
Molecular distribution characterization with
geometric invariant profiles in fluorescence

microscopy

Sofia Raquel Pereira de Sousa Esménio

Thesis to obtain the Master of Science Degree in

Biomedical Engineering

Examination Committee

Chairperson: Professor João Pedro Estrela Rodrigues Conde
Supervisor: Professor João Miguel Raposo Sanches
Co-Supervisor: Doctor Maria Raquel Campos Seruca

Member of the Committee: Professor Jorge dos Santos Salvador Marques

July 2013





” I believe that whatever we do or live for has its causality; it is good, however, that we cannot see
through to it.”

Albert Einstein





Acknowledgments

First of all, I would like to thank Prof. João Miguel Sanches, for the opportunity of joining this

project, and for all the guidance and support. I would also like to thank my co-supervisors Joana

Figueiredo and Raquel Seruca, of the IPATIMUP, for all the corrections, clinical explanations and spe-

cially for the development of the in vitro assays from which emerged the images that were processed

in this work.
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Abstract

Structural and mechanical properties of the tissues are dependent on the physical linkage between

cells. Alterations in the adhesion properties between cells endow them with an invasive and migratory

phenotype, causing E-cadherin as a key molecule in cell adhesion mechanism to play an important

role as an invasion suppressor. Mutations on the E-cadherin gene (CDH1), lead to changes in E-

cadherin expression and function which are implicated in key steps of tumor progression. Functional

E-Cadherin is synthesized at the Golgi, transported and stabilized at the membrane and continuously

recycled. When dysfunctional molecules are produced, e.g due to mutations, E-cadherin trafficking

may be affected, changing the cellular localization of the protein and consequently the expression

pattern.

This work proposes a method to characterize E-Cadherin distribution in the cell, specially along

the junction line of cell-to-cell pairs, for functional discrimination purposes. To correctly characterize

E-cadherin phenotype, a multi-step process was developed. This process combines a Graphical user

interface (GUI) developed for nuclei selection, a segmentation and centroid detection step, Radial

Profiles (RDPs) and Internuclear Profiles (INPs) extraction, and a Geometric Compensation (GC)

algorithm. In this work, the profiles extracted are anchored in the geometrical centers of the cell nuclei

selected. This way no information about membrane location is used in the preprocessing, which is an

important point as membrane segmentation may be difficult, inaccurate and time consuming. The GC

algorithm, the key issue of this thesis, is developed to compensate differences in shape and size in

these profiles that are not directly related with the traffic dynamics. Additionally, quantitative measures

are proposed for characterization of the distribution, e.g mean intensity at the membrane, mean and

variance of molecules concentration in the cytoplasm. The discriminative power of these features in

recognizing functional and dysfunctional molecules is shown.

Keywords
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cence microscopy, E-cadherin phenotype
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Resumo

As propriedades estruturais e mecânicas dos tecidos dependem da ligação fı́sica entre células.

Alterações na adesão entre células dota as células de um fenótipo invasivo e migrador, fazendo

com que a E-caderina como molécula principal no mecanismo de adesão celular desempenhe um

papel importante como supressor de invasão. Mutações no gene da E-caderina (CDH1) levam a

alterações na expressão e função da mesma que estão envolvidas em etapas chave da progressão

tumoral. A E-caderina funcional é sintetizada no Golgi, transportada e estalizada na membrana e

continuamente reciclada. Quando são produzidas moléculas disfuncionais, por exemplo devido a

mutações, o tráfico de E-caderina pode ser afetado, mudando a posição celular das proteı́nas e

consequentemente o padrão de expressão. Este trabalho propõe um método para caracterizar a

distribuição de E-caderina nas células, especialmente ao longo da linha de junção celular, para uma

posterior discriminação funcional. Para caracterizar o fenótipo da E-caderina, um processo de vários

passos foi desenvolvido. Este processo combina: uma interface gráfica para a seleção de núcleos,

um passo de segmentação e detecção de centróide, extração de perfis radiais e internucleares e

um algoritmo de compensação geométrica. Neste trabalho, os perfis são extraı́dos apartir dos cen-

tros geométricos dos núcleos selecionados. Deste modo nenhuma informação acerca da localização

membranar é utilizada no preprocessamento, que é importanto visto que a segmentação membranar

pode ser difı́cil, imprecisa e demorada. O algoritmo de compensação geometrica, tema essencial

nesta tese, é desenvolvido para compensar nestes perfis diferenças biológicas na forma e tamanho

não relacionados com a dinâmica do tráfico molecular. Adicionalmente, são propostas medidas quan-

titativas para caracterização da distribuição, por exemplo intensidade média na membrana, média e

variância de concentração de moléculas no citoplasma. O poder discriminativo destas caracterı́sticas

no reconhecimento de moléculas funcionais e disfuncionais é apresentado.

Palavras Chave

Processamento de imagens biológicas, Compensação Geométrica, Quantificação Biológica, Es-

timativa Bayesiana, Microscopia de fluorescência, E-caderina fenótipo
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1.1 Motivation

Hereditary Diffuse Gastric Cancer (HDGC) is an autossomal-dominant, inherited cancer syndrome

in which the individuals affected with this disorder develop Diffuse Gastric Cancer (DGC) at a young

age. This syndrome is characterized clinically by either 1) ≥ 2 documented cases of DGC in 1st or

2nd degree relatives with ≥ 1 diagnosed with age ≤ 50; 2) > 3 documented cases of DGC in 1st or

2nddegree relatives independent of the age of onset. CDH1 heterozygous alterations are the only

germline event known in HDGC [4].

CDH1 gene is localized on chromosome 16q22.1 and is the gene responsible for encoding E-

cadherin. E-cadherin is a Ca2+ dependent cell-adhesion glycoprotein predominantly expressed at

the basolateral membrane of epithelial cells, essential in the maintenance of cell differentiation and

epithelial tissues architecture. The downregulation of E-cadherin results in a loss of cell adhesion,

invasion and metastasis. Given that in HDGC CDH1 dysregulation leads to tumor formation and

progression, CDH1 is considered to act as a tumor suppressor gene [1].

Studies of penetrance show that CDH1 mutation carriers lifetime risk of developing DGC is ap-

proximately 70% and affected woman have an additional 20%− 40% risk of developing lobular breast

cancer [5]. It is estimated that HDGC comprise 1− 3% of all Gastric Cancer (GCr), being gastric can-

cer the sixth most common cancer and the third leading cause of cancer death worldwide (Globocan,

assessed 1st May 2013). The Globocan results for cancer incidence and mortality are displayed in fig.

1.1. Although the overall rates of GCr have declined in the last years, DGCs represent a percentage

that have not diminished in incidence.

Figure 1.1: Cancers incidence and mortality (Globocan, assessed 1st May 2013).

The major problem with HDGC syndrome carriers is that it is not possible to determine which

CDH1 mutation carriers will develop DGC and the majority of DGCs become symptomatic only when

their situation is incurable. Nowadays, due to the inadequacy of clinical screening and the high cancer

penetrance of DGCs a prophylactic gastrectomy is recommended to asymptomatic carriers of CDH1

truncating germline mutations, to reduce cancer mortality. [6]. In this case a total gastrectomy is

recommended because cancer cells in HDGC are multifocal and are distributed throughout the entire

stomach. Although it is a lifesaving procedure, it has significant risks, namely: an estimated overall
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mortality of 2% − 4%; a 100% risk of long-term morbidity including diarrhea, dumping, weight loss

and difficulty eating. The major problem is that this prophylactic gastrectomy procedure has been

performed on several patients who had no reported evidence of gastric cancer on on screening biop-

sies [5].This highlights the importance of a reliable genetic screening that identifies non-functional

E-cadherin molecules that induce an increased risk of gastric cancer in individuals that are carriers of

germline CDH1 mutations.

This work has the objective of creating a method that allows the digital quantification and char-

acterization of the expression pattern of membrane proteins at inter-cellular level, namely the cell

membrane. In the proposed method several quantitative objective features that reflect E-cadherin ex-

pression level are extracted to characterize the distribution both at membrane and cytoplasmic level.

One challenge that still remains is to clarify the pathogenicity of E-cadherin missense mutants asso-

ciated to HDGC. This topic is addressed in this work, since the germline E-cadherin mutant forms

implicated in HDGC were used as disease model in the in vitro assays developed. This procedure

was developed to give information that reflects the functional activity of this particular protein, leading

to a better understanding of the functional results of some structure alterations. This information is

going to be used in a Computer Aid Diagnosis (CAD) framework for semi-automatic detection of dys-

functional proteins that can be used in clinical practice for screening and diagnosis .If this is possible

these results may impact the quality of the information given within the genetic counseling sessions

and in the decision making plan how to survey carriers of E-cadherin mutations improving their quality

of life and decreasing Health Care associated clinical costs.

1.2 State of The Art

Familial forms of Gastric Cancer are known since the 1800s when multiple cases were detected

on Bonaparte family. However, its was only on 1998 that Guilford et al. recognized the molecular ba-

sis of the first syndrome with proven inherited defect. The Hereditary Diffuse Gastric Cancer (HDGC)

syndrome is associated with CDH1 germline mutations [7]. CDH1 gene is responsible for encoding

E-cadherin, a surface protein member of the cadherin superfamily, discovered in 1977 by Takeichi

with Ca2+ adhesion potential [8]. It was in 1988 that Takeishi and Nagafuchi discover the first direct

evidences that the function of this cell-adhesion molecule is regulated by the cytoplasmic region. [9].

E-cadherin is an adhesive molecule responsible for the maintenance of cell differentiation and normal

architecture of epithelial tissues. The revocation of its function induces a decrease of cell adhesive-

ness and loss of adherens junctions, leading to an abnormal morphogenesis and architecture of the

epithelial tissues. Several studies, at the end of the 20th century (1990s), were carried to understand

how E-cadherin downregulation influenced tumorigenesis and tumor progression [10–12]. Further ev-

idences supporting that E-cadherin abolished expression leads to tumorigenesis came from the study

of families with an aggregation of DGC [6, 13, 14]. In HDGC, 25% of the cases CDH1 are missense

mutations whose pathogenic significance is still difficult to established. To date more than thirty CDH1

germline missense mutations were found related with HDGC.
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CDH1 germline missense mutations pathogenic relevance is still a clinical burden. To settle this,

in silico models were developed over the time to dissect each mutation’s molecular impact [15–17].

Although in silico models are very useful, their potential is limited, and so in vitro studies transfecting

cadherin cell lines were carried to understand the functional results of the protein structure alterations

[18].

To quantify E-cadherin’s expression some techniques were used in combination with the in vitro

assays. One of this techniques is Flow Cytometry (FC). In 1994, Tang et all used FC in combination

with specific antibodies to carry a surface analysis and prove that human melanocytes, in culture

environment, express E-cadherin with the same characteristics as reported for other cell types [19].

Furthermore, FC has been used to study E-cadherin influence on the cell surface localization of the

promigratory 5T4 antigen, oncofetal antigen that correlates with poorer clinical outcome in colorectal,

gastric, and ovarian carcinomas [20]. Likewise, Ferreira et all used FC to measure the percentage

of apoptotic cells testing the hypothesis that E-cadherin deregulation could induce cell resistance to

apoptosis [21]. Similarly, to discover the molecular mechanisms underlying the Chemical Chaperones

effects in E-cadherin regulation, FC technique was used to assess E-cadherin in cell surface [22]. The

major limitation of FC is the loss of morphology [23].

An alternative to circumvent this limitation is Image Stream, a tool for multiparameter cell analysis

that combines the features of FC and Fluorescense microscopy (FM) with modern methodology for

image analysis: allowing the analysis of a large number of cells based on their fluorescence features,

providing a statistical analysis of these features and detailed morphometric cellular analysis, integrat-

ing morphometric and photometric features of the examined cells [24, 25]. The main limitation of

this method is that it was designed to analyse suspending cells in a stream of fluid, preventing the

assessment of cells in culture not measuring intercellular surfaces.

In this work FM images collected from in vitro assays were used to characterize the E-cadherin

distribution within the cell in order to perceive and quantify E-cadherin expression differences between

Wild Type (WT) images and seven different CDH1 germline missense variants HDGC related. FM

appears in the beginning of the 20th century (1911) when the first working fluorescence microscope

was developed by Oskar Heimstädt to study autofluorescence in organic and inorganic compounds

[26]. During the past one hundred years there were several breakthroughs in this area, namely: the

developement of the ’secondary fluorescence’ technique (staining with fluorescent dyes) in 1930s

by Max Haitingen; the discovery of antibodies’ labeling, in 1940s by Albert Coons, that allowed to

specifically label proteins and subcellular structures [27]; the development of Green fluorescence

protein (GFP) as a fluorescent label in 1990s by Tsien, Chalfie, and Shimomura [28–30].

In the FM images collected the cell membranes have conformations with a large geometric variabil-

ity. When dealing with geometric abnormalities, Geometric Compensation (GC) is a useful practice.

Geometric compensation is a common procedure in several image modalities, mainly for registration

purposes [31]. The main goal is the comparison and alignment of objects with a wide range of shapes

and sizes. The general strategy in this type of algorithms consists in the estimation of a geometric

transformation, rigid or non-rigid [32], by optimizing a metric of similarity in order to make the objects
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under alignment as similar as possible from shape and size points of view [33]. GC in images of

microscopy is commonly used for segmentation [34] and tracking [35] puposes.

1.3 Original Contributions

This dissertation contributions begin with the characterization and quantification of WT E-cadherin

and HDGC related missense mutant forms, distribution at intra- and inter-cellular levels, namely at

the cell membrane. This information reflect the functional activity of this particular protein, leading to

a better understanding of the functional results of some structure alterations.

In addition, a Graphical user interface (GUI) was implemented in Visual Basic/C++, where a user

can manually select in an image relevant points of study. This interface allow a specialist to select the

representative cells of an image excluding from the analysis all negative cells, that worsen the results.

This GUI is useful in bioimaging.

Another original aspect of this work is the development of internuclear and radial profiles, anchored

in nuclei centers, to characterize molecules distribution at intra- and inter-cellular levels.

Finally, a registration method, a Geometric Compensation (GC) algorithm, was created to correct

geometric heterogeneities in cells shape and size. This method models an image columns as a finite

dimension continuous field, estimated from the initial observations, and imposing similarity between

adjacent columns, allow the adjustment of each column observations, smoothing the solution. GC in

quantification of biological features is not commonly described in the literature.

A full description of the images processing is provided. Finally, an analysis of each E-cadherin

form phenotype is presented as well as a statistical analysis of some selected features to perceive the

quantitative differences between E-cadherin WT phenotype and HDGC related remaining mutations

phenotype.

This work resulted in an:

• Poster presentation with the title E-cadherin spatial characterization with radial distribution pro-

file for mutation detection.,18th edition of the Portuguese Conference on Pattern Recognition,

Coimbra, October 2012.

• Oral communication with the title E-cadherin radial distribution characterization for mutation de-

tection purposes, 6th Iberian Conference on Pattern Recognition and Image Analysis , Madeira

, June 2013.

• Sofia Esménio, J.Miguel Sanches and Raquel Seruca. Leitura digital da expressão proteica

nas interfaces inter- intracellulares. Pedido de patente, modelo de utilidade ou de topografia de

produtos semicondutores no 106982.

• Sofia Esménio, Joana Figueiredo, Raquel Seruca and J.Miguel Sanches, Geometrical com-

pensation for protein expression profiling in fluorescence microscopy, Transactions on image

processing (submitted).
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1.4 Thesis Outline

This dissertation starts with the description of the concepts with biological background on Chapter

2. Initially, an explanation of E-cadherin’s structure, role, tumor influence and clinical implications is

provided. Moreover, a subsection is dedicated to FM, approaching subjects as: FM characteristics,

immunofluorescence and limitations. Finally, both the specimen used in the in vitro assays developed

for this project and the assays methodology are presented.

In Chapter 3, the preprocessing procedure and GC algorithm are described thoroughly. First, the

several steps of the preprocessing procedure are described. Initially, a user manual to the GUI imple-

mented is provided. Moreover, the segmentation and centroid calculation steps are further detailed.

Finally, both processes of profiles collection (Radial (RD) and Internuclear (IN)) are explained. Re-

sults of both profiles approaches are shown. The Chapter ends with the mathematical explanation of

the GC algorithm. Results of synthetic data and real data processed with this algorithm are displayed.

After that, in Chapter 4 , the features collected in the Internuclear Maps (INMs) and Radial Maps

(RDMs) characterization process as well as the methods used in the statistical analysis are further

detailed. First, the features collected for either the Mean Profiles and the Standard Deviation (STD)

profiles are explained. Moreover, the statistical test implemented, Mann-Whitney U test, to test the

discriminative potential of each of the features collected on the mean profiles, is described. Finally, the

k-means algorithm which is used to help clustering the results from the feature extraction is explained.

The characterization of the WT and mutant forms of E-cadherin profiles is presented in further

detail in Chapter 5. This Chapter is divided in an IN and RD analysis. Initially the geometrically

compensated profiles are displayed and discussed. After that, the features selected to characterize

the profiles, e.g mean intensity of the image, Maximum Intensity (MI), position of the MI, are extracted

and the results are displayed and analyzed. Finally, a statistical analysis based on the Mann-Whitney

U test, is presented.

In Chapter 6, thesis conclusions and future work are presented.

6



2
Biological Background

Contents
2.1 E-cadherin - Structure, Role and Tumor influence . . . . . . . . . . . . . . . . . . 8
2.2 Fluorescence microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 In Vitro Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7



2.1 E-cadherin - Structure, Role and Tumor influence

E-cadherin (epithelial cadherin) was first identified by Takeichi in 1977 as a surface Ca2+ depen-

dent protein with cell-cell adhesion potential [36]. E-cadherin is the major component of Adherens

Junctions (AJ), intercellular junctions crucial for epithelial adhesion and barrier function in a wide

variety of tissues and organisms [37]. The role of E-cadherin in tumor development is now well de-

scribed. Experimental evidence supports a complex role both in suppressing invasion and metastasis

formation. [17, 36].

2.1.1 E-cadherin - Gene, Structure and Role

E-cadherin belong to the subfamily of classical cadherins also known as type I cadherins. Cad-

herins are a superfamily of adhesion molecules which is mainly composed by three different kinds: 1)

classical cadherins; 2) non-classical cadherins and 3) protocadherins. Classic Cadherins are Ca2+

dependent, homophilic, cell-adhesion molecules, often associated with various forms of AJ [2, 38].

Once mature, E-cadherin protein structure can be organized in three major structural domains:

a cytoplasmic domain of about 150 amino acid residues (AA), a single transmembrane domain and

an extracellular domain of about 550 AA, comprising five tandemly repeated domains exclusive to

cadherins, the EC1-EC5 domains. The EC1 is the main responsible for the adhesive properties [38]

Both the gene and an encoded E-cadherin protein are displayed in Fig. 2.1.

Figure 2.1: CDH1 gene structure and the encoded E-cadherin protein. E-cadherin molecules are encoded by
the CDH1 gene, noted to the human chromosome 16q22.1. Adapted from [1].

E-cadherin has a major role in the formation, maintenance and homeostasis of epithelia. Its

continued expression and functional activity are required for cells to remain tightly associated in the

epithelium. In the absence of E-cadherin, the other adhesion cells and junction proteins are unable to

support intercellular adhesion [39]. The epithelial adhesion happens through homophilic interactions

between adjacent cadherins, first among adjacent cells (trans-interaction) and then within the same

cell by lateral association (cis-interaction), leading to the formation of zipper-like structures [36].

To exhibit functional adhesion activity, cadherins must form complexes with cytoplasmic plaque

proteins, called catenins, and with the actin cytoskeleton. The cytoplasmic domain of E-cadherin

interacts with β−, α−, and γ− (plakoglobin) catenins (βctn, αctn, γctn), establishing the cadherin-
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catenin complex. [36] The stability of the cadherin-catenin complex, and its linkage to actin filaments

(through αctn), forms the core of the AJ (see Fig. 2.2 b ) [39] . The AJs are crucial for the initiation

and maintenance of a homeostatic intercellular space and cell to cell interaction, inhibiting individual

epithelial cell motility and providing homeostatic tissue architecture in a wide variety of tissues and cell

populations. E-cadherin is associated with the zonula adherens of the epithelial junctional complex,

that help cells form a tight, polarized cell layer that can perform barrier and transport functions [2] (see

Fig. 2.2a ).

Figure 2.2: The adherens junction and the classic cadherin-catenin complex. a) Electron micrograph of a zonula
adherens (ZA) junction of epithelia, where (O) represent a tight junction. b)The cadherin-catenin protein complex.
Adapted from [2]

This capacity to maintain the overall state of adhesion between epithelial cells is what makes

E-cadherin act as an important suppressor of epithelial tumor cell invasiveness and metastasis. Loss

of E-cadherin expression and function leads to an enhance in cell invasiveness. E-cadherin deficien-

cies or mutations correlate with the invasiveness and metastasis of certain human tumors. [17, 36, 39]

2.1.2 E-cadherin - Influence in tumor progression and Clinical implications

Alterations in the adhesion properties between cells endow them with an invasive and migrator

phenotype. E-cadherin plays an important role as an invasion suppressor protein, since its loss of

expression, abnormal function, or both, leads to an increased ability of cells to invade neighboring

tissues. Changes in E-cadherin expression have been implicated in key steps of tumour progres-

sion, including detachment of tumor cells from the primary site, intravasation into the blood stream,

extravasation into distant target organs, and formation of secondary lesions or metastasis. [17].

Surveillance to CDH1 carriers is controversial due to the inadequacy of current screening modal-

ities, since the lack of sensitivity for HDGC makes early diagnosis extremely challenging. HDGC

genetic testing for CDH1 mutations is recommended to: 1) families with ≥ 2 cases of DGC and at

least 1 case diagnosed before age 50 years; 2) families with ≥ 3 cases of DGC at any age; 1) isolated

individuals diagnosed with DGC before age 35 years; 4) isolated individuals with both DGC and lob-

ular breast cancer; 5) families with 1 member with DGC and another with either lobular breast cancer

or signet ring cell colon cancer [5].
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To circumvent current screening modalities limitations, IGCLC recommend that prophylactic gas-

trectomy should be offered to asymptomatic carriers of CDH1 truncating germline mutations. Indeed,

the identification of small foci of signet-ring cell gastric carcinoma, early DGCs, in prophylactic gas-

trectomy specimens, from asymptomatic mutation carriers not yet displaying endoscopic evidence of

disease, raises concerns regarding the efficacy of the current surveillance protocols [4, 16]. In this

case the prophylactic gastrectomy recommended is a total gastrectomy as the signet ring cell cancer

in HDGC are multifocal and distributed throughout the entire stomach. This procedure has significant

risks namely: an estimated overall mortality is 2%− 4%; a 100% risk of long-term morbidity including

diarrhea, dumping, weight loss and difficulty eating [5].

Although its life saving potential this prophylactic gastrectomy procedure has been performed on

several patients who had no reported evidence of GC on pathology being unclear [5]. This highlights

the importance of genetic screening for identification of at risk individuals. Despite its limitations,

endoscopic surveillance is still recommended for mutation carriers younger than 20 years old or for

those who decline or delay prophylactic surgery, and should be carried out annually [4]. In hereditary

forms of GC, carriers of CDH1 germline missense mutations represent a major burden in terms of

genetic counseling and clinical management, and thus, there have been increasing efforts to predict

the pathogenic significance of CDH1 germline missense variants. [16]

2.2 Fluorescence microscopy

Specificity, high sensitivity and versatility are the main contributions that FM can provide to the

study of fixed and living cells. This efficient approach has an inherently greater sensibility and range

than methods based upon changes in optical density or chemiluminescent emission. One of the

ongoing contributions of fluorescence microscopy is to allow the study of single molecules enabling

the understanding and characterization of both static and dynamic cellular processes [40].

2.2.1 Fluorescence Characteristics

Fluorescence as a phenomenon is part of a larger family of related luminescent processes in which

a susceptible substance absorbs light, only to reemit light (photons) from electronically excited states

after a given time. Fluorescence outcome is the emittance of a photon with a longer wavelength.

When light of a particular wavelength hits a fluorescent sample, the atoms, ions or molecules therein

absorb a specific quantum of light, which pushes a valence electron from the ground state. The

energy of photons involved in fluorescence and generally a quantum of light can be expressed via

Planck’s law:

E = h.ν = h.
c

λ

where E is the quantum’s energy (J), h is Planck’s constant (J.s), ν the frequency (s−1), λ is the

wavelength of the photon (m), and c is the speed of light in a vacuum. (m.s−1). [41]
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Fluorescence has several characteristics, some of which should be compensated to obtain bet-

ter results. The essential characteristics of fluorescence are: quantum yield, fluorescence lifetime,

anisotropy, fluorescence quenching, fluorescence intermittency, resonance energy transfer and charge-

transfer complexes.

Quantum yield (brightness of fluorochrome’s emission): is given by the ratio of the number of

emitted to absorbed photons, which is determined by the rate constants of emission (Γ) and the sum

of all non-radiative decay processes (knr) that depopulate the excited state. [41]

Fluorescence lifetime (fluorochrome’s fluorescence lifetime (τ )): is the average time an electron

spends in the excited state before returning to ground state. The initial fluorescence intensity, I0,

suffer an exponential decay, It, over time, t, that can be expressed as: It = I0e
( −t
τ ). This decay

through radiative, Γ, and non-radiative processes, knr, time is the fluorescence lifetime, τ = 1
Γ+knr

[41].

Anisotropy (different properties along different axes): in a pool of randomly oriented fluorochromes,

only those fluorochromes with transition dipole moments that are aligned parallel to the polarization

direction of the excitation beam, linearly polarized, will be excited (photoselection) [41].

Fluorescence quenching: is the phenomenon in which the interaction of the fluorochrome with a

molecule, the quencher, reduces the quantum yield or the lifetime [41].

Fluorescence intermittency: when the fluorochrome randomly alternates between a fluorescent

(”on”) and dark state (”off”) despite continuous excitation illumination. The random nature and power

law dynamics generally frustrates and precludes comparison of results between independent experi-

ments. [41]

Resonance energy transfer: is a photophysical process in which the excited state energy from

a donor fluorochrome is transferred via a non-radiative mechanism to a ground state acceptor chro-

mophore via weak long-range dipole-dipole coupling. [41]

Charge-transfer complexes: are nanosecond short-lived homodimers (excimer) or heterodimers

(exciplex) of two molecules of which at least one is in the excited state that show redshifted emission

compared with the monomer’s emission. [41]

2.2.2 Imunofluorescence

Immunofluorescence (IF) is widely used in both scientific research and clinical laboratories. This

technique utilizes antibodies chemically conjugated to fluorescent dyes to detect specific target anti-

gens. This labeled antibodies bind either directly (direct immunofluorescence) or indirectly (indirect

immunofluorescence) to the antigen of interest, resulting in antigen fluorescence detection. In di-

rect immunofluorescence the antibody chemically conjugated with the fluorescent dye bind directly to

the antigen of interest. On the other hand, indirect immunofluorescence is a two-step technique in

which a primary unlabeled antibody binds to the molecule of interest and is afterwards detected by

a fluorophore-labeled second antibody. The indirect immunofluorescence technique is more compli-

cated and time consuming because it involves another antibody and so it requires a second incubation

period. However, it is more sensitive as more than one secondary antibody can bind to each primary
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antibody, which amplifies the fluorescence signal [42].

2.2.3 Immunofluorescence Limitations

This section introduces some of immunofluorescence most common limitations, namely: autoflu-

orescence, photobleaching and fluorescence overlap.

Autofluorescence (background fluorescence): fluorescence that does not originate from the Flu-

orochrome of interest (FOI) but rather from cellular components with fluorescent properties. Biological

autofluorescence in mammalian cells can be problematic in the detection of fluorescence probes in

tissues and cells [43].

Photobleaching: photochemical destruction of a fluorophore due to the generation of reactive

oxygen species in the specimen as a byproduct of fluorescence excitation. It is thought that the

primary causative mechanism appears to be photosensitization of singlet oxygen (O2) generation by

the dye triplet-excited state and reference. [43]

Fluorescence Overlap: occur when measuring fluorescence of more than one color. This signal

overlaps must be electronically removed or each detector will overestimate the actual signal. [43]

2.3 In Vitro Assays

In this work in vitro assays were developed containing WT E-cadherin and E-cadherin missense

mutants forms associated with HDGC. The E-cadherin mutant forms, derived from CDH1 germline

missense mutations, presented in this work were: T340A (1018), A463V (1901), R749W (2245),

E757K (2269), E781D (2343), P799R (2396), V832M (2494). In the following image (fig. 2.3) the

relative position of the mutation and the nucleotide (DNA) involved for each germline mutation form is

shown.
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Figure 2.3: Germline missense CDH1 mutations and respective E-Cadherin mutant forms.

According with the site of mutation the functional impact is diferent. As can be seen in fig. 2.3,

T340A and A643V are extracellullar mutations, R749W and E757K are juxta-membrane mutations

and finally E781D, P799R and V832M are intracellular mutations. In some cases the functional result

of the mutation is not well known. However in the juxta-membrane mutations its known that the muta-

tion interferes with the conformation of the protein stopping the connection with p−120, compromising

the stability of the protein in the membrane. Also in R749W the conformational changes activate the

Endoplasmic Reticulum Associated Degradation (ERAD) mechanism. Finnally in the intracellular mu-

tations, E781D, P799R,V832M, the mutation interfers with the connection with β − catetin, affecting

the transport of the protein to the membrane. To study WT E-cadherin expresion and the functional

impact of each one of these mutations in vitro assays were developed with WT E-cadherin and the

previously mentioned mutant forms, derived from CDH1 germline missense mutations.

In this in vitro assays CHO cells transfected with vectors encoding the wild type E-cadherin or the

mutant forms were seeded on 6-well plates on top of glass coverslips and grown to at least 80 %

conguence. Fixation was performed in ice-cold methanol for 20 minutes, followed by washing and

blocking in 5% Bovine serum albumin (BSA) and Phosphate Buffered Saline (PBS) for 30 minutes,

at room temperature. The mouse monoclonal E-cadherin antibody (BD Biosciences) was used at

1:300 dilution in PBS with BSA 5% and incubated for 1 hour at room temperature. An Alexa Fluor

488 goat anti-mouse (1:500, Invitrogen) [44] was applied for 1 hour in dark as secondary antibody.

The coverslips were mounted on slides using Vectashield with 4’,6-diamidino-2-phenylindole (DAPI)

(Vector Laboratories). Images were acquired on a Carl Zeiss Apotome Axiovert 200M Fluorescence

Microscope, using 40x objectives. Images were taken with an Axiocam HRm camera and processed

with the Zeiss Axion Vision 4.8 software.

The images obtained and consequently processed in this work were the following: 3 containing WT
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E-cadherin (No 37,38,39), 1 containing T340A (1018) E-cadherin (No 41), 2 containing A463V (1901)

E-cadherin (No 45,48), 2 containing R749W (2245) E-cadherin (No 49,50), 2 containing E757K (2269)

E-cadherin (No 57,59), 2 containing E781D (2343) E-cadherin (No 63,64), 2 containing P799R (2396)

E-cadherin (No 65,67) and 1 containing V832M (2494) E-cadherin (No 68).

Figure 2.4: Images collected from the in vitro assays developed with CHO cells transfected with vectors encoding
the wild type E-cadherin and diverse mutant forms.
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3.1 Image processing

The preprocessing algorithm is composed by the following steps:

• Nuclei Selection, using a GUI (see section 3.1.1) to select the pairs of nuclei to be evaluated.

This process is crucial for the success of the method because cells where the transfecting

process did not perfectly occur should not be taken into account in profile definition.

• Segmentation and centroid detection, of the GUI selected nuclei coordinates, to ensure that

the profiles collected are nucleus centered and independent of the GUI user accuracy (see

section 3.1.2).

• Internuclear and Radial Maps building, inserting all the profiles of each kind (Internuclear or

Radial) together in a respective length normalized map (see sections 3.1.4 and 3.1.5). One

internuclear profile is created for each pairs of adjacent nuclei positively selected on Nuclei

Selection and one radial nucleus centered profile is created for each nucleus selected (see

section 3.1.3).

• GC,of the maps collected using 1D continuous column profiles to minimize the overall variability

of each map in horizontal direction.

The geometric compensation of the maps collected from the image is the key step of the proposed

method. Both maps contain geometrical abnormalities in the collected information either due to the

process of collection or to cellular membrane shape and size heterogeneities. This method models

these maps columns as a finite dimension continuous field estimated from the intensities of the profiles

and allow the locations of each observation to adjusted, up and down, along the corresponding column

under global smoothness and consistency criteria that avoid disruption. This algorithm intends to

geometrically compensate the created maps so the information collected is rigorous and independent

of cellular membrane geometry 3.2).

3.1.1 Graphical user interface (GUI)

In this work a Graphical user interface (GUI) was developed to allow an expert to manually select

in each FM image the nuclei to evaluate. The biologist selects the cells in each image that are

representative of the common protein status within that in vitro cell culture. This semi-automated

approach allow the expert to exclude all negative cells from the analysis, that may represent technical

pitfalls of immunofluorescence or protein degradation. This interface was developed to select pairs of

adjacent nuclei. However, the interface stores the information (pair of coordinates) in a single, orderly

in time, vector. Thus, this interface can be used in single nuclear selection. The GUI received the

named of IDnuclei and was designed using Visual Studio (C++ language), with the CImg Library [45].

Follows the description of the GUI.

The initial Menu is shown in Fig.3.1 a). Initially an image should be loaded to the program, pressing

Load Image and selecting the directory of the image. If correctly loaded the photo will appear in the

initial menu and the user can inspect if it is the correct one. (see Fig.3.1 b) )
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Figure 3.1: GUI a) Initial Menu, b) Menu After loading Image

After loading the image the user can decide to proceed to the nucleus selection proceeding (press-

ing Nucleus Selection) or in case it was not the correct image change it repeating the previous steps

(pressing Load Image and selecting the directory). The Nucleus Selection option opens the image

selected in full screen where the expert can now proceed to the selection of the pairs of nuclei desired.

(example in Fig.3.2).

Figure 3.2: Selection of Nuclei Menu. a) Initial. b) After some selections

In the Nucleus Selection menu or full screen mode there are a few possible actions. The Left

button of the mouse confirms the position of a nucleus saving its coordinates in the image. The

Backspace button erases the last selection done. The Escape button aborts the entire selection.

The Enter button finishes the selection properly. After finishing the selection the option to save data

(Fig.3.3) appears allowing the data to be saved. The data will be saved in a folder with the name of

the image analyzed in the directory of the program. The folder contains the initial image and a .txt

document with all the coordinates (x,y) of the nuclei selected.
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Figure 3.3: GUI a) After selection Menu, b) Final Menu

After saving the data, the user can close the program or proceed to another selection repeating all

the steps from the begining.

3.1.2 Segmentation and Centroid Detection

Matlab R©software uses the most commonly used color representation based on the classical

three-color theory of Thomas Young, the RGB system. This means that a color image is represented

as a 3D matrix, wherein each 1D matrix contain the information to one specific color. In this work,

the color images processed contained E-cadherin molecules immunostained with a green fluorescent

dye and cell nuclei tagged with blue fluorescent proteins. Thus, not only the information collected

by the red channel was discarded but also the other two matrices were converted in gray-scale and

processed individually. The blue matrix contains the information concerning cell nuclei and the green

matrix the information concerning the E-cadherin molecules distribution.

As membrane segmentation may be difficult, inaccurate, time consuming, and not essential for

intensity distribution characterization purposes, the profiles collected to study E-cadherin inter- and

intra-membrane distribution were anchored in the geometrical centers of the cell nuclei. The cells and

pairs of cells, selected by the operator as being representative of the common protein status within

that in vitro cell culture, coordinates were used as nuclei reference points. A correction step was

added to ensure that the results are independent of the GUI user accuracy and current conditions.

The correction consisted on a segmentation step combined with a centroid detection.

In segmentation, Otsu thresholding method, described in section 3.1.2.A(see fig. 3.4 a)) was

combined with a morphological procedure, the watershed algorithm (described in section 3.1.2.B). As

Otsu thresholding alone is unable to distinguish contiguous nuclei and watershed in FM images leads

to a lot of over segmentation due to the uneven intensity, owing to auto-fluorescence from the tissue

and fluorescence from out of focus objects, the methods were implemented combined to improve

segmentation (see fig. 3.4 a, b)) [46]. To ensure the separation of contiguous nuclei the segmentation

result was eroded 1 increasing the inter space between nuclei.

The centroid detection was implemented using the Matlab@ algorithm Regionprops. This algo-

rithm measure several properties of binary images being one of the properties the center of the mass
1Binary erosion is the process of eliminating all the boundary points from an object, leaving it smaller in area by one pixel

all around the perimeter

18



of a region (see fig. 3.4 d)). To convert watershed results in a binary image and simplify the centroid

detection the Canny edge detector algorithm, described in section 3.1.2.C, was applied (see fig. 3.4

c)).

In few cases even non-spherical nuclei can be decomposed in half. To compensate in the end the

algorithm study the existence of another centroid detected and calculate the mean position of them.

An example of this is shown in fig. 3.4 d e e).

Figure 3.4: Segmentation and centroid detection process of a ROI. a) Otsu’s thresholding, b) Watershed algo-
rithm analysis, c) Erosion and Canny edge detection d) Regionprops algorithm Centroid detection e) Final ROI
.

3.1.2.A Otsu’s thresholding

Intensity thresholding was one of the first approaches to cell segmentation. And is still one of the

most common approaches in cell segmentation, when combined with other methods. [47]. Among the

numerous thresholding methods for nucleus segmentation Otsu’s segmentation is still widely popular

due to its simplicity and effectiveness in cases with good contrast.[48].

Otsu method is a nonparametric and unsupervised automatically threshold selection method. The

algorithm assumes that the image to be thresholded contains two classes of pixels: background

pixels, (Class 0) and object’s pixels, (Class 1) and the objective is to calculate the optimum threshold

minimizing the weighted sum of within-class variances of the two classes of the two classes of pixels

that compose the image. [49] The within class variance, the between class variance and the total

variance are:

σ2
W = ω0σ

2
0 + ω1σ

2
1

where w0 =
∑k
i=1 pi = w(k) and w1 =

∑L
i=k+1 pi = 1 − w(k) are the probability of class ocurrence,

σ2
0 =

∑k
i=1(i − µ0)2 pi

ω0
and σ2

1 =
∑L
i=k+1(i − µ1)2 pii

ω1
the variances of each class, and µ0 =

∑k
i=1

ipi
ω0

and µ1 =
∑L
i=k+1

ipi
ω1

the mean levels of each class. Otsu shows that minimizing the intra-class

variance is the same as maximizing inter-class variance:

σ2
B = ω0ω1(µ1 − µ0)2 =

[µTω(k)− µ(k)]2

ω(k)[1− ω(k)]

The optimal threshold to separate C0 and C1 is k∗ is σ2
B(k∗) = max1≤k<L σ

2
B(k). [50]

19



3.1.2.B Watershed Algorithm

The watershed transform is a gray scale mathematical morphology method, originally proposed by

Digabel and Lantuéjoul [51] and later improved by Beucher and Lantuéjoul [52]. This binary morpho-

logical method is used to separate slightly touching objects that result from the segmentation process

[3].

Rather than simply thresholding the image at an optimum gray level, the watershed approach be-

gins with a threshold that isolate the individual objects properly, and gradually raises it to the optimum

level. The process begins with a low threshold that segments the image into the proper number of

objects. Afterwards, the threshold is raised gradually, one gray level at a time, expanding the object

boundaries. The restraining of no merge between objects transform the points of first contact into

boundaries. The process is terminated before the threshold reaches the gray level of the background

[3]. The watershed algorithm is briefly shown in Fig. 3.5

Figure 3.5: Illustration of separating touching objects. [3] (a) A binary segmented image. (b) After a few erosions
and inversion. (c) The exoskeleton. (d) Separated objects

This morphological processing technique for image segmentation is still a quite popular method of

growing region [47, 48].

3.1.2.C Canny edge detector

In this work the Canny edge detector was used to convert the Watershed segmentation results in

a binary image, stabilizing the Regionprops algorithm. Edge detection consist on evidencing pixels in

an image at which the gray level changes sharply taking into account the slope and direction of the

transition. This operators perform a 2-D spatial gradient measurement using convolution with a pair

of horizontal and vertical derivative kernels, gx and gy. Each pixel in the image I(x, y) is convolved

with both kernels, one estimating the gradient in the x direction and the other in the y direction. The

output of these convolutions is combined forming the estimated absolute magnitude of the gradient

|G| and its orientation θ at each pixel. This gradient magnitude is:

|G| =
√
G2
x +G2

y

where Gx and Gy are the output of the estimated derivative function in the x and y directions, re-

spectively, Gx = I(x, y) ∗ gx and Gy = I(x, y) ∗ gy. Also the gradient drecton can be computed as

θ = arctan
Gy
Gx

.
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Canny edge detector is peculiar as its operator is actually a multistage-edge detection algorithm.

First, as this detector is susceptible to noise in raw unprocessed data, the image is smoothed through

a convolution with a Gaussian kernel. Afterwards, a first-derivative operator (usually Sobel) is applied

to obtain the spatial gradient measurements. In this process the pixels with gradient magnitudes that

form local maxima in the gradient direction are determined and the local gradient maxima produces

ridges in the edge map . A nonmaximum suppression step tracks along the top of these ridges using

a dual threshold mechanism, that starts on a ridge higher than the upper threshold and proceed

out from that point in both directions until a point on the ridge falls bellow the lower threshold. The

underlying assumption is that important edges are along continuous paths in the image. This allow to

discard noisy pixels that don’t form paths. Finnaly every point who is not along the tracked ridges is

set to zero and the result is a binary image where each pixels is labeled either as an edge point or a

non edge point. [3]

3.1.3 Profiles collection

The motivation of this work is to qualify and quantificaty the distribution of E-cadherin molecules

within cells. As explained in Chapter 2, conformacional changes in E-cadherin due to mutations result

in alterations in E-cadherin distribution. In cell, WT E-Cadherin molecules are mainly concentrated

at the cell membrane, where E-cadherin performs its important role in the adhesion complex and

in the physical linkage between cells. In the wild-type context and in homeostatic situations, the

level of E-cadherin expression at the cytoplasm is low and uniformly distributed and this is due to its

normal recycling. To characterize the distribution of E-cadherin expression two types of profiles were

developed: Radial Profiles (RDPs), anchored at the nucleus geometrical center of each individual

cell collected from different angles, and Internuclear Profiles (INPs), corresponding to sets of parallel

intensity lines extracted between pairs of neighbouring cell. The method and the purpose of collection

of each profile will be described in the next Sections 3.1.4 and 3.1.5.

3.1.4 Internuclear profiles

The Internuclear Profiles (INPs) were developed to study the existence of a well-defined, equidis-

tant, membrane between pairs of adjacent nuclei positively selected on Nuclei Selection. The equidis-

tant of the membrane together with an increase in intensity values are traits of a healthy linkage be-

tween cells which mean presence of WT E-cadherin. These profiles are collected concerning the

center coordinates of the selected pairs of adjacent nuclei, and consist of a set of parallel intensity

lines extracted from the original image of the region between the selected pairs of nuclei ( see Fig.

3.6). Each profile created, is inserted in an Internuclear Map (INM) created to include every profile

withdrawn from the same image (see Fig.3.7). The collection method is explained in the next section.

3.1.4.A Methodology

These profiles are collected concerning the estimated centroid coordinates of the selected pairs

of adjacent nuclei. First the distance between the nuclei that compose the pair, ρ , and the orientation
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angle, θ (~k direction) are calculated (see Fig. 3.6 a)). Thus, the INP dimension is A× ρ, being

A a normalization value (A=100). Afterwards, two more orientation angles, perpendicular to θ, are

computed: θup and θdown (3.6 b)). These angles, as the two ways of ~k1 direction, allow the collection

of upper and lower parallel profiles. The profiles are collected starting on the line described by ~k1

direction (mathrm1st nucleus) and and have a length of ρ. These profiles are collected in ~k parallel

directions (3.6 c)). In Fig.3.6 c) the increase in darkness simulates the increase in the iteration step

of withdrawn. The final INP is represented in Fig.3.6 d).

Figure 3.6: Internuclear Collection. a) Definition of θ direction andρ vector (nuclei centered) b) Definition of θup
and θdown directions c) Parallel Profiles collection d) Final INP

Finally, every profile is inserted in an Internuclear Map (INM) created to include every profile

withdrawn from the same image. The profiles are inserted in order, occupying the next ρ columns of

the map. The map dimensions will be N×M, being N = A and M = No
profiles × ρ. The insertion is

shown in fig. 3.7.

Figure 3.7: Internuclear Map. a) E-cadherin distribution Profiles b) Final INM.
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3.1.4.B Initial Internuclear Maps (INMs)

In this work, several in vitro assays of WT E-cadherin and HDGC related mutant forms were de-

veloped (see section 2.3). Each assay developed resulted in one FM image, that has a corresponding

INM comprising all the INPs collected. The INMs correspondents to each assay developed (see

fig.2.4), are displayed on fig.3.8.

Figure 3.8: INMs and GEFMs collected from the in vitro assays developed with WT E-cadherin and HDGC
related mutant forms.

To understand the intensity behavior between neighboring nuclei in each INM, the mean profile in

horizontal direction was computed. To study behavior resemblances in INMs built from FM images

containing identical E-cadherin forms, INMs regarding the same E-cadherin form were displayed to-

gether. The results are displayed in Fig.3.9 and Fig. 3.10.

Figure 3.9: Comparison of the IN horizontal mean profiles concerning each form of E-cadherin, in this case WT,
T340A, A634V, R749W.
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WT, A634V, R749W INMs’ mean profiles are similar in both intensity and shape among INMs

concerning the same E-cadherin form. On the other hand, Fig. 3.10 shows that E757K, E781D and

P799R INMs’ mean profiles have some significant differences in either profile’s shape and/or intensity.

Finally, T340A and V832M have only one INMs so no resemblance study is possible.

Figure 3.10: Comparison of the IN horizontal mean profiles concerning each form of E-cadherin, in this case
E757K, E781D, P799R, V832M

To simplify the comparison between different forms of E-cadherin, before GC, Global E-cadherin

Form Maps (GEFMs) were developed combining the INMs of the same form of E-cadherin. The mean

and STD of this GEFMs are displayed in Fig. 3.11 and Fig.3.12.

Figure 3.11: Comparison of the IN horizontal mean profiles of each form of E-cadherin map
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Figure 3.12: Comparison of the IN horizontal standard deviation profiles of each form of E-cadherin map

Regarding the average profiles of the GEFMs is possible to observe that: WT, T340A, V832M,

P799R and E781D profiles have similar approximately Gaussian shape; WT has the overall higher

maximum intensity; E781D has the lower overall maximum intensity; T340A, V832M, P799R profiles

are quite similar both in shape has in overall intensity; on the contrary, R749W and E757K profiles

are completely different of the others, as they display two high lateral intensity peaks. Regarding the

STD of the GEFMs is possible to observe that WT, T340A, A634V, E757K, E781D, P799R and V832M

STD are similar in intensity within a certain range. R749W GEFM display a much higher STD.

3.1.5 Radial profiles

The Radial Profiles (RDPs) store nucleus-to-membrane radial environment surrounding each nu-

cleus, to study E-cadherin molecules distribution within the cell. In the wild-type context and in home-

ostatic situations, E-cadherin molecules are mainly concentrated at the membrane being the expres-

sion at the cytoplasm low and uniformly distributed, due to its normal recycling. The existence of

abnormal values of E-cadherin being decomposed in the cytoplasm suggest E-cadherin with abnor-

mal conformation and therefore a gene mutation. These profiles contain a set of intensity lines of the

original image extracted from the radial surroundings relatively to the center coordinates of each of

the selected nuclei rearranged in regards with the center of the cell (see fig. 3.13). The method of

collection is explained in the next section.

3.1.5.A Methodology

Initially, a square Roi is collected from the E-cadherin distribution matrix centered in the center

coordinates of the selected nuclei. The ROI size is 2N× 2N, being N = µdist, where µdist is the mean

of the distance vector obtained after the IN collection. (see section 3.1.4.A). This way its guaranteed

that this ROI contain the information from nucleus-to-membrane in all directions. The information is

rearranged in different radial coordinates, ρ (ρ = N) and θ, with the referential in the center (see Fig.

3.13 a)). The final RDP dimension is N × θn, being θn equal to θn = 2×π
θstep

. This way the number of

lines gathered depend on θstep, which is the incremental step of θ. In this case θstep was considered
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π
180 (1◦). The final RDM has dimension N× θn(360). The intensity lines collection and rearrangement

are displayed in Fig. 3.13.

Figure 3.13: Radial profiles. a) E-cadherin distribution Nucleus centered ROI, b) Profile obtained from the polar
collection of data, c) Final RDM.

In this process each line collected is then placed on the kth column of the final RDP, being k both

the number of the actual iteration and a reference to the θ value in which the line was gathered. This

fact allow the reconstruction of the cell profile from the RD profile. This process is used to reconstruct

the different cells comprising each form of E-cadherin present after maps GC. The process is shown

in Fig. 3.14

Figure 3.14: Radial profiles. a)Nucleus centered region of interest of E-cadherin distribution. b) Profile obtained
from the polar collection of data.

Each profile, after being created, is inserted in a RDM that combines every profile withdrawn from

the same image creating a RDM representative of the original image. The insertion method is similar

with the one described in section 3.1.4.A. However, in this case the map dimensions will be N = A ,

being A the same normalization factor, and M = No
profiles × θn.

3.1.5.B Initial Radial Maps (RDMs)

In this work, several in vitro assays of WT E-cadherin and HDGC related mutant forms were de-

veloped (see section 2.3). Each assay developed resulted in one FM image, that has a corresponding
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RDM comprising all the RDPs collected. The RDMs obtained processing the several images collected

from the in vitro assays developed (see Fig.2.4) are displayed on Fig.3.15.

Figure 3.15: RDMs and GEFMs collected from the in vitro assays developed with WT E-cadherin and HDGC
related mutant forms.

To understand the intensity behavior within the cell, RDMs’ mean profile in lines direction were

computed, where RDMs regarding the same E-cadherin form were displayed together, to study be-

havior resemblances in RDMs built from FM images containing identical E-cadherin forms. These

profiles are displayed in Fig. 3.16 and Fig.3.17.

Figure 3.16: Comparison of the RD horizontal mean profiles concerning each form of E-cadherin, in this case
WT, T340A, A634V, R749W.

With respect to WT, A634V, R749W, E757K forms of E-cadherin RDMs, mean profiles are similar

in both intensity and shape, within a certain variance, among RDMs concerning the same E-cadherin

form. On the other hand, E781D, P799R RDMs mean profiles have some significant differences
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in either profiles shape and/or intensity. Finally, T340A and V832M have only one RDMs so no

resemblance study is possible.

Figure 3.17: Comparison of the RD horizontal mean profiles concerning each form of E-cadherin, in this case
E757K, E781D, P799R, V832M

Similarly to what was done before, GEFMs were developed combining all the RDMs concerning

the same E-cadherin type. The mean and STD profiles of the GEFMs are displayed in Fig. 3.18 and

Fig.3.19.

Figure 3.18: Comparison of the RD horizontal mean profiles of each form of E-cadherin map
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Figure 3.19: Comparison of the RD horizontal standard deviation profiles of each form of E-cadherin map

Regarding the average profiles of the Radial GEFMs is possible to observe that: R749W has the

highest maximum intensity; R749W, E757K, A634V and E781D have the maximum value in similar

position (approximately 0.25) ; T340A,V832M, P799R and WT display steadier profiles. Regarding

the STD, is possible to observe that WT, T340A, A634V, E757K, E781D, P799R, V832M STD are

similar in intensity and shape,whereas R749W STD is much higher. The creation of the cell profile

from the respective RDM, described in 3.1.5, results are displayed in Fig. 3.20.

(a) WT (b) T340A (c) A634V

(d) R749W (e) E757K (f) E781D

(g) P799R (h) V832M

Figure 3.20: Cell profile reconstruction.

Fig. 3.20 allow to perceive, through a visual analysis, the cell membrane heterogeneities within
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cells of the same culture. To correct this heterogeneities not related with trafficking dynamics, these

maps were geometrically compensated.

3.2 Geometric Compensation

In this work, a new approach is proposed for the quantification and distribution of molecules within

cells by characterization of average internuclear and radial profiles. These average profiles are diffi-

cult to obtain mainly due to heterogeneous cell geometric shape and size variability. This Bayesian

algorithm compensate, in the INMs and RDMs, size and shape heterogeneities of the cells. This

algorithm models each columns as a finite dimension continuous field, estimated from the initial ob-

servations, and imposing similarity between adjacent columns, allow the adjustment of each column

observations, smoothing the solution. The adjustment of the observations position is shown in Fig.

3.21.

Figure 3.21: Iteration process of observation’s adjustment.

This method based on the estimation of a continuous field in R2, is divided in three major steps:

Initialization, Similarity Interpolation function, Observation’s position adjustment. In initializa-

tion, a function y = f(xj , cj), depending on a set of parameters cj, is estimated from the set of

intensities, yj and corresponding locations xj . Afterwards the compensation step is performed into

two sub-steps where a energy function is minimized simultaneously with respect to the set of param-

eters, cj, defining the ideal profile and the compensated locations of the points of the intensity profile,

xj:

ctj = arg min
c
E(yj ,x

t
j , cj) (3.1)

xt+1
j = arg min

x
E(yj ,xj , c

t
j) (3.2)

The compensation step aims at estimating the vector of coefficients, cj, and simultaneously the new

locations for the observations that regularize the map of profiles, xj. The regularization occur through

the optimization of an energy function where the similarity of adjacent columns is imposed. In the

end of this algorithm the final image is built moving the set of intensities, yi to the new corresponding

locations xj. The empty pixels are obtained by an interpolation process.
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3.2.1 Mathematical Formulation

Let Y = {yi,j} be the N×M map of intensity profiles (RD or IN) obtained from M different N

length normalized profiles, and X = {xi,j} the corresponding locations along the jth profile. The

initial locations, in the non-compensated map of profiles, after dimension normalization, are evenly

distributed in the interval [0, 1], meaning that x0
i,j = i

(N−1) .

Let fj(xj , cj) =
∑L−1
k=0 ck,jφk,j(x) be a 1D finite continuous function, depending on a column vector

of parameters, cj = [c0,j , c1,j , ..., cL−1,j ]
T , to describe the underlying ideal jth column intensity profile

of the image map of profiles. yi,j is the ith intensity observation from the jth profile taken at the xi,j

location and φk,j(x) is the kth basis function. These functions are evenly distributed in the interval

[0, 1], with 0 ≤ k ≤ L− 1. They are shifted versions of a mother basis function according with

φk,j(x) = φ(
x

∆
− k) (3.3)

where ∆ = 1
(L−1) . The locations of the observations, xi,j , are assumed to be geometrically distorted

which means that they are corrupted by position noise,

xi,j = x∗i,j + εi,j (3.4)

Let also C = {ci,j} be a L ×M matrix of coefficients, where cj are the coefficients that define

each jth column of the continuous map profile . Each ideal profile function may be written as fj(x) =

ΦT (x)cj where Φ(x) = [φ0(x)φ1(x), ..., φL−1(x)]T is a column vector containing the values of the L

basis functions computed at location x. The optimal coefficients cj and observations position xj are

estimated solving the following optimization problem:

[cj , xj ]
∗ = arg min

cj ,xj
E(xj ,yj , cj) (3.5)

where the energy function minimized is:

E(xj ,yj , cj) = Ey(xj ,yj , cj) + Ep(cj) + Ec(cj) + Ex(xj). (3.6)

In this equation the energy function is composed by one data fidelity term and three prior terms.

The data fidelity term,

Ey(xj ,yj , cj) =

N−1∑
i

(fj(xi,j)− yi,j)2 (3.7)

that pushes the solution towards the data. The first prior term,

Ep(ck) = α
∑
i

(ci,j − ci−1,j)
2 (3.8)

is used to stabilize the iterative process smoothing the solution imposing similarity of the coefficients

describing each jth profile , ci,j − ci−1,j . The second prior term,

Ec(cj) =

L−1,M−1∑
i,j=0

β(ci,j − ci,j−1)2, (3.9)
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smooths the solution imposing similarity between homologous coefficients on neighboring columns,

ci,j − ci,j−1, in order to force the similarity of the ideal profiles, fj(x). The third prior term,

Ex(xj) = γ

N−1,M−1∑
i,j

(xi,j − xi,j−1)2, (3.10)

is a prior function to keep the displacement compensation adjustment of the intensity locations at

each profile under control and prevent degenerated solutions. The end locations, x0,j and xN−1,j are

fixed with values 0 and 1 respectively. α, β e γ are prior hyper parameters.

Using matrix notation the equations (3.7) , (3.8), (3.9) and (3.10) can be written as follows

Ey(xj ,yj , cj) =
∑
j

(ΦTj (xj)cj − yj)
T (ΦTj (xj)cj − yj) (3.11)

Ep(ck) = α(θcj)
T (θcj) (3.12)

Ec(cj) =
∑
j

(
β(cj − cj−1)T (cj − cj−1)

)
(3.13)

Ex(xj) = γ
∑
j

(θxj)
T (θxj) (3.14)

where Φj(xj) = [Φ(x0,j),Φ(x1,j), ...Φ(xN−1,j)] is a N ×L matrix computed for each jth column profile

and θ is the following difference operator:

θ =


1 −1 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

...
...

0 0 . . . −1 1

 (3.15)

The energy function defined in (3.6) is minimized in three steps, according with:

c0
j = arg min

cj

Ey(xj ,yj , cj)) + Ep(cj), 0 ≤ j ≤M − 1 (3.16)

ctj = arg min
cj

Ey(xt−1
j ,yj , cj) + Ec(cj), 0 ≤ j ≤M − 1 (3.17)

xtj = arg min
xj

Ey(xj ,yj , c
t
j) + Ex(xj), 0 ≤ j ≤M − 1 (3.18)

where t is the iteration index of the iterative optimization process where (3.17) and (3.18) steps alter-

nate until convergence is achieved.

3.2.1.A Optimization

TThe minimization step (3.16) (Initialization), is performed finding the stationary point with respect

to cj of ∇cjE(xj ,yj , cj) = 0, leading to:

(Φcj − yj)
T (Φcj − yj) + α(θcj)

T (θcj) = 0, (3.19)

with the following solution,

c0
k = (ΦTΦ + αΘ)−1ΦTyk (3.20)

where Θ = θT θ.
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The minimization step (3.17) (Similarity Interpolation), is performed by finding the stationary point

with respect to cj , of ∇cjE(xt−1
j ,yj , cj) = 0, that leads to:

Φj(Φ
T
j cj − yj) + αΘT cj + β [2cj − cj−1 − cj+1] = 0, (3.21)

with the following solution,

ctj =
(
ΦjΦ

T
j + αΘT + βIL)−1(2βc̄t−1

j + Φjyj
)

(3.22)

where Θ = θT θ, IL is an L dimension identity matrix and ¯ct−1
j = (ct−1

j−1 + ct−1
j+1)/2 is the average of the

neighboring columns.

The minimization step (3.18) (Observation’s position adjustment) is obtained by computing the

derivative with respect to the ith element of the jth profile of intensities xj of ∂E
∂xi,j

= 0, resulting in:

∂E

∂xi,j
= zi,j + 2(xj(i)− x̄i,j) = 0, (3.23)

where zi,j = 1
β (fj(xi,j − yi,j)ḟj(xi,j) and x̄i,j = (xi−1,j + xi+1,j) /2 is the average values of the

neighboring intensity locations. The resulting equation to compute xj is:

xi,j =
1

2
(
zi,j
γ

+ (xTj ΥT
i )) (3.24)

where Υi is the jth line of a shift matrix operator:

Υ =


2 0 0 0 . . . 0
1 0 1 0 . . . 0
0 1 0 1 . . . 0
...

...
...

...
...

...
0 0 0 . . . 0 2

 (3.25)

3.2.2 Experimental Results

In this section results with synthetic and real data are presented. The algorithm was implemented,

and data processed, in Matlab R©software.

3.2.2.A Synthetic Data

The synthetic data, displayed in Fig.3.22, 3.23, 3.24, 3.25.a), to illustrate the application of the

proposed method, are 256× 256 gray scale black images with a white line representing the distorted

fluorescent cellular membrane. This images simulate internuclear and radial profiles of non ideal

circular cells. In this experiment four synthetic image were processed:

• An oblique straight line (see fig. 3.22 a))

• Several oblique straight lines with different slopes. (see fig. 3.23 a))

• An half arc of cosine (see fig. 3.24 a))

• A complete arc of cosine (see fig. 3.25 a))
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The first two images intend to simulate the information distortions obtained in the INPs, and the

last two images aim at simulating the distorted cellular membrane characteristic in RDPs. The result

of the GC of this synthetic profiles is displayed in Fig. 3.22, Fig 3.23, Fig. 3.24 and 3.25.

Figure 3.22: Synthetic data. a) An oblique straight line (initial), b) Geometric compensated data , c) Mean
comparison before and after GC

Figure 3.23: Synthetic data. a) Several oblique straight lines (initial), b) Geometric compensated data , c) Mean
comparison before and after GC

Figure 3.24: An half arc of cosine (initial),b) Geometric compensated data , c) Mean comparison before and
after GC
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Figure 3.25: A complete arc of cosine (initial), b) Geometric compensated data , c) Mean comparison before
and after GC

This results show that the profiles were correctly compensated, displaying the stability of the al-

gorithm for different initial data geometries. All the images show a columns smoothness effect due

to the alignment of high intensity observations in adjacent columns. In coherence with what was

expected, the observations align in one straight line which results in a higher maximum intensity

and lower dispersion in the horizontal mean vector. Also the standard deviation diminishes (see fig.

3.22,3.23,3.24,3.25 c)).

3.2.2.B Real FM Data

A real IF image with WT E-cadherin tagged with Green Fluorescent Proteins (GFPs) is used

here to illustrate the application of this algorithm to real data profiles collected from fluorescence

microscopy images. TheIF image is shown in Fig.3.26. Two types of Maps were geometrically com-

pensated:

• IN Map (fig.3.27 b)).

• RD Map (fig.3.27 c)).

Figure 3.26: Real immunofluorescence image with tagged E-Cadtherin.
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Both of the maps processed using this algorithm came from the preprocessing and profiles collec-

tion of the same FM image containing WT E-cadherin (No 38), and the results are shown in Fig. 3.27.

The images b) and d) of Fig. 3.27 were built moving the initial observations to the new calculated

positions, x̂k and interpolating the empty remaining pixels.

(a) Non comp. IN profile map (b) Non comp. Radial profile map

(c) Compensated IN profile map (d) Compensated Radial profile
map

Figure 3.27: Real immunofluorescent images of tagged E-Cadtherin. a) Original plaque, b) IN profiles from
selected cells, c) Radial profiles from selected cells, d) geometric compensated IN map of profiles, e) d) geometric
compensated Radial map of profiles.

The INMs contain information corrupted with distortions due to the process of collection and bi-

ologic heterogeneities in shape and size of cellular membranes. Not only the profiles are collected

in different directions but also the membrane is not a straight well defined line due to biologic shape

variability. To correct the variations described before, INMs were geometrically compensated and the

results are displayed in Fig. 3.27 a,b). To quantitatively compare the INMs before and after geometric

compensation both the mean and STD profiles were computed, in column direction, and are displayed

in Fig. 3.28 a) and b), respectively.
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(a) Non comp. IN profile map) (b) Compensated IN profile map

Figure 3.28: IN horizontal mean profile combined with respective STD in each point, a) before and b) after GC.

In Fig. 3.27 b) the alignment of similar intensity observations in adjacent columns lead to the

appearance of an almost straight line in the horizontal center of the image. This high intensity line

represents the cell membrane, where E-cadherin performs its adhesive function. As can be observed

in 3.28 both E-cadherin’s membrane position and Membrane’s intensity are better defined after GC.

This can be seen by the increase in the intensity peak value of the horizontal mean vector obtained

after the geometric compensation in comparison with the initial one. This is reflected in the increase

of mean’s norm in position x = 0.5 (membrane), and the overall decrease in data dispersion. The

STD significantly decreases after GC, specially near the cellular membrane position.

The RDMs suffer from variations due to the membrane biological shape and size heterogeneity.

Because cell’s nuclei and membranes are not perfectly spheric, the polar collection of data nuclei

centered will not be a straight line (can be seen in fig. 3.27) c). To compensate the diversity de-

scribed, radial profiles were geometrically compensate using the algorithm described. The results are

displayed in Fig. 3.27 c,d). To quantitatively compare the RDMs before and after geometric compen-

sation both the mean and STD profiles were computed, in column direction, and are displayed in Fig.

3.28 a) and b), respectively.

(a) Non comp. RD profile map (b) Compensated RD profile map

Figure 3.29: RD horizontal mean profile combined with respective STD in each point, a) before and b) after GC.

Fig. 3.27 c) shows that there is actually a movement of alignment between higher intensity ob-

servations as expected. In Fig. 3.29, that compares the horizontal mean vectors and STD of the

RDM before and after GC, is shown that STD decreases substantially after GC. This represents that
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the columns are similar, displaying the high and low intensities in same position leading to a better

definition of both the membrane’s actual position and intensity.The geometrically compensated map

mean profile display a well defined centered high intensity peak . This increase in intensity represents

an increase in E-cadherin molecules. As this peak position is near x0.5, is expected that this peak

represents the cell membrane, where E-cadherin performs its adhesion role. The creation of the cell

profile from the respective RDM, described in 3.1.5, results are displayed in Fig. 3.30.

(a) Before GC (b) After GC (c) Virtual

Figure 3.30: Cell profiles

Fig. 3.30 a) allow to perceive, through a visual analysis, the cell membrane heterogeneities within

cells of the same culture. This differences are attenuated after GC, since the alignment of the inten-

sities in the geometrically compensated RDM lead to the urge of a well defined spherical line in the

compensated and virtual cell profiles.
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4.1 Features

The expression pattern of membrane proteins at inter-cellular level, namely the cell membrane,

give information that reflects the functional activity of E-cadherin protein, leading to a better under-

standing of the functional results of some structure alterations. To characterize the distribution both

at membrane and cytoplasmic level, several quantitative objective features that reflect E-cadherin ex-

pression level are extracted. The features selected intend to discriminate the distribution of functional,

healthy E-cadherin from the expression of dysfunctional, mutated E-cadherin.

The features were collected from the horizontal mean and STD profiles of the geometrically com-

pensated INMs and RDMs. Mean and STD profiles reflect not only E-cadherin molecules concen-

tration distribution but also molecules relative position in cell. The features collected from the mean

profile are described on Table 4.1. These features reflect the distribution of E-cadherin whithin the

cell, through the quantification of: high concentrations of E-cadherin intensity and relative position;

E-cadherin concentration in the membrane; abnormal high levels of E-cadherin in the cytoplasm.

Table 4.1: Features Description (Mean profile)

Maximum Intensity (MI) Maximum value observed in the mean profile.
Position of MI Maximum Intensity (MI) position, x.
Membrane’s Intensity Intensity value at cell membrane, f(x0.5).
Mean Intensity Profile’s mean intensity, x̂.
IntensitySTD Measure of mean profile variation/dispersion concerning the average,x̂.
Maximum Mean Ratio (MMR) Ratio between maximum and mean intensity.
Total Variation (TV) Measure of mean profile behavior in adjacent observations.

The features collected from the STD profile are described on Table 4.2.

Table 4.2: Features Description (STD profile)

Maximum Standard Deviation (MSTD) Maximum value observed in STD profile.
Position of the MSTD MSTD position, x.
Membrane’s STD STD value at cell membrane, f(x0.5).
Mean STD Profile’s mean STD, x̂.
Maximum Mean STD Ratio Ratio between maximum and mean STD.
Total Variation (TV) Measure of STD profile behavior in adjacent observations.

Fig. 4.1 illustrates the collection of: MI or MSTD; Position of MI/MSTD and Membrane’s intensity/STD.

Also, presentes the mathematical formulation of: mean x̂, STD, MMR and TV value.
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Figure 4.1: Features collection and mathematical formulation.

4.2 Data Analysis

To characterize and discriminate among WT E-cadherin and remaining mutant forms both a brief

clustering analysis and a final statistical analysis were developed. The clustering method chosen

was the k-means algorithm. This algorithm minimizes the sum, over all clusters, of the within-cluster

sums of point-to-cluster-centroid Euclidean distances, grouping the data in terms of resemblance.

This algorithm was implemented to group the feature collection results, to study for each feature

the resemblances between WT E-cadherin and mutant forms. Afterwards, a statistical analysis was

developed to study the discriminative potential of the features collected from the mean profiles. In this

work, Mann-Whitney U test were developed to compare for each feature selected the null hypothesis

that WT E-cadherin and each one of the mutant forms are similar. This statistical analysis provides a

dissimilarity analysis in terms of the features collected between WT E-cadherin and remaining HDGC

related mutant forms.

4.2.1 Clustering Analysis

K-means clustering (MacQueen, 1967) is a method commonly used to automatically partition N-

dimensional data into k sets. It proceeds by selecting k initial cluster centers and then iteratively

refining them as follows:

1. Each instance di is assigned to the closest cluster center.

2. Each cluster center Cj is updated to be the mean of its constituent instances.

The algorithm converges when there is no further change in assignment of instances to clusters [53].

In Matlab R©the function that implements k-means clustering is k-means. kmeans(X,k), partitions the

points in the n -by -p data matrix X into k clusters. In this case since we are working with the results of

the feature collection which means that n=10 (number of maps) and p=1 as features were analyzed

separately. The number initial clusters were k = n
2 − 1 = 4. This iterative partitioning minimizes
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the sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid Euclidean distances.

kmeans returns an n-by-1 vector IDX containing the cluster indices of each point. [54] In Tables 5.2,

5.4, 5.7 and 5.9 each value display the color of the respective cluster to which it belongs. This mean

that values displayind the same color were assigned the same cluster and on the other hand values

displaying different colors were assigned to different clusters. This algorithm provides an assessment

of resemblance.

4.2.2 Statistical Analysis

The Mann-Whitney U test (also called the Mann-Whitney-Wilcoxon (MWW)) is an overall compar-

ison of distributions in terms of both shape and location. Usually, this test is used to test the null

hypothesis that two samples come from the same population, i.e. have the same median. The alter-

native hypothesis is that observations in one sample tend to be larger than observations in the other.

Although it is a non-parametric test, it assumes the two distributions are similar in shape. Initially,

Mann-Whitney U test assumes the existence of a population x ,x1, x2, ..., xn, and another population

y, y1, y2, ...ym. Afterwards, the method compares each observation xi with every observation yj ob-

taining a total number of pairwise comparisons of n × m. If the populations have the same meanl

then each xi has an equal chance , P = 1
2 of being greater or smaller than each yj . Consequently,

the the null hypothesis is H0 : P (xi > yj) = 1
2 and the alternative hypothesis H1 : P (xi > yj) 6= 1

2 .

With this hypothesis, the algorithm estimates the relation between all the observations xi and yj . The

number of times xi is greater than yj is denoted as Ux and the number of times xi is smaller than yj

is denoted as Uy. The null hypothesis assumes Ux ≈ Uy. [55].

The test equivalent to a Mann-Whitney U-test in Matlab@ is ranksum. ranksum tests the null

hypothesis that data in x and y are samples from continuous distributions with equal medians, against

the alternative that they are not. The function [p, h] = ranksum(x, y) returns the p − value of a two-

sided Wilcoxon rank sum test and a logical value indicating the test decision, h. If h = 1 indicates a

rejection of the null hypothesis, and h = 0 indicates a failure to reject the null hypothesis at the 5%

significance level. [56]
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The characterization of the E-cadherin distribution is divided in two different analysis: INMs anal-

ysis, described in section 5.1 and RDMs analysis described in section 5.2. In this chapter, several

quantitative objective features that reflect E-cadherin expression level are extracted to characterize

the distribution both at membrane and cytoplasmic level. Also, a statistical analysis is developed to

test the discriminative potential of the features selected to identify WT E-cadherin among the HDGC

related selected mutant forms.

5.1 Internuclear Profiles Characterization

The geometrically compensated maps were decomposed into two profiles: mean intensity profile

and STD profile. Both these profiles were collected in lines direction, to study E-cadherin molecules

distribution concerning the nuclei involved in the process of collection. Also, to establish a phenotype-

mutation relation, all the maps containing the same kind of E-cadherin were displayed together. Fi-

nally, GEFM combining INMs of the same form of E-cadherin were developed and are marked with

the * symbol. These profiles are displayed in Fig. 5.1 and Fig.5.2.

Figure 5.1: Comparison of the INMs concerning each form of E-cadherin, in this case WT, T340A, A634V,
R749W. (left) horizontal mean profiles, (right) horizontal standard deviation
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INMs of WT, A634V and R749W, among the same kind, have similar horizontal mean profiles both

in maximum intensity as in shape. Also, in these cases, STD profiles magnitude is similar. Therefore,

only the GEFM of each kind of E-cadherin is considered on further analysis. In P797R particular case,

although the intensity of the plaques are different both the mean profile shape and STD are similar.

This suggests that the intensity variation is due mainly to the process of acquisition of data. Thus,

from now on, the GEFM is used to represent this form of E-cadherin.

Figure 5.2: Comparison of the INMs concerning each form of E-cadherin, in this case E757K, E781D, P799R,
V832M. (left) horizontal mean profiles, (right) horizontal standard deviatio.n

In contrast E757K, E781D INMs, display either a dissimilar horizontal mean profile or an increase

in STD profile magnitude in the GEFM. Accordingly, to avoid inaccurate judgments both these maps

will be evaluated separatly as: E757K (1) or (57), E757K (2) or (59), E781D (1) or (63) and E781D

(2) or (64). Finally, T340A and V832M only INM is threated as GEFM. The maps selected after this

mutation behavior analysis are displayed in Fig. 5.3.
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Figure 5.3: Geometrically compensated INMs selected.

The molecules distribution, in each GEFM, is described through the mean projection and respec-

tive STD interval in each point in Fig.5.4.

Figure 5.4: IN Horizontal mean profile combined with respective STD interval in each point.

As can be seen in Fig.5.4, WT E-cadherin has a quite different phenotype either qualitatively

or quantitatively when compared with E-cadherin mutant forms. To perceive qualitative differences

between GEFMs, the mean and STD profiles of the maps selected were computed and are displayed

in Fig. 5.5 and Fig.5.6.
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Figure 5.5: Distinct horizontal mean profiles after GC.

Figure 5.6: Distinct Horizontal STD profiles after GC.

Fig.5.5 and 5.6 show that qualitatively WT profiles are quite different either in shape or in intensity

distribution. To quantitatively characterize the distribution both at membrane and cytoplasmic level,

and distinguish the E-cadherin expression level for the different types of E-cadherin, objective features

were extracted.

5.1.1 Feature Collection

To distinguish E-cadherin expression level in the final GEFMs, objective features were extracted

from mean and STD profiles. The features collected from mean profiles were: Maximum Intensity (MI),

Position of the MI, Membrane’s intensity, Mean Intensity, Intensity STD, Maximum Mean Ratio (MMR)

and Total Variation (TV). The quantitative results of mean profile feature collection are displayed in
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the Table 5.1

Table 5.1: Features collected from GEFMs’ mean profiles.

Mean Profile
Maximum Position Membrane’s Mean Intensity MMR Total
Intensity of the MI intensity Intensity STD Variation

MI (TV)
WT 1 119.15 0.48 115.88 72.77 16.29 1.64 20.02

T340A 2 88.41 0.49 87.92 64.58 8.94 1.37 9.84
A634V 3 78.33 0.61 64.01 62.96 6.87 1.24 8.13
R749W 4 98.35 0.26 58.44 80.11 11.92 1.23 17.16

E757K (1) 5 93.87 0.25 68.22 81.28 7.31 1.15 9.98
E757K (2) 6 69.78 0.46 66.09 61.26 4.63 1.14 8.02
E781D(1) 7 101.52 0.48 98.66 73.65 8.18 1.38 14.09
E781D(2) 8 44.17 0.48 43.18 35.75 3.36 1.24 5.57

P799R 9 79.44 0.48 77.79 62.50 5.78 1.27 8.17
V832M 10 79.66 0.46 73.53 60.44 7.12 1.32 9.28

To understand quantitative reasons of similarity in each one of these features a k-means clustering

analysis was performed. Each element display one color, representing the cluster it belongs. There-

fore, elements contained in the same cluster display the same colors and consequently, elements of

different cluster display different colors.The results of this evaluation is displayed in Table 5.2.

Table 5.2: Features collected from GEFMs’ mean profiles after a kmeans analysis.

Mean Profile
Maximum Position Membrane’s Mean Intensity MMR Total
Intensity of the MI intensity Intensity STD Variation

MI (TV)
WT 1 119.15 0.48 115.88 72.77 16.29 1.64 20.02

T340A 2 88.41 0.49 87.92 64.58 8.94 1.37 9.84
A634V 3 78.33 0.61 64.01 62.96 6.87 1.24 8.13
R749W 4 98.35 0.26 58.44 80.11 11.92 1.23 17.16

E757K (1) 5 93.87 0.25 68.22 81.28 7.31 1.15 9.98
E757K (2) 6 69.78 0.46 66.09 61.26 4.63 1.14 8.02
E781D(1) 7 101.52 0.48 98.66 73.65 8.18 1.38 14.09
E781D(2) 8 44.17 0.48 43.18 35.75 3.36 1.24 5.57

P799R 9 79.44 0.48 77.79 62.50 5.78 1.27 8.17
V832M 10 79.66 0.46 73.53 60.44 7.12 1.32 9.28

According with Table 5.2, the most discriminant features are Membrane’s Intensity and the MMR.

In these features WT E-cadherin cluster has 1 element. In Intensity STD, Mean Intensity and TV the

cluster assigned to WT E-cadherin have 2 elements. In the remaining features, WT E-cadherin cluster

has at least 4 elements. This suggest that neither MI or Position of the MI are good discriminating

between WT E-cadherin and selected mutant forms. A further statistical analysis (Mann-Whitney U

test) is performed to these features to understand the feature behavior in each profile constituent of

these GEFMs. This analysis is present in section 5.1.2. To visually corroborate the k-means analysis,

Fig. 5.7 displays simultaneously the WT mean profile and mutant forms mean profile.

48



Figure 5.7: Mean profile comparison between WT E-cadherin and mutant forms.

Finally, the features collected from STD profiles were: Maximum Standard Deviation (MSTD),

position of the MSTD, STD at the membrane, mean STD, Maximum Mean STD Ratio, Total Variation

(TV). The results of the feature collection are shown in the Table 5.3

Table 5.3: Features collected from GEFMs’ STD profiles.

Variance Profile
MSTD Position Membrane’s Mean Maximum Mean Total

MSTD STD STD STD Ratio Variation
(TV)

WT 1 26.28 0.48 24.68 15.41 1.70 6.30
T340A 2 17.78 0.89 15.16 14.84 1.20 2.69
A634V 3 25.071 0.32 16.16 19.95 1.26 6.16
R749W 4 51.24 0.25 25.07 39.93 1.28 10.57
E757K 5 25.82 0.99 11.12 18.11 1.43 7.21

E781D (1) 6 21.77 0.44 16.98 16.32 1.33 5.93
E781D (2) 7 14.81 0.32 11.29 9.64 1.54 3.42
P799R (1) 8 13.67 0.49 13.55 10.53 1.30 2.99
P799R(2) 9 32.41 0.01 20.46 19.83 1.63 4.65
V832M 10 32.40 0.01 27.75 24.64 1.32 6.67

A similar cluster analysis to study the quantitative profiles resemblances was performed and the

results are displayed in the Table 5.4.
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Table 5.4: Features collected from GEFMs’ STD profiles after a k-means analysis

Variance Profile
MSTD Position Membrane’s Mean Maximum Mean Total

MSTD STD STD STD Ratio Variation
(TV)

WT 1 26.28 0.48 24.68 15.41 1.70 6.30
T340A 2 17.78 0.89 15.16 14.84 1.20 2.69
A634V 3 25.071 0.32 16.16 19.95 1.26 6.16
R749W 4 51.24 0.25 25.07 39.93 1.28 10.57
E757K 5 25.82 0.99 11.12 18.11 1.43 7.21

E781D (1) 6 21.77 0.44 16.98 16.32 1.33 5.93
E781D (2) 7 14.81 0.32 11.29 9.64 1.54 3.42
P799R (1) 8 13.67 0.49 13.55 10.53 1.30 2.99
P799R(2) 9 32.41 0.01 20.46 19.83 1.63 4.65
V832M 10 32.40 0.01 27.75 24.64 1.32 6.67

The k-means analysis suggest that the feature with higher discriminant potential is Maximum Mean

STD Ratio, where WT E-cadherin actually show the highest value. In these features WT E-cadherin

cluster has 2 element. In Membrane’s MSTD and Position of MSTDthe cluster assigned to WT E-

cadherin have 3 elements. However, the feature Position of MSTD discriminative potential may be

reduced by the similarity of the values of P799R(2) and WT E-cadherin. Concerning the feature

collection from STD profiles, Total Variation, MSTD and Mean MSTD are not good features as WT

E-cadherin cluster has more than 4 elements. To visually corroborate the k-means analysis, Fig. 5.8

displays simultaneously the WT STD profile and mutant forms STD profile.

Figure 5.8: STD profile comparison between WT E-cadherin and mutant forms.

5.1.2 Statistical analysis

In this section, Mann-Whitney U test are performed to the features selected to characterize GEFM

mean profiles. The purpose of this statistical analysis is to understand the ability of these features

to discriminate between WT E-cadherin and selected HDGC related mutant forms. Therefore, Mann-

Whitney U tests were performed comparing E-cadherin mutant forms results withWT. The results of
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the tests performed are displayed in Table 5.5

Table 5.5: Mean Profile Statistical Analysis - Mann-Whitney U test (p-value)

Membrane’s MMR Mean Intensity Total MI Position
Intensity Intensity STD Variation of MI

WT
T340A < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.016 (*)
A634V < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
R749W < 0.0001 < 0.0001 0.022(*) 0.114 0.090 0.849 0.442

E757K (1) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.208
E757K (2) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0061 (*)
E781D (1) < 0.0001 < 0.0001 0.096 < 0.0001 < 0.0001 < 0.0001 0.072
E781D (2) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

P799R < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
V832M < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

(*)This p-value supports the alternative hypothesis (p < 0.05).

The statistical analysis show that both Membrane’s intensity and MMR discriminate perfectly be-

tween mutant forms and WT E-cadherin. On the other hand, Intensity STD, Total Variation and MI

features are unable to correctly discriminate between WT and R749W E-cadherin. Furthermore,

mean intensity feature not only fails distinguishing WT and E781D (2) but also have a high p-value

comparing WT and R749W E-cadherin. Finally, the less discriminative feature, in coherence with the

kmeans analysis, is Position of the MI. In this feature the U-test not only fails in three tests ( R749W,

E757K(1) and 781D(1)) but also obtains a high p− value in two tests ( T340A and E781D(1)).

To visually corroborate the statistical analysis, Fig. 5.9 displays simultaneously the WT mean

profile and mutant forms mean profile.

Figure 5.9: WT E-cadherin and mutant forms map of mean profiles.
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5.2 Radial Profiles Characterization

The intensity behavior of the maps resulting after the geometric compensation is described through

mean intensity and STD profiles. Both these profiles were collected in lines direction, to study E-

cadherin molecules distribution concerning the nucleus center involved in the process of collection.

To study a possible phenotype-mutation relation: all the maps containing the same kind of E-cadherin

were displayed together and GEFM combining INMs of the same form of E-cadherin were developed.

These profiles are displayed in Fig. 5.1 and Fig.5.2.

Figure 5.10: Comparison of the RDMs concerning each form of E-cadherin, in this case WT, T340A, A634V,
R749W. (left) horizontal mean profiles, (right) horizontal standard deviation

The RDMs of WT, A634V, R749W, E757K display, among them, mean profiles with similar maxi-

mum intensity and shape. In addition, not only these maps STD are similar but also the GEFM STD

has the same order of magnitude. Thus, to simplify further analysis, in these cases, only the GEFM

be considered in analysis from henceforth. On the other hand, E781D, P799R RDMs display not only

a dissimilar horizontal mean profile but also an increase in magnitude on GEFM STD profile. To avoid

inaccurate judgments both these maps will be evaluated separatly as: E781D (1) or (63), E781D (2)

or (64), P799R (1) or (65) and P799R (2) or (67). Finally, T340A and V832M only INMs is threated as
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GEFM.

Figure 5.11: Comparison of the RDMs concerning each form of E-cadherin, in this case E757K, E781D, P799R,
V832M. (left) horizontal mean profiles, (right) horizontal standard deviation

The maps selected after this mutation behavior analysis are displayed in Fig.5.12.
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Figure 5.12: Geometrically compensated RDMs selected.

The molecules distribution, in each GEFM, is described through the mean projection and respec-

tive STD interval in each point in Fig.5.13.

Figure 5.13: Horizontal mean profile combined with respective standard deviation interval in each point.

As can be seen in Fig.5.13, WT E-cadherin has a quite different phenotype either qualitatively or

quantitatively when compared with remaining mutant forms, except for T340A. In the particular case

of T340A, the profiles are indeed similar, however with further attention is possible to see differences

in both maximum intensity and high intensity relative position. For a better understanding of qualitative

resemblances and dissimilarities between GEFMs, both mean and STD profiles of the maps selected

were computed and are displayed in Fig. 5.14 and Fig.5.15.
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Figure 5.14: Distinct horizontal mean profiles in the WT and mutant cells after GC.

Figure 5.15: Distinct Horizontal Standard Deviation profiles in the WT and mutant cells after GC.

Fig.5.5 show that WT profile is not easy to distinguish among the remaining mutant forms, neither

in intensity magnitude or is shape. However, when considering the position of maximum concentration

of molecules, WT displays a value considerably different. In order to quantitatively characterize the

distribution both at membrane and cytoplasmic level, and distinguish the E-cadherin expression level

for the different types of E-cadherin, objective features were extracted. This results are shown in the

next subsection.

A last visual analysis was performed. Cell maps were created from the geometrically compen-

sated RDMs selected, simulating for each type of E-cadherin the cell environment. The cell profiles,

reconstructed using the process described in Fig. 3.14, are displayed in Fig. 5.16.
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Figure 5.16: Cell profile reconstruction obtained from each one of the GEFM.

These cell profiles suggest significant qualitative and quantitative differences between WT E-

cadherin and remaining mutant forms phenotype.

5.2.1 Feature Collection

To characterize and distinguish E-cadherin expression levels in final RD GEFMs, objective fea-

tures were extracted from mean and STD profiles. The features collected from these mean vector

were: Maximum Intensity (MI), position of the MI, intensity at the membrane, mean intensity, intensity

standard deviation, Maximum Mean Ratio (MMR) and Total Variation (TV). The quantitative results of

feature collection are displayed in the Table 5.6

Table 5.6: Features collected from RDGEFMs’ mean profiles.

Mean Profile

Maximum Position Membrane’s Mean Intensity Maximum Total
Intensity of the MI intensity Intensity STD Mean Ratio Variation

(MI) (MMR) (TV)
WT 1 103.82 0.48 101.92 68.62 13.243 1.513 15.18

T340A 2 89.73 0.40 71.99 61.53 11.27 1.4583 11.81
A634V 3 99.73 0.23 60.80 65.70 12.51 1.52 15.08
R749W 4 144.64 0.21 58.81 76.2 36.09 1.90 25.05
E757K 5 112.64 0.24 70.18 71.61 18.58 1.573 14.693

E781D(1) 6 85.18 0.45 78.42 66.96 9.57 1.27 12.99
E781D(2) 7 55.02 0.12 35.18 37.42 8.56 1.47 8.95
P799R(1) 8 46.73 0.40 41.77 41.57 1.72 1.12 3.6354
P799R(2) 9 99.92 0.24 66.32 67.40 14.42 1.4824 16.524
V832M 10 97.73 0.28 58.31 63.59 12.80 1.54 18.10

For a better understanding of quantitative reasons of similarity and dissimilarity within these fea-

tures, a k-means clustering analysis was performed. In this analysis each element display one color

representing the cluster it belongs. Therefore, elements contained in the same cluster display the

same colors and consequently, elements of different cluster display different colors. The results of

this evaluation are displayed in Table 5.7.
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Table 5.7: Features collected from RDGEFMs’ mean profiles after a kmeans (4 clusters) analysis.

Mean Profile

Maximum Position Membrane’s Mean Intensity Maximum Total
Intensity of the MI intensity Intensity STD Mean Ratio Variation

(MI) (MMR) (TV)
WT 1 103.82 0.48 101.92 68.62 13.243 1.513 15.18

T340A 2 89.73 0.40 71.99 61.53 11.27 1.4583 11.81
A634V 3 99.73 0.23 60.80 65.70 12.51 1.52 15.08
R749W 4 144.64 0.21 58.81 76.2 36.09 1.90 25.05
E757K 5 112.64 0.24 70.18 71.61 18.58 1.573 14.693

E781D (1) 6 85.18 0.45 78.42 66.96 9.57 1.27 12.99
E781D (2) 7 55.02 0.12 35.18 37.42 8.56 1.47 8.95
P799R(1) 8 46.73 0.40 41.77 41.57 1.72 1.12 3.6354
P799R(2) 9 99.92 0.24 66.32 67.40 14.42 1.4824 16.524
V832M 10 97.73 0.28 58.31 63.59 12.80 1.54 18.10

According with Table 5.7, the most discriminant feature is Membrane’s Intensity, where WT E-

cadherin cluster has only 1 element. In Position of the MI and mean intensity features, WT E-cadherin

cluster has 4 elements. In remaining features- MI,Intensity STD, MMR and TV- WT E-cadherin cluster

has at least 5 elements. A further statistical analysis (Mann-Whitney U test) is performed to these

features to understand the feature behavior in each profile constituent of these RD GEFMs. This

analysis is present in Section 5.2.1.A. To visually corroborate the k-means analysis, Fig. 5.17 displays

simultaneously the WT mean profile and mutant forms mean profile.

Figure 5.17: STD profile comparison between WT E-cadherin and mutant forms.

Finally, the features collected from STD profiles were: Maximum Standard Deviation (MSTD),

position of the MSTD, STD at the membrane, mean STD, Maximum Mean STD Ratio, Total Variation

(TV). The results of the feature collection are shown in the Table 5.8
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Table 5.8: Features collected from GEFMs’ STD profiles.

Variance Profile
MSTD Position Membrane’s Mean Maximum Mean Total

MSTD STD STD STD Ratio Variation (TV)
(TV)

WT 1 15.68 0.54 13.72 11.20 1.40 5.01
T340A 2 16.36 0.38 11.85 12.36 1.32 2.79
A634V 3 18.99 0.22 12.99 12.21 1.55 6.65
R749W 4 45.78 0.19 22.36 25.03 1.83 9.52
E757K 5 24.37 0.22 8.85 13.03 1.87 6.44

E781D (1) 6 16.75 0.70 8.26 10.81 1.55 3.55
E781D (2) 7 11.21 0.12 4.75 6.00 1.87 2.60
P799R (1) 8 9.61 0.54 8.21 6.11 1.57 2.33
P799R(2) 9 20.07 0.22 7.59 11.32 1.77 5.55
V832M 10 21.93 0.28 11.70 13.84 1.58 4.43

A similar cluster analysis to study the quantitative profiles resemblances was performed and the

results are displayed in the Table 5.9.

Table 5.9: Features collected from GEFMs’ STD profiles after a k-means analysis

Variance Profile
MSTD Position Membrane’s Mean Maximum Mean Total

MSTD STD STD STD Ratio Variation
(TV)

WT 1 15.68 0.54 13.72 11.20 1.40 5.01
T340A 2 16.36 0.38 11.85 12.36 1.32 2.79
A634V 3 18.99 0.22 12.99 12.21 1.55 6.65
R749W 4 45.78 0.19 22.36 25.03 1.83 9.52
E757K 5 24.37 0.22 8.85 13.03 1.87 6.44

E781D(1) 6 16.75 0.70 8.26 10.81 1.55 3.55
E781D(2) 7 11.21 0.12 4.75 6.00 1.87 2.60
P799R (1) 8 9.61 0.54 8.21 6.11 1.57 2.33
P799R (2) 9 20.07 0.22 7.59 11.32 1.77 5.55

V832M 10 21.93 0.28 11.70 13.84 1.58 4.43

Table 5.9, show that for k-means algorithm the most discriminant feature is Maximum Mean STD

Ratio , where WT E-cadherin cluster has 2 element. Followed by Total Variation (TV) and Position of

MSTD. In these features WT E-cadherin cluster has exactly 3 element. However a close analysis of

the Position of MSTD shows that WT E-cadherin and the mutant form P799R (1) display the same

value suggesting this feature inability to discriminate between WT and P799R (1). In the remaining

features - MSTD, Membrane’s STD and Mean STD- WT E-cadherin cluster has at least 4 elements,

suggesting they are not good discriminative features. To visually corroborate the k-means analysis,

Fig. 5.18 displays simultaneously the WT STD profile and mutant forms STD profile.
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Figure 5.18: Mean profile comparison between WT E-cadherin and mutant forms.

5.2.1.A Statistical analysis

In this section, Mann-Whitney U test are performed to the features selected to characterize RDGEFM

mean profiles. Since the purpose of this statistical analysis is to understand the ability of these fea-

tures to discriminate between WT E-cadherin and selected HDGC related mutant forms, the test were

developed concerning WT maps. The Mann-Whitney U tests were performed comparing E-cadherin

mutant forms results withWT.The results of the tests performed are displayed in Table 5.10.

Table 5.10: Mean Profile Statistical Analysis - Mann-Whitney U test (p-value)

Membrane’s Mean Position MI Total Intensity Maximum Mean
Intensity Intensity of MI Variation (TV) STD Ratio (MMR)

WT
T340A < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
A634V < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.019(*) < 0.0001
R749W < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
E757K < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.055 0.008(*) 0.079

E781D (1) < 0.0001 0.054 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
E781D (2) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
P799R(1) < 0.0001 < 0.0001 0.057 < 0.0001 < 0.0001 < 0.0001 < 0.0001
P799R (2) < 0.0001 0.043(*) < 0.0001 < 0.0001 < 0.0001 0.397 < 0.0001

V832M < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.130 0.048 (*)
(*)This p-value still supports the alternative hypothesis (p < 0.05).

The statistical analysis show that both Membrane’s intensity and MI discriminate perfectly between

mutant forms and WT E-cadherin. In addition, Position of the MI only fails discriminating between WT

and P799R(1). Therefore if P799R(1) is an abnormal image and is proven that it should be discarded,

then Position of MI is a candidate for a outstanding discriminative feature. Also, TV ,Mean Intensity

and MMR all fail in one test. TV fails to distinguish between WT E-cadherin and E757K. Mean intensity

and MMR fail when comparing WT/E781D (1) E-cadherin and acWT/E757K, respectively. Each one

of this last features also obtain a high p-values in one U-test. Mean intensity is when testing WT/

P799R(2) and MMR is in test WT/V832M. Finnally, the less discriminative feature, in coherence with

the k-means is Intensity STD. In this feature the U-test not only fails in two tests (P799R(2) and
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V832M) but also obtains a high p− value in two tests (A634V and E757K).

To visually corroborate the statistical analysis, Fig. 5.19 displays simultaneously the WT mean

profile and mutant forms mean profile.

Figure 5.19: WT E-cadherin and mutant forms map of mean profiles.
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6.1 Conclusions

Throughout this dissertation several conclusions were drawn, namely about E-cadherin molecular

distribution within the cell and GC algorithm stability and efficiency.

Initially, in vitro assays were developed to study the expression patterns of WT E-cadherin and

Hereditary Diffuse Gastric Cancer (HDGC) related mutant forms of E-cadherin, namely: T340A,

A643V, R749W, E757K, E781D, P799R and V832M. To characterize the molecular distribution within

the cell, Internuclear Maps (INMs) and Radial Maps (RDMs) were extracted from these images. These

initial INMs show that WT E-cadherin has the highest concentration of molecules in the cell mem-

brane, x = 0.5. E-cadherin mutant forms display profiles different from WT either in intensity or in

distribution pattern. Actually, in some mutant forms, the molecules distribution behavior is quite dif-

ferent, namely in the number and position of high intensity peaks. Furthermore, in the initial RDMs,

WT E-cadherin membrane heterogeneity is more noticeable. Fig. 3.15 evidence cell membrane fluc-

tuations in shape and size, through the increase and decrease of membrane distance to the center of

the nucleus. Consequently, WT E-cadherin radial distribution profile is more difficult to distinguish.

Afterwards, the profiles were processed by a Geometric Compensation (GC) algorithm to correct

in intensity abnormalities associated with cell membrane heterogeneities. Synthetic data were devel-

oped to simulate the distortions of the membrane, expected in IN and RD maps. The GC algorithm

synthetic results show, not only the stability of the algorithm for different geometric conformations, but

also that the algorithm correctly aligns the synthetic observations. Furthermore, the GC algorithm

real data analysis shows the stability of the method for FM images. The results of the real data show

an alignment of the observations, reflected in STD significant decrease after GC, specially of the high

intensity observations. This enhancements is greater in RDMs, as suggested by Fig. 3.23 and 3.25

that better simulate IN and RD maps, respectively. Specially, in RDMs there is a rearrangement of the

information contained in the map evidencing the geometrically corrected cell membrane. This suggest

that the GC algorithm, improves not only the quantification of E-cadherin present in cell membrane

but also the exact position of E-cadherin molecules distribution, which can be in the membrane or in

the cytoplasm near the nucleus.

The last part of this dissertation consist on the characterization, after the geometric compensation,

of the molecular distribution within the cell. The characterization of E-cadherin distribution was done

through the collection of objective quantitative features from the mean and STD profiles of the IN

and RDs maps built. To study the quantitative differences among profiles a statistical analysis was

developed.

From the feature collection and statistical analysis of INMs mean profiles, it can be concluded

that: the better discriminative features are Membrane’s Intensity and MMR, with an outstanding per-

formance; intensity STD, TV and MI are able to distinguish WT E-cadherin from the remaining mutant

forms, with the exception of R749W; WT E-cadherin has the higher MI; mean intensity feature, al-

though presenting a high p-value when comparing WT with R749W, discriminate between WT and

remaining mutant forms except for E781D(1); the position of the MI is a poor discriminative feature,
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unable to distinguish WT E-cadherin from R749W, E757K(1) and E781D(1).The feature collection of

INMsSTD profiles and k-means clustering analysis, suggest Maximum Mean STD Ratio, Membrane’s

STD and Position of MSTD as potential interesting discriminative features. The results of RDMs mean

profiles feature collection and statistical analysis of mean profiles show that: Membrane’s intensity and

MI have a perfect performance discriminating WT E-cadherin among mutant forms; position of the MI

has potential to be a good feature, if image P799R(1) is proven to be ruled out; TV and MMR are able

to distinguish WT E-cadherin from the remaining mutant forms, with the exception of E757K; MMR

display a high p-value when testing WT and V832M E-cadherin; mean intensity feature, although pre-

senting a high p-value when comparing WT with P799R(2), discriminate between WT and remaining

mutant forms except for E781D(1); the intensity STD is a poor discriminative feature, unable to dis-

tinguish WT E-cadherin from P799R(2) and V832M. The feature collection of RDMsSTD profiles and

k-means clustering analysis, suggest Maximum Mean STD Ratio, Position of MSTD and TV of the

STD profile as potential discriminative features.

An overall analysis of the features show that the very best features discriminating WT from the

selected HDGC related mutant forms are: Membrane’s Intensity, in both IN and RD maps; MMR, in

INMs and MI, in RDMs.

This dissertation presents a way to characterize E-cadherin distribution within the cell and suggest

some features to be used in further classification systems. In some of the selected HDGC related E-

cadherin forms, the phenotype expected is not well know yet. The cases were the functional impact

of the mutation is known, like WT E-cadherin, R749W, E757K and finally V832M, validate the re-

sults of this work. Functional E-Cadherin is synthesized at the Golgi, transported and stabilized at

the membrane and continuously recycled. Therefore, an equidistant membrane together with an in-

crease in intensity values are traits of a healthy linkage between cells which mean presence of WT

E-cadherin. Also, the constant E-cadherin distribution in the cytoplasm, suggest the absence of ab-

normal E-cadherin in degradation. This work results support the literature as WT E-cadherin profiles,

both in IN and RD analysis, display a single well define high intensity peak in position x = 0.5 and

constant values elsewhere. Also, as described in section 2.3, R749W and E757K mutant forms result

from a juxta-membrane region mutation that prevent the binding with p120 -catenin (p120ctn). This

means that not only the E-cadherin is unable to stabilize in the membrane but also that these mutant

forms are recognized by Endoplasmic Reticulum Associated Degradation (ERAD). In these images

both the intensity at the membrane is lower than WT and some high intensity peaks appear near the

nucleus, due to the increase in E-cadherin molecules in degradation path. Finally in V832M particu-

lar case, the gene mutation interferes with E-cadherin link to β − catenin, decreasing the number of

E-cadherin molecules in the membrane, since its transport is compromised. These facts are depicted

in the mean profiles of both the IN and RD profiles of these mutations and quantified in the features

collection results.
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6.2 Future Work

The work developed in this dissertation can still be improved, namely in the correct characterize

of some E-cadherin mutant forms distribution. In both analysis (IN and RD), due to the insufficient

number of images processed, some E-cadherin mutant forms distribution profiles were not clear. In

this thesis, the number of images processed was limited by the number of in vitro assays developed.

To improve and validate the biological results obtained, the number of images processed by this

method has to be increased.

Furthermore, to create a Computer Aid Diagnosis (CAD) framework for semi-automatic detection

of dysfunctional proteins in clinical practice, for both screening and diagnosis, a classification system

has to be studied in further detail. This classification system developed should not only distinguish

WT E-cadherin and these HDGC related mutant forms, but also discriminate among mutant forms.

An useful approach would be to improve the features selection adding some morphological features,

using image local decomposition e.g. wavelet decomposition.

In respect to the geometrical compensation algorithm, although in this study it was used exclu-

sively in FM images, there is no mathematical evidence that this algorithm is not stable in other kinds

of imaging images. A further study of this algorithm behavior and stability in different types of images

can be done.

Finally, in some cases like R749W and E757K E-cadherin mutant forms, recent results suggest

that a chaperon treatment would be able to restore the functionality of the E-cadherin molecules. A

qualitative and quantitative comparison between WT E-cadherin and threated R749W and E757K

E-cadherin IN and RD distribution profiles, would be interesting to understand of the validity of this

method.
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[22] J. Figueiredo, J. Simões-Correia, O. Söderberg, G. Suriano, and R. Seruca, “Adp-ribosylation

factor 6 mediates e-cadherin recovery by chemical chaperones,” PloS one, vol. 6, no. 8, p.

e23188, 2011.

[23] P. Dey, “Role of ancillary techniques in diagnosing and subclassifying non-hodgkin’s lymphomas

on fine needle aspiration cytology,” Cytopathology, vol. 17, no. 5, pp. 275–287, 2006.

[24] E. K. Zuba-Surma, M. Kucia, A. Abdel-Latif, J. W. Lillard, and M. Z. Ratajczak, “The imagestream

system: a key step to a new era in imaging.” Folia Histochemica et Cytobiologica, vol. 45, no. 4,

pp. 279–278, 2008.

[25] A. Giangreco, K. B. Jensen, Y. Takai, J. Miyoshi, and F. M. Watt, “Necl2 regulates epidermal

adhesion and wound repair,” Development, vol. 136, no. 20, pp. 3505–3514, 2009.
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[37] G. Berx, K.-F. Becker, H. Höfler, and F. Van Roy, “Mutations of the human e-cadherin (cdh1)

gene,” Human mutation, vol. 12, no. 4, pp. 226–237, 1998.

[38] M. Takeichi, “Morphogenetic roles of classic cadherins.” Curr Opin Cell Biol, vol. 7, pp. 619–627,

1995.

[39] B. M. Gumbiner et al., “Cell adhesion: the molecular basis of tissue architecture and morpho-

genesis.” Cell, vol. 84, no. 3, pp. 345–357, 1996.

[40] H. R. Petty, “Fluorescence microscopy: established and emerging methods, experimental strate-

gies, and application in immunology,” Microscopy Research and Technique, vol. 70, pp. 687–709,

2007.

[41] H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. Drummen, “Advanced fluorescence mi-

croscopy techniques - frap, flip, flap, fret and flim,” Molecules, vol. 17, no. 4, pp. 4047–4132,

2012.

[42] I. D. Odell and D. Cook, “Immunofluorescence techniques,” Journal of Investigative Dermatology,

vol. 133, no. 1, p. e4, 2013.

[43] P. J. Robinson, J. Sturgis BS, and G. L. Kumar, “IHC Staining Methods (5th Ed), Chapter 10:

Immunofluorescence, FIFtH edition,” http://www.dako.com/08002 03aug09 ihc guidebook 5th

edition chapter 10.pdf, pp. 62–65.
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