represented in red 

while damped subject is represented in blue. 
 

The sampling frequency of this CRT-frequency 
representation is 1 CRT-1 (the equivalent to Hz in time). The 
phase response of each subject is derived across frequency 
(phase velocity) to find once again characteristics to 
distinguish the undamped and damped group. If P is the 
phase response, its phase velocity (PV) is computed as 
followed: 

 𝑃𝑉 =  
𝑑𝑃
𝑑𝑓

 (9) 

 
As the red spike around 0 CRT-1 is most evident difference 
between the groups, Figure 5, the maximum and minimum 
value of the PV around lower frequencies of each subject is 
extracted. The PCA is applied using the two features of 
phase velocity as input. Just like strategy 1, the first principal 
component is used to build a scoring scale to distinguish both 
groups. 

 
• 3rd Strategy 

 

 

Max-Final	=	0 

PT 

RT 
Max-Initial 
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The last mining strategy also involves the filter response of 
the AR-modelling. Instead of calculating the phase and 
magnitude response, the filter’s poles were determined. As a 
3rd degree model was chosen, every subject has three 
characteristic poles. Each pole’s natural frequency (ω), 
damping ratio (ε) and time constant (τ) were computed. No 
statistical test was conducted.  
 

7. RESULTS 

7.1. Acquisition 

 
Figure 6 - Mean (red) and variance (black) of the reaction times of 

each subject (left). 
 
A high inter subject variability of the reaction times was 
obtained - Figure 6. TETRIS is complex game, far more 
complex than other tasks because it largely depends of the 
skill of the player. While monitoring the subjects during the 
experiment, it was clear that the worst players were the ones 
that reacted slower to the visual stimuli and have higher 
reaction time variance. Players with more skill reacted more 
easily to the stimuli and their reaction times were more 
constant. This skill dependency contaminates the reaction 
times’ statistics (mean and variance). As a result, it was 
decided that all data and analysis (correlations and 
estimations) should be Z-normalized to eliminate this skill 
dependency. It was decided to focus on analysing time-
dynamics.  

7.2. Data Mining Strategy 

In this section, the main results of the proposed data mining 
strategy are presented. For each channel the FCs are 
determined. The correlations of each score obtained a 
p<<0.01. The top FCs of the 58 EEG features (score >160) 
are presented in Table 3 and Table 4. Scores from different 
channels are not comparable. 
 
Table 3 – Major feature contenders of Pz channel (Score >160) and 
their respective ranking score. The scores of the other 54 features of 
the Pz are not present. 

Major FC of Pz channel Score (0-174) 
Spectral Frequency 174 

Low Gama PSD 169 
Gama peak frequency 169 

Katz Fractal 166 
 

Table 4 - Major feature contenders of Fz channel (Score >160) and 
their respective ranking score. The scores of the other 53 features of 
the Fz are not present. 

Major FC of Fz channel Score (0-174) 
Low Gama PSD/Alpha PSD 174 

Higuchi Fractal 169 
Low Gama PSD/(Beta PSD + Alpha PSD) 169 

Normalized Low Gama PSD 164 
Low Gama PSD/(Theta PSD + Alpha 

PSD) 
164 

By analysing Table 3 and Table 4, only a few EEG metrics 
achieved the status of FCs, 4 in Pz channel and 5 in the Fz 
channel. The rest are considered non-optimal features. This 
group of non-optimal features includes: the phase response 
of the different EEG bands and sub-bands; power spectrum 
density of lower frequencies, delta, theta and alpha bands; 
Hjorth parameters (Activity, Mobility and Complexity); 
normalized the power spectral densities of different bands 
besides gamma. These features were excluded from further 
analysis. Despite solo alpha power not being in the top 
features, it appears in the denominator of some FCs. 
Most noticeably, power of low gamma and gamma related 
features obtained all high-ranking scores across both 
channels. In Fz channel, low gamma power and the 
frequency of highest gamma power (gamma peak) achieved 
2nd and 3rd best places respectively, Table 3. In Pz channel, 
Table 4, 4 of the 5 FCs are features proportional to the power 
of Gamma. Both time domain fractal dimensions, Katz and 
Higuchi also showed promising results in Pz channel and Fz 
channel respectively. This top spot belongs to Spectral 
Frequency, Table 3.  
Thus, these results show that H1 is validated because a 
group of EEG features stood out of the 58 extracted features, 
Table 3 and Table 4. 
From this analysis, 5 metrics are common across the 9 FCs: 
low gamma power, fractal dimensions, spectral frequency, 
gamma peak frequency and alpha power. Spectral frequency 
is the frequency (Sf) that defines a frequency range from 0 
Hz to Sf Hz, which includes 95% of the power spectrum 
density in a pre-determined time window. When referring to 
fractal dimensions, such as Katz and Higuchi, they try to 
estimate how complex a signal is. Also, gamma band has a 
narrow frequency band that presents much higher spectral 
power than the rest of its band. This characteristic region is 
called the gamma peak and generally surrounds the 40 Hz. If 
higher amplitude is present in the gamma peak region, 
gamma power is also higher.  
Some findings are corroborated by the spectral tendency of 
the scores. 

 
Figure 7 – Evolution of the ranking scores of non-normalized spectral 

power across frequency for Pz channel. The tendency to higher 
frequencies is evident. Fz is not displayed. 

 
The ranking scores of the spectral evolution displayed in 
Figure 7. These scores are much lower than the top scores 
of the 58 features per channel, Table 3 and Table 4, because 
the maximum score of this spectral evolution analysis is 135 
(45 times 3). In the CRT analysis, the results of the optimal 
FCs, Table 3 and Table 4, are coherent with the rankings 
scores across the frequency spectrum, Figure 7. A clear 
tendency exists where higher scores correspond to higher 
frequencies (Figure 7 - blue line), especially in the gamma 
band. H1 was validated, the FCs (9 features) are selected for 
the next round of analysis. 
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7.3. Kalman Filtering 

In this sub-section, the results of applying the mathematical 
formulation to estimate readouts of attention are presented. 9 
EEG features were selected as FC in the previous section. In 
this sub section, a Kalman filter model is trained for each FC 
to evaluate if the CRT can model its time dynamics. (Cross 
validation strategy) The performance metrics of these 
estimations are computed to evaluate statistical significance 
of the estimation and if any feature stands out of the rest. 
The graphic result of the performance of the estimated is only 
presented for low parietal gamma power, Figure 8. 

 
 
Figure 8 - Kalman estimation of Pz low gamma power. The cloud of 
points of the experimental data is displayed alongside with the 
confidence intervals (95%). Notice the high variance across the 
estimation 
 
 
Table 5 –Pearson and Spearman correlation, and DTW performance 
metrics for the 4 FCs of the Pz channel. All correlations have a p-
value<0.05. 

FC Pearson 
Correlation 

Spearman 
Correlation 

DTW 

Spectral 
Frequency 

0,477 ±0,285 0,445 ± 0,292 33,97 ±16,2 

Low Gama 
Power 

0. 598±0,249 0. 558±0,267 31,4 ±16,03 

Gama peak 
frequency 

0. 590±0,259 0. 559±0,274 32,6 ±16,11 

Katz fractal 0. 491±0,358 0.552±0,379 37,5 ±21,36 
 

Table 6 - Pearson and Spearman correlation and DTW performance 
metrics for the 4 FCs of the Fz channel. All correlations have p<0.05. 

 
 
All FCs obtained medium or medium/strong correlation (p-
value<0.05) between their true value and their estimation 
using Kalman Filtering and CRT as its input. However, it is 
noticeable the high variance of the performance metrics 
across the FCs, representing the high inter subject variability 
- Figure 8, Table 6 and Table 5. A Kruskal-Wallis test was 
conducted for each performance metrics to determine if any 
FC is statistically different from the others (H1). The null 
hypothesis was not rejected in any performance metrics. 
Therefore, It is concluded there is no optimal EEG feature 
that outstands the others. Also there is no preferable channel 
where the estimation is better.  

 
Figure 9 - Gaussian distribution of the Pearson correlation between 
each FC and their estimated value 9 FCs (the other performance 

metrics are not displayed). No clear distinction exists between them.  
 

DTW revealed itself not very useful at this stage. In DTW’s 
cost, all results have a similar mean value and high variance, 
Table 5 and Table 6. A constant acceleration (CA) Kalman 
Filter was used in this work. As mentioned before, CA can 
track rapidly changing oscillations and eliminate time delays 
between the input and target variable. This could have made 
the DTW not so helpful as a metric judge. It is concluded that 
the CRT can model each of the FCs with medium or 
medium/strong correlation (p<0.05), validating the H2. This 
aspect is crucial because the proposed data mining strategy 
can only tell us which features better than others. Despite 
these being better, they could have been bad overall. 
Two FCs are Katz and Higuchi. However, very little literature 
was found connecting fractals to attentional processes. 
Gamma frequency peak is one of the FCs. Also, little findings 
show the connection between frequency shifts of the Gamma 
peak and attentional processes. In the literature two of the 
frequency bands more connected to attention are gamma 
and alpha band. For one hand, gamma activity has been 
linked with selective attention and continuous activation of 
task relevant cortical areas. This connection has been found 
in several different types of studies including feature and 
spatial attention and lesion studies (Doesburg et al. 2008; 
Fell et al. 2003; Kahlbrock et al. 2012; Kim et al. 2015). On 
the other hand, alpha activity inhibits irrelevant task 
processes in cortical areas not relevant for the role in hand. 
Alpha synchronization has been consistently correlated with 
inhibition of task-irrelevant sensory areas (Mazaheri and 
Picton 2005) (Doesburg et al. 2008)(Clayton, Yeung, and 
Cohen Kadosh 2015)(Clayton, Yeung, and Cohen Kadosh 
2015)(Lopes da Silva 2013). Thus, H3 is validated.  

7.4. Feature Extraction of the FCs 

An effort was put to develop possible methodologies that can 
extract interesting metrics of the time dynamics of the FCs 
related to gamma or alpha bands. The proposed feature 
extraction techniques were only applied to low parietal 
gamma power. Analysing the population curve of estimated 
gamma (Figure 4), some interesting conclusions can be drawn 
by the population’s line of tendency and variance across the 
different zones (error bars): a constant rise of gamma in the 
beginning of the experiment (0 to 15 CRT); the existence of a 
gamma peak (15 to 20 CRT); a slow decrease during 20 
CRT; plateau during the rest of the experiment. 

• Strategy 1 

Four of the six extracted metrics in strategy 1 are not 
statistically different from one group to the other, Figure 10. 
Only Normalized MT and the variation between final and 
initial value of the signal rejected the null hypothesis 

FC Pearson 
Correlation 

Spearman 
Correlation 

DTW 

Gama/Alpha 0. 54 ± 0,22 0.54 ±0,23 33,11 ±15,44 
Higuchi 
Fractal 

0.519 ± 0,32 0.468 ±0,30 35,24 ±18,02 

Gama/ 
(Beta+Alpha) 

0. 549 ± 0,10 0.55 ±0,197 34,00 ±15,60 

Normalized 
Gama power 

0.50 ± 0,27 0.47 ±0,245 35,99 ±17,988 

Gama/ 
(Theta+Alpha) 

0. 52 ± 0,27 0.47± 0,286 36,49 ±18,51 
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(p<0.05). As the number of subjects is low, high T values 
cannot be obtained. 
 

  
 
Figure 10 – Two-way t-test between the undamped and damped 
group. Features that are significantly different (red) and features that 
the null hypothesis was not rejected (black) are represented 
 
By analysing the elements of each group, Figure 3, and the 
characteristics of each subject, Figure 11, interesting 
conclusions can be drawn. If an individual has a constant rise 
of estimated gamma, his maximum value will be close to the 
end of the experiment. In an oscillatory signal, the maximum 
can appear in any time. For one hand, undamped subjects 
have peak time near the end of the experiment and a small 
difference between the Max and Final value of the signal 
(anti correlation between features). On the other hand, the 
damped group can have a final signal value much more 
different than an undamped subject.  
 
 

 
Figure 11 - Cloud of points representing the 2 features that rejected 

the null hypothesis (Yellow – Undamped, Blue - Damped) 
 
 
These two features used to build the PCA score. This score 
generated a smooth score trend, as displayed in Figure 12.  
Subjects from the undamped group (6, 7, 9 – red bars) 
achieved score above 0.6.  Notice that this score misplaces 
subject 4, who belongs to the damped group.  
 

 
Figure 12 – PCA score of the eleven subjects using the CRT domain 

features. The subjects with lower score (black) have an oscillatory 
attention while subjects with higher scores (red) have a constant 

increase of attention during the experiment. 
 
• Strategy 2 

In the 2nd strategy, features are extracted from the phase 
response of the filter response, Figure 5,  which was 

computed from the AR-model of the estimated gamma. 
Subjects from the undamped and damped group have 
substantial differences in their phase velocities in very low 
frequencies - Figure 13. However, Their phase velocity in 
intermediate and higher frequencies is similar across 
different subjects. Thus, the phase velocity allowed to 
conclude that the amplitude range of both groups’ phase 
velocity in lower frequencies is substantial different (higher 
maximum and lower minimum), as shown in Figure 13. 
 

 
 

Figure 13 – Phase response (left) and phase velocity (right) results 
from one sample of each group. Undamped subject is represented in 

red while damped subject is represented in blue. 
 

Lower minimum phase velocity and higher maximum phase 
velocity characterize the cluster of subjects belonging to the 
undamped group (blue cluster in Figure 14), where higher 
minimum phase velocity and lower maximum phase velocity 
characterize the cluster of subjects belonging to the damped 
group (red cluster in the bottom right of Figure 14). 

 

 
Figure 14 – Z-score normalized feature representation of both 

extracted metrics from phase velocity (left), where damped subjects 
are represented in the red and undamped in  blue. PCA eigenvalues 

of the extracted features (right). 
 
Higher distinguishability was obtained in this PCA scoring, 
Figure 15. Better than the 1st strategy. Also, the subjects are 
not misplaced like in strategy 1. 

 
Figure 15 – Sorted PCA score of the eleven subjects after feature 

reduction using the Phase Velocity features. The subjects with lower 
score (black) have an oscillatory attention while subjects with higher 

scores (red) have a constant increase of attention during the 
experiment. 
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Substantial distinguishability is achieved between both 
groups, in Figure 15. Thus, undamped subjects obtain high 
scores, between 0.6 and 1. On the contrary damped subjects 
obtain very low scores, below 0.1.  Despite statistical tests 
were not performed to confirm this (low number of subjects), 
it is believed this technique can effectively discretize these 
two groups.  
 

• Strategy 3 

Strategy 3 focused on each subject’s poles. The closest pole 
(CP) to the unitary circle of the filter response showed the 
most potential to distinguish the undamped group from the 
rest. The other poles farther from the unitary circle did not 
relevant insights. The damping ratio (ε) between groups is 
highly discriminative, where all subjects from undamped 
group have negative ε, while all subjects from the damped 
group have a positive ε - Table 7. It is concluded ε is an 
automatic tool to distinguish these two groups. No substantial 
differences were found studying the pole’s natural frequency 
or conjugate complex poles, but more statistical analyses 
should be made to confirm it. 
 
Table 7 - Damping Ratio of three poles of each subject as a result of 
the autoregressive estimation of lower parietal gamma 

 
Subject 𝜺 (closest pole) 

3 1 
4 1 
5 1 
6 -1 

7 -1 
8 1 
9 -1 

10 1 
11 1 
12 1 
13 1 

 

7. DISCUSSION 

This paper proposes a methodology of quantifying tonic 
alertness/vigilance using only sparse reaction times 
distributed randomly in time (CRT). Despite, the experimental 
design was more directed to attention than the field of 
vigilance, the main goal and contribution of the thesis was 
the validation of the potential of the mathematical formulation 
for estimating attentional processes using the CRT. The 
proposed formulation was able to model the time dynamics of 
features related to two EEG bands with medium/strong 
correlation (p<0.05). These EEG bands are recognized to be 
related to attentional processes: gamma and alpha band. 
These have been linked to the enhancement of task relevant 
processes and inhibition of irrelevant task processes, which 
are two components of attention. 
Despite fractals (Katz and Higuchi) and gamma peak 
frequency achieved statistical significance, little literature has 
linked them to attentional processes. No optimal feature 
stood out of the group in performance, as no statistical 
difference was achieved between them. The 1st data mining 
strategy was able to separate partially undamped and 
damped groups. However, a strong distinguishability was not 
achieved. The poles’ characteristics provide the best 
discrimination of the 3 strategies, being an automatic 
decision tool. 
This work presents several limitations in the acquisition. One 
of the most important steps in EEG research is noise and 
artefact removal so that the quality of data and proper 
conclusions could be drawn. Generally, a high number of 

channels is used in EEG’s experimental design. This way it is 
possible to apply sophisticated signal processing techniques, 
such as Independent Component Analysis and Laplacians to 
remove any unwanted signal including EOG, EMG and 
movement artefacts. The only available hardware was 
composed of only 2 channels so these algorithms could not 
be applied. Intracranial EMG may interference with analyses 
in high frequency bands.  
At the acquisition level, another way to increase robustness 
is to record EEG during five minutes before the beginning of 
the task to serve as baseline. As one of the initial goals was 
to be able to track EEG oscillations, it was not taken in 
consideration the importance of this period of time, which can 
give substantial insights for feature extraction, mainly in how 
for example low gamma power rises in the beginning of the 
experiment.  

 
It is believed higher gamma activity makes the subject more 
focused in the task in hand (playing the TETRIS game). 
Higher focused/orienting attention makes the subject more 
vulnerable responding to the distracting stimulus, leading to 
an increase in reaction times. This conclusion seems contra 
intuitive as generally low response times correspond higher 
attention levels, such as in PVT. This is justified because 
PVT and the TETRIS game try to quantify different 
attentional processes.  PVT measures tonic alertness where 
the subject has to respond as quickly as possible to a task-
relevant stimulus. The CRT-TETRIS game tries to measure 
focused/selective attention and short-term sustained 
attention, where the subject has to respond to the non-
relevant task stimulus as quickly as possible while 
maintaining attention at the main task. TETRIS was originally 
developed for the validation the mathematical formulation of 
attentional processes but the electrophysiological findings 
show that CRT-TETRIS can be a potential attention test for 
neuropsychiatric disorders where attention deficits are 
evident, such as ADHD and Narcolepsy.  The CRT-TETRIS 
is able to model with medium/strong correlation a group of 
features that are related to gamma and alpha band, which 
have been linked to several attention studies. This game 
based framework is one of the thesis greatest contributions. 
It is true several focused and selective attention tests exist 
but CRT-TETRIS brings some advantages and advances in 
the field of attention. Most vigilance or attention tests use 
metrics that don’t consider the test’s time dynamics, such as 
the PVT.  The combination of the mathematical formulation 
the control based feature extraction techniques can bring to 
the table new features and insights that are not currently 
explored. Despite TETRIS complexity may seem a 
disadvantage, it be turned into one of its major advantages. It 
is hypothesized that if some attentional processes can de 
modelled in such a complex environment using only one 
input, this can be also done in other similar tasks, such as 
other task driven games. In addition, as it is game based, it is 
more appealing for children. 

8. CONCLUSIONS AND FUTURE WORK 

Despite the initial motivation was in the field of vigilance, 
most of work and electrophysiological findings were in the 
field of attention, more concretely in focused/selective 
attention and short term sustained attention. However, 
contributions of the thesis can be applied to both vigilance 
and attention. But first, the limitations of this work should be 
tackled to improve what was done. The acquisition limitations 
must be overcome to evaluate the potential threat of the 
intracranial EMG contaminating the gamma band. Moreover, 
the new set of experiments should be focused on improving: 
subject diversity (age and gender), number of channels 
(especially including Oz for visual attention and Fp1 and Fp2 
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for EOG recording and artefact rejection), ECG recording for 
evaluation of the parasympathetic and sympathetic 
autonomic activity, and inquiries about sleep habits. This 
suggestion is already being taken place at the clinic: Centro 
do Sono Teresa Paiva in Lisbon. Only then, a more 
ambitious work can be pursued. 
For one hand, the potential of the mathematical formulation 
for attentional processes was proven and therefore, one 
option is to apply it in a new experimental design with the 
objective of building a continuous tonic alertness monitor to 
evaluate fatigue. On the other hand, the mathematical 
formulation to estimate attentional processes and 
electrophysiological findings of the experimental design can 
be more deeply explored in the field of attention. It is believed 
the thesis opens new doors to explore the CRT-TETRIS as a 
potential focused attention test. This framework can estimate 
features related to gamma band and alpha band with 
medium/strong correlation (p<0.05). By hypothesis, these 
estimations can be used “offline” to evaluate and diagnose 
neuropsychiatric disorders related to attention deficits, such 
as ADHD or narcolepsy. The thesis offers three feature 
extraction techniques of these estimations as possible 
methodologies (not validated) to perform this evaluation. One 
possible direction is to design a new set of experiments to 
validate or not if it can distinguish between groups of control 
and groups with attention deficits.  
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