
Sequential Decision Making for Cooperative Agents!

Part I: An Introduction to Decision Theory

Stefan J. Witwicki
Robotic Systems Laboratory (LSRO)

École Polytechnique Fédérale de Lausanne

João V. Messias
Institute for Systems and Robotics (ISR)

IST, Universidade de Lisboa

EASSS-2014
July 15, 2014

Renewable Energy

Sequential Decision Making

Maintenance and Scheduling

Medical Decision Making

Queue Management

Autonomous Robots

Motivation

2

What do these domains have in common?

Renewable Energy

Maintenance and Scheduling

Medical Decision Making

Queue Management

Autonomous Robots

Motivation

The outcome of each decision is uncertain!

It is hard to manually prescribe decisions for every possible outcome

2

Decision Theory provides mathematical tools to model
and solve sequential decision-making problems!

in the presence of uncertainty

Obtaining a decision-
making “plan”

Optimizing a !
numerical representation

of performance

Decision Theory

3

World

(Omni the)
Robot

State s

1. The agent observes state s

A Markov Decision Process:

s

Markov Decision Processes

4

World
State s

2. The agent selects action a

A Markov Decision Process:

Action a

s

Markov Decision Processes

(Omni the)
Robot

4

Only depends on the last state and action!!
(Markov Property)

World
State s

3. The state of the system
changes randomly to s’

A Markov Decision Process:

Action a ’

Stochastic!
transition

s

Markov Decision Processes

(Omni the)
Robot

4

World
State s

4. A reward is assigned for the execution
of action a in state s!

(not necessarily observed by the agent)

A Markov Decision Process:

Reward r

Action a ’

Stochastic!
transition

s

Markov Decision Processes

(Omni the)
Robot

4

World
State s’

The process is repeated for a
certain number of steps

A Markov Decision Process:

Reward r’

Action a’ ’’

Stochastic!
transition

s’

Markov Decision Processes

(Omni the)
Robot

4

World
State s’

Objective:!
Find the actions that maximize a function!

 of the reward collected over all steps

A Markov Decision Process:

Reward r’

Action a’ ’’

Stochastic!
transition

s’

Markov Decision Processes

(Omni the)
Robot

4

Ingredients:

Action space, A

SState space,

Transition function, T

RReward function,

A set describing the possible
 states of the system

A set describing the possible
 actions of the agent

A function describing the stochastic
behaviour of the system

!T (s, a, s0) = Pr(s0 | s, a)T : S ⇥A⇥ S ! [0, 1]

R : S ⇥A ! R
A function describing the utility or cost

of each state and action

The tuple is an MDPhS,A, T, Ri

Markov Decision Processes

5

An Example of a Real-World MDP

Autonomous Surveillance

Problem statement: a mobile robot should patrol its environment in search of
visitors, trespassers, and emergencies

6

An Example of a Real-World MDP

Autonomous Surveillance

Soccer Field

Robotics Lab

Common Room South Hallway

West Hallway

Elevator

Real environment State space abstraction

7

An Example of a Real-World MDP

Autonomous Surveillance

Soccer Field

Robotics Lab

Common Room South Hallway

West Hallway

Elevator

State space abstraction
State space =
 {‘location X visited’}
x {‘visitor?’}
x {‘trespassing?’}
x {‘emergency?’}

Action space =
{‘Up’,’Down’,’Left’,’Right’}

8

MDP Policies

We are interested in determining a set of decision rules:

This is an h-horizon policy for the MDP agent

⇡ = {�0, �1, . . . , �h�1} , �n : S ! A

State s Action a
⇡

Remember: a policy is not simply a sequence of actions!

9

Planning vs. Learning

E⇡

(
h�1X

n=0

�nR(sn, �n(sn))

)

A common measure of performance is the !
expected discounted reward:

 is a discount factor.� 2 (0, 1]

⇡How do we find that maximizes this quantity?

10

s

s1

s2

s3

s4

s5

a1

a2

r

r0

a1

a2

⇡

Planning vs. Learning

Two approaches: Planning and Learning

Planning!
Looking at the future

Requires a model of !
the system

11

Planning vs. Learning

Two approaches: Planning and Learning

(Reinforcement)
Learning!

Looking at the past

s1 a1 s2 a1
r

s1 a2 s3 a2
r0

s1 a1 a1s4
r00

⇡

Many trials are needed

Difficult for multi-agent
systems.

12

Future
Reward

DiscountImmediate
Reward

The Value Function

The expected discounted reward, a.k.a. the Value

Can be calculated recursively as:

V ⇡
n (s) = R(s, �n(s)) + �

X

s02S
T (s, �n(s), s

0)V ⇡
n+1(s

0)

V ⇡
0 (s) = E⇡

(
h�1X

n=0

�nR(sn, �n(sn))

)

13

Dynamic Programming

Value Iteration

V ⇤
n (s) = max

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)
The best policy is the one that maximizes the expected value:

�⇤n(s) = argmax

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)

14

Dynamic Programming

Value Iteration

V ⇤
n (s) = max

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Last Step
(reward = utility)

Reward of -0.04 for each step
1

-1

-0.04 -0.04 -0.04

-0.04

-0.04
-0.04

-0.04

-0.04 -0.04

15

Dynamic Programming

Value Iteration

V ⇤
n (s) = max

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

1 Step to go
Actions:

Reward of -0.04 for each step
1

-1

0.752

-0.08

-0.08-0.08

-0.08

-0.08
-0.08

-0.08

-0.08

V east(s) = �0.04+

Pr(”move correctly”) ⇥ 1+

Pr(”move incorrectly”) ⇥ � 0.04

15

Dynamic Programming

Value Iteration

V ⇤
n (s) = max

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

0.8270.546-0.12

-0.12 0.454

-0.12
-0.12 -0.12 -0.12

2 Steps to go

15

Dynamic Programming

Value Iteration

V ⇤
n (s) = max

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

0.8880.7310.372

-0.16 0.567

-0.16
-0.16 0.299 -0.16

3 Steps to go

15

Dynamic Programming

Value Iteration

V ⇤
n (s) = max

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

0.9180.8680.812

0.762 0.660

0.705
0.655 0.611 0.388

Final utilities

15

Dynamic Programming

Value Iteration

V ⇤
n (s) = max

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇤

n+1(s
0
)

)

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

Optimal Policy

15

V ⇡
n (s) = R(s, �n(s)) + �

X

s02S
T (s, �n(s), s

0)V ⇡
n+1(s

0)

1. Pick a policy,
!
2. Calculate the value
!
!
!
!
3. If we can improve the value by changing the first action,
 update accordingly.

Dynamic Programming

Policy Iteration

Another option is to search directly in the space of policies:

⇡

⇡

16

Dynamic Programming

Policy Iteration

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

Start with a random policy

Remember: a policy prescribes actions
for every state.

17

Dynamic Programming

Policy Iteration

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step

Evaluate until convergence:

1

-1

-132.9-266.5-∞

-∞ -266.5

-∞

-∞ -∞ -∞

V ⇡
n (s) = R(s, �n(s)) + �

X

s02S
T (s, �n(s), s

0)V ⇡
n+1(s

0)

17

Dynamic Programming

Policy Iteration

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

-132.9-266.5-∞

-∞ -266.5

-∞

-∞ -∞ -∞

For each state, calculate:

�n(s) = argmax

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇡

n+1(s
0
)

)

17

Dynamic Programming

Policy Iteration

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

0.7480.6980.456

-0.867

Repeat evaluation

-1.08
-2.22

-1.82 -1.02 -1.05

17

17

Dynamic Programming

Policy Iteration

0.8 Prob. to move correctly;

0.2 Prob. to move in
right angles.

Actions:

Reward of -0.04 for each step
1

-1

0.7480.6980.456

-0.867-1.08
-2.22

-1.82 -1.02 -1.05

Update again:

�n(s) = argmax

a2A

(
R(s, a) + �

X

s02S
T (s, a, s0)V ⇡

n+1(s
0
)

)

…will converge to the same optimal policy

Partial Observability

So far we have assumed that the state is known to the agent.

In many domains the state is not known with certainty,!
but it can be estimated.

World

Robot

State s

o stochastic
observation !
(e.g. sensors)

’

Stochastic!
transition

a

s

Partially Observable Markov Decision Process (POMDP)

18

Belief States

The actions of a POMDP agent depend on a probability distribution
over the states of the system.

Partial Observability can mean:!
1. Incomplete or partial knowledge regarding the state (perceptual aliasing);
2. The observation of noisy, possibly misleading information.

bn(x) = Pr(sn = x | b0, a0, o0, . . . , an�1, on�1, on)

Also known as a belief state

19

Belief States

20

Instead of knowing that we are in state s…

Belief States

21

…There is a probability distribution over the state of the system.

Pr = 0.65

Pr = 0.1

Pr = 0.1

Pr = 0.05

Pr = 0.05

Pr = 0.025

Pr = 0.025 Pr = 0 Pr = 0

Pr = 0

Pr = 0

This distribution depends on the agent’s actions and observations.

??

POMDP Policies

22

A POMDP policy is a map from belief states to actions

State s Action aBelief !
State b

actions

observations

⇡(b)

Normalization (all possible ways of observing o
after any transition)

the probability of the
observation o

the probability of being in state s
and jumping to s’

Belief States

Belief states are updated after each action and observation:

ba,o(s0) =

O(a, s0, o)
P
s2S

b(s)T (s, a, s0)

P
u

02S
O(a, u0, o)

P
u2S

b(u)T (u, a, u0)

23

Belief States

Belief states are updated after each action and observation:

Initial Belief

s

P(s)

24

Belief States

1. Select an Action

Move Forward

Belief states are updated after each action and observation:

24

Belief States

Resulting state follows	

T(s,a,s’)

1. Select an Action

Belief states are updated after each action and observation:

24

Belief States

2. Receive an Observation

Door

Observation follows	

O(a,s’,o)

Belief states are updated after each action and observation:

24

Belief States

3. Update Belief

s

P(s)

Belief states are updated after each action and observation:

24

3. Update Belief

Belief States

Belief states are updated after each action and observation:

s

P(s)

b�(s) =

O(o, s, a)
P
s0⇥S

b(s�)T (s�, s, a)

P
s00⇥S

O(o, s��, a)
P
s0⇥S

b(s�)T (s�, s, a)

24

POMDP Value Functions

Value Functions can also be calculated recursively for POMDPs:

V ⇤
n

(b) = max

a2A

(
X

s2S
b(s)

R(s, a) + �

X

s

02S

X

o2O
T (s, a, s0)O(a, s0, o)V ⇤

n+1(b
a,o

))

!)

Instead of a table, this is now a continuous function over
the space of possible probability distributions

25

Inner product with a
set of vectors

(one for each <a,o> at step n)

POMDP Value Functions

As it turns out, POMDP Value Functions have useful properties:

V ⇤
n (b) = max

↵2�n

(
X

s2S
b(s)↵(s)

)

Efficient Offline Communication Policies for
Factored Multiagent POMDPs

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

maximize 1T
k0�

subject to Ab � 1ks b ⌫ 0n MX
L b = bL

A�b = 1k0s+ � 1T
n b = 1

maximize 1T
k0�� + 1T

k �

subject to Ab � 1ks A�b = 1k0s+ � MX
L b = bL

A�b� � 1k0s� Ab� = 1ks
�
+ �� MX

L b� = bL

b ⌫ 0n b� ⌫ 0n MX
G b = MX

G b�

R1

R2L2

L1

D

D

1

2

CL1 CR1

CL2 CR20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

1

bL1,R1

!"

!#$#

$"

%

%

"

#

(a) Relay-Small. (b) Relay-Large.

0 0.2 0.4 0.6 0.8 1
0

1

(bX1
)1

M
a
p
((
b X

1
) 1
)

(c) Communication Map.

Figure 1: (a) Layout of the Relay-Small problem. (b) Layout of the Relay-Large problem. (c)
Communication map for the Relay-Small problem.

4 Experiments

We now analyze the results of applying the aforementioned offline communication mapping process
to three differentMPOMDP environments, eachwith a different degrees of interdependencybetween
agents. The first and smallest of the test problems, shown in Figure 1a, is named the Relay-Small
problem, and is mainly used for explanatory purposes. In this world each agent is confined to a
two-state area. One of the agents possesses a package which it must hand over to the other agent,
through the non-traversable opening between the rooms L1 and R1. Each agent can move randomly
inside its own room (a Shuffle action), Exchange the package with the other agent, or Sense its
environment in order to find the opening. An Exchange is only successful if both agents are in
the correct position (L1,R1) and if both agents perform this action at the same time, which makes
it the only available cooperative action. The fact that, in this problem, each belief factor is two-
dimensional (each factor spans one of the rooms) allows us to visualize the results of our method. In
Figure 2, we see that some of the agent’s expected behavior is already contained in the value bounds
over its local factor: if an agent is certain of being in room R1 (i.e. (bX1

)1 = 0), then the action
with the highest-valued bound is Shuffle. Likewise, an Exchange should only be carried out when
the agent is certain of being in L1, but it is an ambiguous action since the agent needs to be sure that
its teammate can cooperate. In Figure 1c we represent the communication map which was obtained
offline through the proposed algorithm. Since there are only two factors, the agent only needs to
make a binary decision of whether or not to communicate for a given local belief point. The belief
points considered safe are marked as 0, and those associated with a communication decision are
marked as 1. In terms of quantitative results, we see that ∼ 30 − 40% of communication episodes
are avoided in this simple example, without a significant loss of collected reward.

Another test scenario is the OneDoor environment of [7], which is further described in [6]. In this
49-state world, two agents lie inside opposite rooms, akin to the Relay-Small problem, but each
agent has the goal of moving to the other room. There is only one common passage between both
rooms, where the agents may collide. For shorter-horizon solutions, agents may not be able to reach
their goal, and they communicate so as to minimize negative reward (collisions). For the infinite-
horizon case, however, typically only one of the agents communicates, while waiting for its partner
to clear the passage. Note that this relationship between the problem’s horizon and the amount of
communication savings does not hold for all of the problems. The proposed method exploits the
invariance of local policies over subsets of the joint belief space, and this may arbitrarily change
with the problem’s horizon.

A larger example is displayed in Figure 1b. This is an adaptation of the Relay-Small problem (aptly
named Relay-Large) to a setting in which each room has four different states, and each agent may be
carrying a package at a given time. AgentD1 may retrieve new packages from position L1, andD2

Relay-Small OneDoor Relay-Large
h. Full Comm. Red. Comm. Full Comm. Red. Comm. Full Comm. Red. Comm.
6 15.4, 100% 14.8, 56.9% 0.35, 100% 0.30, 89.0% 27.4, 100% 25.8, 44.1%
10 39.8, 100% 38.7, 68.2% 1.47, 100% 1.38, 76.2% -19.7, 100% -21.6, 62,5%
∞ 77.5, 100% 73.9, 46.1% 2.31, 100% 2.02, 61.3% 134.0, 100% 129.7, 58.9%

Table 1: Results of the proposed method for various environments. For settings assuming full and
reduced communication, we show empirical control quality, online communication usage.

7

INSTITUTO DE
SISTEMAS E
ROBÓTICA

Projecting these sets, through marginalization, to Agent 1’s local
factor X1 (lines are slightly o�set for representation):

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b(l
1
)

b
(l

2
)

Some regions of local belief space (separated by dashed lines) have
only one possible action associated to them.
Agent 1 does not need to know about Agent 2’s belief in these
cases.

Acting Locally

Linear supports of the value function corresponding to this problem
(4-dimensional partition of the belief simplex):

These supports can be found by casting them as linear programs.
Supports are colored according to Agent 1’s actions: red = shu�e;
green = exchange; blue = sense.

There are regions of belief space where agents
can act independently; They can be identified
by projecting the joint policy into a lower
dimensional (local) subspace.

!"

!#$#

$"

%

%

"

#

Figure 1: Layout of the Relay problem.

2 An Example Problem: Relay
Consider the following small-scale factored Dec-POMDP,
called Relay, which will be used as a running example
throughout the paper. In this environment, two agents operate
inside a four-state world, see Figure 1, in which each agent is
confined to a two-state area. One of the agents possesses a
package which it must hand over to the other agent. The goal
of these agents is then to “relay” this package between them
through the opening between the rooms L1 and R1.
Each agent can either perform action Shuffle, Exchange, or

Sense. A Shuffle action moves the agent randomly, and with
equal probability, to either position in its area. The Exchange
action attempts to perform the physical exchange of the pack-
age between the agents, and is only successful if both agents
are in the correct position (L1 for the first agent, R1 for the
second one) and if both agents perform this action at the same
time. If it succeeds, the world is reset to a random state with
uniform probability. The Sense action is an informative ac-
tion, which allows the agent to sense whether it is in front
of the opening or not, with probability of both false positives
and false negatives. The feature of this small problem that
we are interested in exploring is its sparse dependency be-
tween the decision processes of these agents. Evidently, the
only cooperative action that the agents may perform is a joint
Exchange. Since this action can only succeed in a particular
joint state, it stands to reason that an agent which is suffi-
ciently certain of not being in its correct, corresponding local
state should always attempt to move there first (via Shuffle).
In such a case, this decision can be taken regardless of the
other agent’s state, actions or observations (since the agents
cannot observe each other).
The key idea in our paper is, that in some situations, the lo-

cal information of these agents is enough for them to take lo-
cally optimal decisions. If, furthermore, the belief states over
the local state factors are maintained independently, then the
agents might not need to communicate at all between two de-
cisions. The explicit need to communicate would only arise
in situations where one agent’s optimal action is dependent
upon the other agent’s information. In this example, this cor-
responds to the case where one agent is fairly certain of being
in the correct place for the exchange. It then needs to rea-
son over the other agent’s local belief to make sure that an
Exchange action is profitable in terms of expected reward.

3 Background
In this section we provide the necessary background on fac-
tored Dec-POMDPs and Multiagent POMDPs.

3.1 The Factored Dec-POMDP Model
A factored Dec-POMDP is defined as [11]
• D = {1, ..., n} is the set of agents. Di will be used to
refer to agent i;

• S = ×iXi, i = 1, . . . , nf is the state space for the envi-
ronment, decomposable into nf factorsXi ∈ {1, ...,mi}
which lie inside a finite range of integer values. X =
{X1, . . . ,Xnf

} is the set of all state factors;
• A = ×iAi, i = 1, ..., n is the joint action space. At each
decision step, every agent i takes an individual action
ai ∈ Ai, resulting in the joint action a = ⟨a1, ..., an⟩ ∈
A. Joint actions are not implicitly known by agents;

• O = ×iOi, i = 1, ..., n is the space of joint observations
o = ⟨o1, ..., on⟩, where oi ∈ Oi is the observation that
each agent receives after performing an action. An agent
receives only its own observation in this manner;

• T : S × S × A → [0, 1] specifies the transition proba-
bilities Pr (s′|s, a);

• O : O × S ×A → [0, 1] specifies the joint observation
probabilities Pr (o|s′, a);

• R : S × A → R specifies the reward that the team
receives for performing action a ∈ A in state s ∈ S;

• b0 ∈ B is a probability distribution over S, representing
the initial knowledge about the joint state. The set B
is the space of all possible distributions over S. We will
refer to the probability of a given state being true as b(s);

• h is the planning horizon, i.e. the total number of deci-
sions that must be taken at each time step t = 1, . . . , h.

The main advantage of factored (Dec-)POMDP models
over their standard formulation lies in their more efficient
representation, which helps counteract the naturally higher
complexity associated with larger space states. In factored
POMDP models, the transition and observation functions can
be compactly represented through graphical representations,
such as DBNs [2], which typically greatly reducing the size
of the associated data structures.
Applying this notation to the Relay example, we can now

further define the action and observation spaces of the agents
as A1 = A2 = {Shuffle,Exchange, Sense}, O1 = O2 =
{Opening,Wall, Idle}, and the trivial state space factoriza-
tion which will be considered, as X1 = {L1,L2} and X2 =
{R1,R2}.
Existing methods for factored Dec-POMDPs can partition

the decision problem across local subsets of agents, due to the
possible (instantaneous) independence between their actions
and observations [11]. Planning is then simplified by maxi-
mizing expected reward accrued additively between local in-
teracting neighborhoods of agents. A natural state-space de-
composition which is often possible in multi-agent teams, is
to perform an agent-wise state space factorization, in which a
state in the environment corresponds to a unique assignment
over the states of individual agents. Note that this does not
preclude the existence of state factors which are common to
multiple agents.

⌅i = 1, . . . , |�a0
| maximize �a0

i b� s

subject to Ab ⇥ 1ks b ⇤ 0n

MX
L b = bL 1T

n b = 1

Request factor 2

Request all factors

Request factors 2, 3

Request factors 3,4

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

INSTITUTO DE
SISTEMAS E
ROBÓTICA

Relay-Small OneDoor Relay-Large
h 6 10 ∞ 6 10 ∞ 6 10 ∞

Perseus 1.1 4.3 0.1 7.3 33.3 5.3 239.5 643.0 31.5
Comm. Map 5.9 21.4 7.4 12.4 57.7 5.9 368.7 859.5 138.1

Table 2: Running time (in seconds) of the proposedmethod in comparison to the Perseus point-based
POMDP solver.

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Value Bounds (Relay)

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Pruned Value Bounds (Relay)

Shuffle

Exchange

Sense

VV

(bX1
)1(bX1

)1

Figure 2: Value bounds for the Relay-Small problem. The dashed lines indicate the minimum value
bounds, and the filled lines represent the maximum value bounds, for each action.

can deliver them to L2, receiving for that a positive reward. There are a total of 64 possible states for
the environment. Here, since the agents can act independently for a longer time, the communication
savings are more pronounced, as shown in Table 1.

Finally, we argue that the running time of the proposed algorithm is comparable to that of general
POMDP solvers for these same environments. Even though both the solver and the mapper algo-
rithms must be executed in sequence, the results in Table 2 show that they are typically both in the
same order of magnitude.

5 Conclusions and Future Work

Traditional multiagent planning on partially observable environments mostly deals with fully-
communicative or non-communicative situations. For a more realistic scenario where communi-
cation should be used only when necessary, state-of-the-art methods are only capable of approxi-
mating the optimal policy at run-time [11, 15]. Here, we have analyzed the properties of MPOMDP
models which can be exploited in order to increase the efficiency of communication between agents.
We have shown that these properties hold, for various MPOMDP scenarios, and that the decision
quality can be maintained while significantly reducing the amount of communication, as long as the
dependencies within the model are sparse.

Although one of the main features of these techniques is that they may be applied to any given
MPOMDP value function, in some situations this value function may be costly to obtain. As future
work, we will investigate methods for obtaining MPOMDP value functions that are easy to partition
using our techniques.

Acknowledgments

This work was funded in part by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual fund-
ing) through the PIDDAC Program funds and was supported by project CMU-PT/SIA/0023/2009
under the Carnegie Mellon-Portugal Program. J.M. was supported by a PhD Student Scholarship,
SFRH/BD/44661/2008, from the Portuguese FCT POCTI programme. M.S. is funded by the FP7
Marie Curie Actions Individual Fellowship #275217 (FP7-PEOPLE-2010-IEF).

8

Value Bounds

We can efficiently obtain a
bounded, local representation
of the joint value function.

Projecting these sets, through marginalization, to Agent 1’s local
factor X1 (lines are slightly o�set for representation):

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b(l
1
)

b
(l

2
)

Some regions of local belief space (separated by dashed lines) have
only one possible action associated to them.
Agent 1 does not need to know about Agent 2’s belief in these
cases.

V�(b) = � · b
1T
nb = 1

MX
L b = bL

Relay-Small OneDoor Relay-Large
h 6 10 ∞ 6 10 ∞ 6 10 ∞

Perseus 1.1 4.3 0.1 7.3 33.3 5.3 239.5 643.0 31.5
Comm. Map 5.9 21.4 7.4 12.4 57.7 5.9 368.7 859.5 138.1

Table 2: Running time (in seconds) of the proposedmethod in comparison to the Perseus point-based
POMDP solver.

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Value Bounds (Relay)

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Pruned Value Bounds (Relay)

Shuffle

Exchange

Sense

VV

(bX1
)1(bX1

)1

Figure 2: Value bounds for the Relay-Small problem. The dashed lines indicate the minimum value
bounds, and the filled lines represent the maximum value bounds, for each action.

can deliver them to L2, receiving for that a positive reward. There are a total of 64 possible states for
the environment. Here, since the agents can act independently for a longer time, the communication
savings are more pronounced, as shown in Table 1.

Finally, we argue that the running time of the proposed algorithm is comparable to that of general
POMDP solvers for these same environments. Even though both the solver and the mapper algo-
rithms must be executed in sequence, the results in Table 2 show that they are typically both in the
same order of magnitude.

5 Conclusions and Future Work

Traditional multiagent planning on partially observable environments mostly deals with fully-
communicative or non-communicative situations. For a more realistic scenario where communi-
cation should be used only when necessary, state-of-the-art methods are only capable of approxi-
mating the optimal policy at run-time [11, 15]. Here, we have analyzed the properties of MPOMDP
models which can be exploited in order to increase the efficiency of communication between agents.
We have shown that these properties hold, for various MPOMDP scenarios, and that the decision
quality can be maintained while significantly reducing the amount of communication, as long as the
dependencies within the model are sparse.

Although one of the main features of these techniques is that they may be applied to any given
MPOMDP value function, in some situations this value function may be costly to obtain. As future
work, we will investigate methods for obtaining MPOMDP value functions that are easy to partition
using our techniques.

Acknowledgments

This work was funded in part by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual fund-
ing) through the PIDDAC Program funds and was supported by project CMU-PT/SIA/0023/2009
under the Carnegie Mellon-Portugal Program. J.M. was supported by a PhD Student Scholarship,
SFRH/BD/44661/2008, from the Portuguese FCT POCTI programme. M.S. is funded by the FP7
Marie Curie Actions Individual Fellowship #275217 (FP7-PEOPLE-2010-IEF).

8

X1 = {L1, L2}
X2 = {R1, R2}

A1 = A2 = {Shu�e,Exchange, Sense}
O1 = O2 = {Door,Wall}

Agents must Exchange when in

���� �� ����	

!"

!#$#

$"

%

%

"

#

Figure 1: Layout of the Relay problem.

2 An Example Problem: Relay
Consider the following small-scale factored Dec-POMDP,
called Relay, which will be used as a running example
throughout the paper. In this environment, two agents operate
inside a four-state world, see Figure 1, in which each agent is
confined to a two-state area. One of the agents possesses a
package which it must hand over to the other agent. The goal
of these agents is then to “relay” this package between them
through the opening between the rooms L1 and R1.
Each agent can either perform action Shuffle, Exchange, or

Sense. A Shuffle action moves the agent randomly, and with
equal probability, to either position in its area. The Exchange
action attempts to perform the physical exchange of the pack-
age between the agents, and is only successful if both agents
are in the correct position (L1 for the first agent, R1 for the
second one) and if both agents perform this action at the same
time. If it succeeds, the world is reset to a random state with
uniform probability. The Sense action is an informative ac-
tion, which allows the agent to sense whether it is in front
of the opening or not, with probability of both false positives
and false negatives. The feature of this small problem that
we are interested in exploring is its sparse dependency be-
tween the decision processes of these agents. Evidently, the
only cooperative action that the agents may perform is a joint
Exchange. Since this action can only succeed in a particular
joint state, it stands to reason that an agent which is suffi-
ciently certain of not being in its correct, corresponding local
state should always attempt to move there first (via Shuffle).
In such a case, this decision can be taken regardless of the
other agent’s state, actions or observations (since the agents
cannot observe each other).
The key idea in our paper is, that in some situations, the lo-

cal information of these agents is enough for them to take lo-
cally optimal decisions. If, furthermore, the belief states over
the local state factors are maintained independently, then the
agents might not need to communicate at all between two de-
cisions. The explicit need to communicate would only arise
in situations where one agent’s optimal action is dependent
upon the other agent’s information. In this example, this cor-
responds to the case where one agent is fairly certain of being
in the correct place for the exchange. It then needs to rea-
son over the other agent’s local belief to make sure that an
Exchange action is profitable in terms of expected reward.

3 Background
In this section we provide the necessary background on fac-
tored Dec-POMDPs and Multiagent POMDPs.

3.1 The Factored Dec-POMDP Model
A factored Dec-POMDP is defined as [11]
• D = {1, ..., n} is the set of agents. Di will be used to
refer to agent i;

• S = ×iXi, i = 1, . . . , nf is the state space for the envi-
ronment, decomposable into nf factorsXi ∈ {1, ...,mi}
which lie inside a finite range of integer values. X =
{X1, . . . ,Xnf

} is the set of all state factors;
• A = ×iAi, i = 1, ..., n is the joint action space. At each
decision step, every agent i takes an individual action
ai ∈ Ai, resulting in the joint action a = ⟨a1, ..., an⟩ ∈
A. Joint actions are not implicitly known by agents;

• O = ×iOi, i = 1, ..., n is the space of joint observations
o = ⟨o1, ..., on⟩, where oi ∈ Oi is the observation that
each agent receives after performing an action. An agent
receives only its own observation in this manner;

• T : S × S × A → [0, 1] specifies the transition proba-
bilities Pr (s′|s, a);

• O : O × S ×A → [0, 1] specifies the joint observation
probabilities Pr (o|s′, a);

• R : S × A → R specifies the reward that the team
receives for performing action a ∈ A in state s ∈ S;

• b0 ∈ B is a probability distribution over S, representing
the initial knowledge about the joint state. The set B
is the space of all possible distributions over S. We will
refer to the probability of a given state being true as b(s);

• h is the planning horizon, i.e. the total number of deci-
sions that must be taken at each time step t = 1, . . . , h.

The main advantage of factored (Dec-)POMDP models
over their standard formulation lies in their more efficient
representation, which helps counteract the naturally higher
complexity associated with larger space states. In factored
POMDP models, the transition and observation functions can
be compactly represented through graphical representations,
such as DBNs [2], which typically greatly reducing the size
of the associated data structures.
Applying this notation to the Relay example, we can now

further define the action and observation spaces of the agents
as A1 = A2 = {Shuffle,Exchange, Sense}, O1 = O2 =
{Opening,Wall, Idle}, and the trivial state space factoriza-
tion which will be considered, as X1 = {L1,L2} and X2 =
{R1,R2}.
Existing methods for factored Dec-POMDPs can partition

the decision problem across local subsets of agents, due to the
possible (instantaneous) independence between their actions
and observations [11]. Planning is then simplified by maxi-
mizing expected reward accrued additively between local in-
teracting neighborhoods of agents. A natural state-space de-
composition which is often possible in multi-agent teams, is
to perform an agent-wise state space factorization, in which a
state in the environment corresponds to a unique assignment
over the states of individual agents. Note that this does not
preclude the existence of state factors which are common to
multiple agents.

João V. Messias Matthijs T. J. Spaan Pedro U. Lima

Linear supports of the joint Value Function of the
above MPOMDP, colored according to local actions.

Given the available Value Function information over joint space, we establish
local bounds on value:

Or the following approximate reformulation (more efficient):

This work was funded in part by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual funding)
through the PIDDAC Program funds and was supported by project CMU-PT/SIA/0023/2009 under the
Carnegie Mellon-Portugal Program.

J.Messias was supported by a PhD Student Scholarship, SFRH/BD/44661/2008, from the Portuguese FCT
POCT programme.

M.Spaan is funded by the FP7 Marie Curie Actions Individual Fellowship \#275217 (FP7-PEOPLE-2010-IEF).

Contacts: jmessias@isr.ist.utl.pt; m.t.j.spaan@tudelft.nl; pal@isr.ist.utl.pt.

3.2 From Dec-POMDPs to Multiagent POMDPs
Different assumptions over local and joint state observabil-
ity further divide Dec-POMDPs into more restrictive subcat-
egories [5]. In this work, we will consider the general case in
which each factor may be partially observable.
The possibility of exchanging information between agents

also greatly influences the overall complexity of solving a
Dec-POMDP. In the non-communicative case, agents have to
reason over the complete history of actions and observations
of each other team member [1]. However, if agents are all
able to communicate information (namely their observations)
at each step, then it is possible to maintain a belief distribution
over the joint state, which contains all necessary information
through the Markov property. In such a case, the decentral-
ized model can be reduced to a centralized one, the so-called
Multiagent POMDP (MPOMDP) [13]. An MPOMDP is a
regular single-agent POMDP but defined over the joint mod-
els of all agents. In a Dec-POMDP, at each t an agent i knows
only ai and oi, while in an MPOMDP, it is assumed to know
a and o. In the latter case, inter-agent communication is nec-
essary to share the local observations. Solving the MPOMDP
is of a lower complexity class than solving the Dec-POMDP
(PSPACE-Complete vs. NEXP-Complete) [1].

3.3 Linear Supports of POMDP Value Functions
It is well-known that, for a given decision step t, the value
function V t of a POMDP is a piecewise linear, convex func-
tion, which can be represented as [7]

V t(bt) = max
α∈Γt

αT · bt. (1)

Where Γt is a set of vectors (traditionally referred to as α-
vectors). It contains all information which is necessary to
represent the value function at time t. Every α ∈ Γt has a
particular joint action a associated to it, which we will de-
note as ϕ(α). Furthermore, every α-vector which is not ex-
traneous defines a region of belief space over which it is a
strict maximum. This region is a convex polytope with the
constraints:

(α− α′)
T
· bt ≥ 0 ∀α′ ̸= α ∈ Γt

bt(s) ≥ 0 ∀s ∈ S
∑

s∈S

bt(s) = 1 (2)

We will refer to these regions as the linear supports of V ,
L(α), as illustrated in Figure 2. For more details, see [4].
Furthermore, we shall make use of the joint policy π(b), di-
rectly related to the value function as:

πt(bt) = ϕ

(

argmax
α∈Γt

αT · bt
)

(3)

In this work, our methods will assume that a value function in
the form (1) is given, for its associated fully-communicative
Multiagent POMDP. However, this value function need not
be optimal, nor stationary. Our techniques will attempt to
preserve the quality of the supplied value function, even if it
is just an approximation. The only restriction, and mostly for

V

α1

α2 α3

α4

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

L(α1) L(α2) L(α3) L(α4)
(0, 1) (1, 0)

Figure 2: An example of the linear supports for a value func-
tion in a two-state POMDP.

theoretical purposes, is that a supplied value function is in its
so-called parsimonious representation, which means that ev-
ery α ∈ Γ has an associated non-empty linear support L(α).

3.4 Factored Belief States
A joint belief state is a probability distribution over the set of
states S , and encodes all of the information gathered by all
agents in the Dec-POMDP up to a given time t:

bt(s) = Pr(st|at−1,ot−1,at−2,ot−2, . . . ,a1,o1, b0)

= Pr(X t
1 , . . . ,X

t
nf
|·) (4)

A factored belief state is a representation of this very same
joint belief as the product of nb assumedly independent belief
states over the state factorsXi, which we will refer to as belief
factors:

bt = ×nb

i=1
btGi

(5)

Every factor btGi
is defined over a subset Gi ⊆ X of state

factors, so that:

bt(s) = Pr(Gt
1|·)Pr(G

t
2|·) · · ·Pr(G

t
nb
|·) (6)

With Gi ∩ Gj = ∅ , ∀i ̸= j. We will denote BG as the space
of possible assignments to the belief factor defined over G.

4 Exploiting Sparse Dependencies in
Multiagent POMDPs

In the implementation of Multiagent POMDPs, an important
practical issue is raised: since the joint policy arising from the
value function maps joint beliefs to joint actions, all agents
must maintain and update the joint belief equivalently for
their decisions to remain consistent. The amount of commu-
nication required to make this possible can then become prob-
lematically large. In a direct implementation, agents would be
required to communicate, at every step, their observations to
all other agents.
Here, we will deal with a fully-communicative team of

agents, but we will be interested in minimizing the necessary
amount of communication. Even if agents can communicate
with each other freely, they might not need to always do so in
order to act locally, or even cooperatively. A similar idea has
been used for Dec-MDPs [15], where factors can be directly
observed. In that work, joint policies are broken down into
individual factored policies, by reasoning over the possible

• Inter-agent communication in multiagent POMDPs (MPOMDPs) can be costly.
In many realistic scenarios, communication should be minimized;
• Modeling communication decisions directly can make the problem intractable;
• We propose a method to reduce unnecessary communication for factored

MPOMDPs. The method exploits joint value function structure, offline, to obtain
safe communication policies;
• This solution maps belief distributions over local state factors to local actions

when possible, and to communication decisions when otherwise needed.

A simple factored MPOMDP: Typical Value Function representation:

The belief space is partitioned into linear
supports associated with joint actions.

Joint belief is approximated through local beliefs:

! "

#$

%

&

'

(

)

*

+

Figure 1: Representation of the OneDoor scenario.

References
[1] J.V. Messias, M.T.J. Spaan, and P. U. Lima. Efficient offline communication policies for factored
multiagent POMDPs. In Proceedings of the 25th Annual Conference on Neural Information
Processing Systems, 2011.

[2] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Dec-POMDPs with delayed com-
munication. InMulti-agent Sequential Decision Making in Uncertain Domains, 2007. Workshop
at AAMAS07.

4

b ' bX1 ⇥ bX2

(L1, R1)

Linear support projections onto local belief space.
Communication is unnecessary over the colored regions,

since only one action is possible.

Joint Space: Local Space:

These bounds allow us to efficiently rule out impractical actions.
As an example, for , the exchange action can be ruled out (green).(bX1)1  0.5

This is accomplished by reducing the original linear system and exploiting its
convexity properties.

If multiple actions are possible, the need to communicate can be determined, for one
local belief point, by solving a set of Linear Programs:

These LPs attempt to find a joint belief point associated with an action
which is different from the expected best.

The following LP attempts to find ambiguous actions in a given set of factors. If no
such ambiguity is found, the set of factors is sufficient.

From the set of necessary factors, an agent may then identify which other agents have
access to them as local information, and request them through communication.

The above procedure is
repeated for a set of local
belief points sampled
according to the MPOMDP
model. This forms a
communication map over local
belief space, where every point
is associated with a
communication decision.

(bL)1

(bL)2

(b
L
) 3

Every time the agent updates
its local belief, it searches the
communication map for the
nearest neighbor, and requests
the factors associated with that
point, if any.
In this way, the map acts as a
communication policy which
can be used online.

4 states 49 states 64 states

The above table shows average collected joint reward and communication usage, comparing the fully communicative case with the proposed method.

We have analyzed the properties of
MPOMDP models which can be
exploited in order to obtain efficient
offline communication policies.
In various scenarios, the decision
quality can be maintained while
significantly reducing communication,
as long as the dependencies within the
model are sparse.

As future work, we will investigate
methods for obtaining MPOMDP value
functions that are easy to partition
using our techniques.

Piecewise Linear and Convex (PWLC)

26

POMDP Solution Algorithms

Solving a POMDP optimally is a difficult problem
(MDPs are P-complete, POMDPs are PSPACE-hard)

V ⇤
n (b) = max

↵2�n

(
X

s2S
b(s)↵(s)

)
Solution by enumeration (Monahan, ‘82)

1. Compute all vectors;
!
2. Pick the best at b.

The number of vectors is really big!
|A|

|O|h+1�1
|O|�1

27

POMDP Solution Algorithms

Linear Support Methods

Efficient Offline Communication Policies for
Factored Multiagent POMDPs

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

maximize 1T
k0�

subject to Ab � 1ks b ⌫ 0n MX
L b = bL

A�b = 1k0s+ � 1T
n b = 1

maximize 1T
k0�� + 1T

k �

subject to Ab � 1ks A�b = 1k0s+ � MX
L b = bL

A�b� � 1k0s� Ab� = 1ks
�
+ �� MX

L b� = bL

b ⌫ 0n b� ⌫ 0n MX
G b = MX

G b�

R1

R2L2

L1

D

D

1

2

CL1 CR1

CL2 CR20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

1

bL1,R1

!"

!#$#

$"

%

%

"

#

(a) Relay-Small. (b) Relay-Large.

0 0.2 0.4 0.6 0.8 1
0

1

(bX1
)1

M
a
p
((
b X

1
) 1
)

(c) Communication Map.

Figure 1: (a) Layout of the Relay-Small problem. (b) Layout of the Relay-Large problem. (c)
Communication map for the Relay-Small problem.

4 Experiments

We now analyze the results of applying the aforementioned offline communication mapping process
to three differentMPOMDP environments, eachwith a different degrees of interdependencybetween
agents. The first and smallest of the test problems, shown in Figure 1a, is named the Relay-Small
problem, and is mainly used for explanatory purposes. In this world each agent is confined to a
two-state area. One of the agents possesses a package which it must hand over to the other agent,
through the non-traversable opening between the rooms L1 and R1. Each agent can move randomly
inside its own room (a Shuffle action), Exchange the package with the other agent, or Sense its
environment in order to find the opening. An Exchange is only successful if both agents are in
the correct position (L1,R1) and if both agents perform this action at the same time, which makes
it the only available cooperative action. The fact that, in this problem, each belief factor is two-
dimensional (each factor spans one of the rooms) allows us to visualize the results of our method. In
Figure 2, we see that some of the agent’s expected behavior is already contained in the value bounds
over its local factor: if an agent is certain of being in room R1 (i.e. (bX1

)1 = 0), then the action
with the highest-valued bound is Shuffle. Likewise, an Exchange should only be carried out when
the agent is certain of being in L1, but it is an ambiguous action since the agent needs to be sure that
its teammate can cooperate. In Figure 1c we represent the communication map which was obtained
offline through the proposed algorithm. Since there are only two factors, the agent only needs to
make a binary decision of whether or not to communicate for a given local belief point. The belief
points considered safe are marked as 0, and those associated with a communication decision are
marked as 1. In terms of quantitative results, we see that ∼ 30 − 40% of communication episodes
are avoided in this simple example, without a significant loss of collected reward.

Another test scenario is the OneDoor environment of [7], which is further described in [6]. In this
49-state world, two agents lie inside opposite rooms, akin to the Relay-Small problem, but each
agent has the goal of moving to the other room. There is only one common passage between both
rooms, where the agents may collide. For shorter-horizon solutions, agents may not be able to reach
their goal, and they communicate so as to minimize negative reward (collisions). For the infinite-
horizon case, however, typically only one of the agents communicates, while waiting for its partner
to clear the passage. Note that this relationship between the problem’s horizon and the amount of
communication savings does not hold for all of the problems. The proposed method exploits the
invariance of local policies over subsets of the joint belief space, and this may arbitrarily change
with the problem’s horizon.

A larger example is displayed in Figure 1b. This is an adaptation of the Relay-Small problem (aptly
named Relay-Large) to a setting in which each room has four different states, and each agent may be
carrying a package at a given time. AgentD1 may retrieve new packages from position L1, andD2

Relay-Small OneDoor Relay-Large
h. Full Comm. Red. Comm. Full Comm. Red. Comm. Full Comm. Red. Comm.
6 15.4, 100% 14.8, 56.9% 0.35, 100% 0.30, 89.0% 27.4, 100% 25.8, 44.1%
10 39.8, 100% 38.7, 68.2% 1.47, 100% 1.38, 76.2% -19.7, 100% -21.6, 62,5%
∞ 77.5, 100% 73.9, 46.1% 2.31, 100% 2.02, 61.3% 134.0, 100% 129.7, 58.9%

Table 1: Results of the proposed method for various environments. For settings assuming full and
reduced communication, we show empirical control quality, online communication usage.

7

INSTITUTO DE
SISTEMAS E
ROBÓTICA

Projecting these sets, through marginalization, to Agent 1’s local
factor X1 (lines are slightly o�set for representation):

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b(l
1
)

b
(l

2
)

Some regions of local belief space (separated by dashed lines) have
only one possible action associated to them.
Agent 1 does not need to know about Agent 2’s belief in these
cases.

Acting Locally

Linear supports of the value function corresponding to this problem
(4-dimensional partition of the belief simplex):

These supports can be found by casting them as linear programs.
Supports are colored according to Agent 1’s actions: red = shu�e;
green = exchange; blue = sense.

There are regions of belief space where agents
can act independently; They can be identified
by projecting the joint policy into a lower
dimensional (local) subspace.

!"

!#$#

$"

%

%

"

#

Figure 1: Layout of the Relay problem.

2 An Example Problem: Relay
Consider the following small-scale factored Dec-POMDP,
called Relay, which will be used as a running example
throughout the paper. In this environment, two agents operate
inside a four-state world, see Figure 1, in which each agent is
confined to a two-state area. One of the agents possesses a
package which it must hand over to the other agent. The goal
of these agents is then to “relay” this package between them
through the opening between the rooms L1 and R1.
Each agent can either perform action Shuffle, Exchange, or

Sense. A Shuffle action moves the agent randomly, and with
equal probability, to either position in its area. The Exchange
action attempts to perform the physical exchange of the pack-
age between the agents, and is only successful if both agents
are in the correct position (L1 for the first agent, R1 for the
second one) and if both agents perform this action at the same
time. If it succeeds, the world is reset to a random state with
uniform probability. The Sense action is an informative ac-
tion, which allows the agent to sense whether it is in front
of the opening or not, with probability of both false positives
and false negatives. The feature of this small problem that
we are interested in exploring is its sparse dependency be-
tween the decision processes of these agents. Evidently, the
only cooperative action that the agents may perform is a joint
Exchange. Since this action can only succeed in a particular
joint state, it stands to reason that an agent which is suffi-
ciently certain of not being in its correct, corresponding local
state should always attempt to move there first (via Shuffle).
In such a case, this decision can be taken regardless of the
other agent’s state, actions or observations (since the agents
cannot observe each other).
The key idea in our paper is, that in some situations, the lo-

cal information of these agents is enough for them to take lo-
cally optimal decisions. If, furthermore, the belief states over
the local state factors are maintained independently, then the
agents might not need to communicate at all between two de-
cisions. The explicit need to communicate would only arise
in situations where one agent’s optimal action is dependent
upon the other agent’s information. In this example, this cor-
responds to the case where one agent is fairly certain of being
in the correct place for the exchange. It then needs to rea-
son over the other agent’s local belief to make sure that an
Exchange action is profitable in terms of expected reward.

3 Background
In this section we provide the necessary background on fac-
tored Dec-POMDPs and Multiagent POMDPs.

3.1 The Factored Dec-POMDP Model
A factored Dec-POMDP is defined as [11]
• D = {1, ..., n} is the set of agents. Di will be used to
refer to agent i;

• S = ×iXi, i = 1, . . . , nf is the state space for the envi-
ronment, decomposable into nf factorsXi ∈ {1, ...,mi}
which lie inside a finite range of integer values. X =
{X1, . . . ,Xnf

} is the set of all state factors;
• A = ×iAi, i = 1, ..., n is the joint action space. At each
decision step, every agent i takes an individual action
ai ∈ Ai, resulting in the joint action a = ⟨a1, ..., an⟩ ∈
A. Joint actions are not implicitly known by agents;

• O = ×iOi, i = 1, ..., n is the space of joint observations
o = ⟨o1, ..., on⟩, where oi ∈ Oi is the observation that
each agent receives after performing an action. An agent
receives only its own observation in this manner;

• T : S × S × A → [0, 1] specifies the transition proba-
bilities Pr (s′|s, a);

• O : O × S ×A → [0, 1] specifies the joint observation
probabilities Pr (o|s′, a);

• R : S × A → R specifies the reward that the team
receives for performing action a ∈ A in state s ∈ S;

• b0 ∈ B is a probability distribution over S, representing
the initial knowledge about the joint state. The set B
is the space of all possible distributions over S. We will
refer to the probability of a given state being true as b(s);

• h is the planning horizon, i.e. the total number of deci-
sions that must be taken at each time step t = 1, . . . , h.

The main advantage of factored (Dec-)POMDP models
over their standard formulation lies in their more efficient
representation, which helps counteract the naturally higher
complexity associated with larger space states. In factored
POMDP models, the transition and observation functions can
be compactly represented through graphical representations,
such as DBNs [2], which typically greatly reducing the size
of the associated data structures.
Applying this notation to the Relay example, we can now

further define the action and observation spaces of the agents
as A1 = A2 = {Shuffle,Exchange, Sense}, O1 = O2 =
{Opening,Wall, Idle}, and the trivial state space factoriza-
tion which will be considered, as X1 = {L1,L2} and X2 =
{R1,R2}.
Existing methods for factored Dec-POMDPs can partition

the decision problem across local subsets of agents, due to the
possible (instantaneous) independence between their actions
and observations [11]. Planning is then simplified by maxi-
mizing expected reward accrued additively between local in-
teracting neighborhoods of agents. A natural state-space de-
composition which is often possible in multi-agent teams, is
to perform an agent-wise state space factorization, in which a
state in the environment corresponds to a unique assignment
over the states of individual agents. Note that this does not
preclude the existence of state factors which are common to
multiple agents.

⌅i = 1, . . . , |�a0
| maximize �a0

i b� s

subject to Ab ⇥ 1ks b ⇤ 0n

MX
L b = bL 1T

n b = 1

Request factor 2

Request all factors

Request factors 2, 3

Request factors 3,4

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

V↵(bL) =
�
� + ⇥

�
· bL + ⇤

INSTITUTO DE
SISTEMAS E
ROBÓTICA

Relay-Small OneDoor Relay-Large
h 6 10 ∞ 6 10 ∞ 6 10 ∞

Perseus 1.1 4.3 0.1 7.3 33.3 5.3 239.5 643.0 31.5
Comm. Map 5.9 21.4 7.4 12.4 57.7 5.9 368.7 859.5 138.1

Table 2: Running time (in seconds) of the proposedmethod in comparison to the Perseus point-based
POMDP solver.

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Value Bounds (Relay)

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Pruned Value Bounds (Relay)

Shuffle

Exchange

Sense

VV

(bX1
)1(bX1

)1

Figure 2: Value bounds for the Relay-Small problem. The dashed lines indicate the minimum value
bounds, and the filled lines represent the maximum value bounds, for each action.

can deliver them to L2, receiving for that a positive reward. There are a total of 64 possible states for
the environment. Here, since the agents can act independently for a longer time, the communication
savings are more pronounced, as shown in Table 1.

Finally, we argue that the running time of the proposed algorithm is comparable to that of general
POMDP solvers for these same environments. Even though both the solver and the mapper algo-
rithms must be executed in sequence, the results in Table 2 show that they are typically both in the
same order of magnitude.

5 Conclusions and Future Work

Traditional multiagent planning on partially observable environments mostly deals with fully-
communicative or non-communicative situations. For a more realistic scenario where communi-
cation should be used only when necessary, state-of-the-art methods are only capable of approxi-
mating the optimal policy at run-time [11, 15]. Here, we have analyzed the properties of MPOMDP
models which can be exploited in order to increase the efficiency of communication between agents.
We have shown that these properties hold, for various MPOMDP scenarios, and that the decision
quality can be maintained while significantly reducing the amount of communication, as long as the
dependencies within the model are sparse.

Although one of the main features of these techniques is that they may be applied to any given
MPOMDP value function, in some situations this value function may be costly to obtain. As future
work, we will investigate methods for obtaining MPOMDP value functions that are easy to partition
using our techniques.

Acknowledgments

This work was funded in part by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual fund-
ing) through the PIDDAC Program funds and was supported by project CMU-PT/SIA/0023/2009
under the Carnegie Mellon-Portugal Program. J.M. was supported by a PhD Student Scholarship,
SFRH/BD/44661/2008, from the Portuguese FCT POCTI programme. M.S. is funded by the FP7
Marie Curie Actions Individual Fellowship #275217 (FP7-PEOPLE-2010-IEF).

8

Value Bounds

We can efficiently obtain a
bounded, local representation
of the joint value function.

Projecting these sets, through marginalization, to Agent 1’s local
factor X1 (lines are slightly o�set for representation):

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b(l
1
)

b
(l

2
)

Some regions of local belief space (separated by dashed lines) have
only one possible action associated to them.
Agent 1 does not need to know about Agent 2’s belief in these
cases.

V�(b) = � · b
1T
nb = 1

MX
L b = bL

Relay-Small OneDoor Relay-Large
h 6 10 ∞ 6 10 ∞ 6 10 ∞

Perseus 1.1 4.3 0.1 7.3 33.3 5.3 239.5 643.0 31.5
Comm. Map 5.9 21.4 7.4 12.4 57.7 5.9 368.7 859.5 138.1

Table 2: Running time (in seconds) of the proposedmethod in comparison to the Perseus point-based
POMDP solver.

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Value Bounds (Relay)

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

140

160
Pruned Value Bounds (Relay)

Shuffle

Exchange

Sense

VV

(bX1
)1(bX1

)1

Figure 2: Value bounds for the Relay-Small problem. The dashed lines indicate the minimum value
bounds, and the filled lines represent the maximum value bounds, for each action.

can deliver them to L2, receiving for that a positive reward. There are a total of 64 possible states for
the environment. Here, since the agents can act independently for a longer time, the communication
savings are more pronounced, as shown in Table 1.

Finally, we argue that the running time of the proposed algorithm is comparable to that of general
POMDP solvers for these same environments. Even though both the solver and the mapper algo-
rithms must be executed in sequence, the results in Table 2 show that they are typically both in the
same order of magnitude.

5 Conclusions and Future Work

Traditional multiagent planning on partially observable environments mostly deals with fully-
communicative or non-communicative situations. For a more realistic scenario where communi-
cation should be used only when necessary, state-of-the-art methods are only capable of approxi-
mating the optimal policy at run-time [11, 15]. Here, we have analyzed the properties of MPOMDP
models which can be exploited in order to increase the efficiency of communication between agents.
We have shown that these properties hold, for various MPOMDP scenarios, and that the decision
quality can be maintained while significantly reducing the amount of communication, as long as the
dependencies within the model are sparse.

Although one of the main features of these techniques is that they may be applied to any given
MPOMDP value function, in some situations this value function may be costly to obtain. As future
work, we will investigate methods for obtaining MPOMDP value functions that are easy to partition
using our techniques.

Acknowledgments

This work was funded in part by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual fund-
ing) through the PIDDAC Program funds and was supported by project CMU-PT/SIA/0023/2009
under the Carnegie Mellon-Portugal Program. J.M. was supported by a PhD Student Scholarship,
SFRH/BD/44661/2008, from the Portuguese FCT POCTI programme. M.S. is funded by the FP7
Marie Curie Actions Individual Fellowship #275217 (FP7-PEOPLE-2010-IEF).

8

X1 = {L1, L2}
X2 = {R1, R2}

A1 = A2 = {Shu�e,Exchange, Sense}
O1 = O2 = {Door,Wall}

Agents must Exchange when in

���� �� ����	

!"

!#$#

$"

%

%

"

#

Figure 1: Layout of the Relay problem.

2 An Example Problem: Relay
Consider the following small-scale factored Dec-POMDP,
called Relay, which will be used as a running example
throughout the paper. In this environment, two agents operate
inside a four-state world, see Figure 1, in which each agent is
confined to a two-state area. One of the agents possesses a
package which it must hand over to the other agent. The goal
of these agents is then to “relay” this package between them
through the opening between the rooms L1 and R1.
Each agent can either perform action Shuffle, Exchange, or

Sense. A Shuffle action moves the agent randomly, and with
equal probability, to either position in its area. The Exchange
action attempts to perform the physical exchange of the pack-
age between the agents, and is only successful if both agents
are in the correct position (L1 for the first agent, R1 for the
second one) and if both agents perform this action at the same
time. If it succeeds, the world is reset to a random state with
uniform probability. The Sense action is an informative ac-
tion, which allows the agent to sense whether it is in front
of the opening or not, with probability of both false positives
and false negatives. The feature of this small problem that
we are interested in exploring is its sparse dependency be-
tween the decision processes of these agents. Evidently, the
only cooperative action that the agents may perform is a joint
Exchange. Since this action can only succeed in a particular
joint state, it stands to reason that an agent which is suffi-
ciently certain of not being in its correct, corresponding local
state should always attempt to move there first (via Shuffle).
In such a case, this decision can be taken regardless of the
other agent’s state, actions or observations (since the agents
cannot observe each other).
The key idea in our paper is, that in some situations, the lo-

cal information of these agents is enough for them to take lo-
cally optimal decisions. If, furthermore, the belief states over
the local state factors are maintained independently, then the
agents might not need to communicate at all between two de-
cisions. The explicit need to communicate would only arise
in situations where one agent’s optimal action is dependent
upon the other agent’s information. In this example, this cor-
responds to the case where one agent is fairly certain of being
in the correct place for the exchange. It then needs to rea-
son over the other agent’s local belief to make sure that an
Exchange action is profitable in terms of expected reward.

3 Background
In this section we provide the necessary background on fac-
tored Dec-POMDPs and Multiagent POMDPs.

3.1 The Factored Dec-POMDP Model
A factored Dec-POMDP is defined as [11]
• D = {1, ..., n} is the set of agents. Di will be used to
refer to agent i;

• S = ×iXi, i = 1, . . . , nf is the state space for the envi-
ronment, decomposable into nf factorsXi ∈ {1, ...,mi}
which lie inside a finite range of integer values. X =
{X1, . . . ,Xnf

} is the set of all state factors;
• A = ×iAi, i = 1, ..., n is the joint action space. At each
decision step, every agent i takes an individual action
ai ∈ Ai, resulting in the joint action a = ⟨a1, ..., an⟩ ∈
A. Joint actions are not implicitly known by agents;

• O = ×iOi, i = 1, ..., n is the space of joint observations
o = ⟨o1, ..., on⟩, where oi ∈ Oi is the observation that
each agent receives after performing an action. An agent
receives only its own observation in this manner;

• T : S × S × A → [0, 1] specifies the transition proba-
bilities Pr (s′|s, a);

• O : O × S ×A → [0, 1] specifies the joint observation
probabilities Pr (o|s′, a);

• R : S × A → R specifies the reward that the team
receives for performing action a ∈ A in state s ∈ S;

• b0 ∈ B is a probability distribution over S, representing
the initial knowledge about the joint state. The set B
is the space of all possible distributions over S. We will
refer to the probability of a given state being true as b(s);

• h is the planning horizon, i.e. the total number of deci-
sions that must be taken at each time step t = 1, . . . , h.

The main advantage of factored (Dec-)POMDP models
over their standard formulation lies in their more efficient
representation, which helps counteract the naturally higher
complexity associated with larger space states. In factored
POMDP models, the transition and observation functions can
be compactly represented through graphical representations,
such as DBNs [2], which typically greatly reducing the size
of the associated data structures.
Applying this notation to the Relay example, we can now

further define the action and observation spaces of the agents
as A1 = A2 = {Shuffle,Exchange, Sense}, O1 = O2 =
{Opening,Wall, Idle}, and the trivial state space factoriza-
tion which will be considered, as X1 = {L1,L2} and X2 =
{R1,R2}.
Existing methods for factored Dec-POMDPs can partition

the decision problem across local subsets of agents, due to the
possible (instantaneous) independence between their actions
and observations [11]. Planning is then simplified by maxi-
mizing expected reward accrued additively between local in-
teracting neighborhoods of agents. A natural state-space de-
composition which is often possible in multi-agent teams, is
to perform an agent-wise state space factorization, in which a
state in the environment corresponds to a unique assignment
over the states of individual agents. Note that this does not
preclude the existence of state factors which are common to
multiple agents.

João V. Messias Matthijs T. J. Spaan Pedro U. Lima

Linear supports of the joint Value Function of the
above MPOMDP, colored according to local actions.

Given the available Value Function information over joint space, we establish
local bounds on value:

Or the following approximate reformulation (more efficient):

This work was funded in part by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual funding)
through the PIDDAC Program funds and was supported by project CMU-PT/SIA/0023/2009 under the
Carnegie Mellon-Portugal Program.

J.Messias was supported by a PhD Student Scholarship, SFRH/BD/44661/2008, from the Portuguese FCT
POCT programme.

M.Spaan is funded by the FP7 Marie Curie Actions Individual Fellowship \#275217 (FP7-PEOPLE-2010-IEF).

Contacts: jmessias@isr.ist.utl.pt; m.t.j.spaan@tudelft.nl; pal@isr.ist.utl.pt.

3.2 From Dec-POMDPs to Multiagent POMDPs
Different assumptions over local and joint state observabil-
ity further divide Dec-POMDPs into more restrictive subcat-
egories [5]. In this work, we will consider the general case in
which each factor may be partially observable.
The possibility of exchanging information between agents

also greatly influences the overall complexity of solving a
Dec-POMDP. In the non-communicative case, agents have to
reason over the complete history of actions and observations
of each other team member [1]. However, if agents are all
able to communicate information (namely their observations)
at each step, then it is possible to maintain a belief distribution
over the joint state, which contains all necessary information
through the Markov property. In such a case, the decentral-
ized model can be reduced to a centralized one, the so-called
Multiagent POMDP (MPOMDP) [13]. An MPOMDP is a
regular single-agent POMDP but defined over the joint mod-
els of all agents. In a Dec-POMDP, at each t an agent i knows
only ai and oi, while in an MPOMDP, it is assumed to know
a and o. In the latter case, inter-agent communication is nec-
essary to share the local observations. Solving the MPOMDP
is of a lower complexity class than solving the Dec-POMDP
(PSPACE-Complete vs. NEXP-Complete) [1].

3.3 Linear Supports of POMDP Value Functions
It is well-known that, for a given decision step t, the value
function V t of a POMDP is a piecewise linear, convex func-
tion, which can be represented as [7]

V t(bt) = max
α∈Γt

αT · bt. (1)

Where Γt is a set of vectors (traditionally referred to as α-
vectors). It contains all information which is necessary to
represent the value function at time t. Every α ∈ Γt has a
particular joint action a associated to it, which we will de-
note as ϕ(α). Furthermore, every α-vector which is not ex-
traneous defines a region of belief space over which it is a
strict maximum. This region is a convex polytope with the
constraints:

(α− α′)
T
· bt ≥ 0 ∀α′ ̸= α ∈ Γt

bt(s) ≥ 0 ∀s ∈ S
∑

s∈S

bt(s) = 1 (2)

We will refer to these regions as the linear supports of V ,
L(α), as illustrated in Figure 2. For more details, see [4].
Furthermore, we shall make use of the joint policy π(b), di-
rectly related to the value function as:

πt(bt) = ϕ

(

argmax
α∈Γt

αT · bt
)

(3)

In this work, our methods will assume that a value function in
the form (1) is given, for its associated fully-communicative
Multiagent POMDP. However, this value function need not
be optimal, nor stationary. Our techniques will attempt to
preserve the quality of the supplied value function, even if it
is just an approximation. The only restriction, and mostly for

V

α1

α2 α3

α4

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

L(α1) L(α2) L(α3) L(α4)
(0, 1) (1, 0)

Figure 2: An example of the linear supports for a value func-
tion in a two-state POMDP.

theoretical purposes, is that a supplied value function is in its
so-called parsimonious representation, which means that ev-
ery α ∈ Γ has an associated non-empty linear support L(α).

3.4 Factored Belief States
A joint belief state is a probability distribution over the set of
states S , and encodes all of the information gathered by all
agents in the Dec-POMDP up to a given time t:

bt(s) = Pr(st|at−1,ot−1,at−2,ot−2, . . . ,a1,o1, b0)

= Pr(X t
1 , . . . ,X

t
nf
|·) (4)

A factored belief state is a representation of this very same
joint belief as the product of nb assumedly independent belief
states over the state factorsXi, which we will refer to as belief
factors:

bt = ×nb

i=1
btGi

(5)

Every factor btGi
is defined over a subset Gi ⊆ X of state

factors, so that:

bt(s) = Pr(Gt
1|·)Pr(G

t
2|·) · · ·Pr(G

t
nb
|·) (6)

With Gi ∩ Gj = ∅ , ∀i ̸= j. We will denote BG as the space
of possible assignments to the belief factor defined over G.

4 Exploiting Sparse Dependencies in
Multiagent POMDPs

In the implementation of Multiagent POMDPs, an important
practical issue is raised: since the joint policy arising from the
value function maps joint beliefs to joint actions, all agents
must maintain and update the joint belief equivalently for
their decisions to remain consistent. The amount of commu-
nication required to make this possible can then become prob-
lematically large. In a direct implementation, agents would be
required to communicate, at every step, their observations to
all other agents.
Here, we will deal with a fully-communicative team of

agents, but we will be interested in minimizing the necessary
amount of communication. Even if agents can communicate
with each other freely, they might not need to always do so in
order to act locally, or even cooperatively. A similar idea has
been used for Dec-MDPs [15], where factors can be directly
observed. In that work, joint policies are broken down into
individual factored policies, by reasoning over the possible

• Inter-agent communication in multiagent POMDPs (MPOMDPs) can be costly.
In many realistic scenarios, communication should be minimized;
• Modeling communication decisions directly can make the problem intractable;
• We propose a method to reduce unnecessary communication for factored

MPOMDPs. The method exploits joint value function structure, offline, to obtain
safe communication policies;
• This solution maps belief distributions over local state factors to local actions

when possible, and to communication decisions when otherwise needed.

A simple factored MPOMDP: Typical Value Function representation:

The belief space is partitioned into linear
supports associated with joint actions.

Joint belief is approximated through local beliefs:

! "

#$

%

&

'

(

)

*

+

Figure 1: Representation of the OneDoor scenario.

References
[1] J.V. Messias, M.T.J. Spaan, and P. U. Lima. Efficient offline communication policies for factored
multiagent POMDPs. In Proceedings of the 25th Annual Conference on Neural Information
Processing Systems, 2011.

[2] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Dec-POMDPs with delayed com-
munication. InMulti-agent Sequential Decision Making in Uncertain Domains, 2007. Workshop
at AAMAS07.

4

b ' bX1 ⇥ bX2

(L1, R1)

Linear support projections onto local belief space.
Communication is unnecessary over the colored regions,

since only one action is possible.

Joint Space: Local Space:

These bounds allow us to efficiently rule out impractical actions.
As an example, for , the exchange action can be ruled out (green).(bX1)1  0.5

This is accomplished by reducing the original linear system and exploiting its
convexity properties.

If multiple actions are possible, the need to communicate can be determined, for one
local belief point, by solving a set of Linear Programs:

These LPs attempt to find a joint belief point associated with an action
which is different from the expected best.

The following LP attempts to find ambiguous actions in a given set of factors. If no
such ambiguity is found, the set of factors is sufficient.

From the set of necessary factors, an agent may then identify which other agents have
access to them as local information, and request them through communication.

The above procedure is
repeated for a set of local
belief points sampled
according to the MPOMDP
model. This forms a
communication map over local
belief space, where every point
is associated with a
communication decision.

(bL)1

(bL)2

(b
L
) 3

Every time the agent updates
its local belief, it searches the
communication map for the
nearest neighbor, and requests
the factors associated with that
point, if any.
In this way, the map acts as a
communication policy which
can be used online.

4 states 49 states 64 states

The above table shows average collected joint reward and communication usage, comparing the fully communicative case with the proposed method.

We have analyzed the properties of
MPOMDP models which can be
exploited in order to obtain efficient
offline communication policies.
In various scenarios, the decision
quality can be maintained while
significantly reducing communication,
as long as the dependencies within the
model are sparse.

As future work, we will investigate
methods for obtaining MPOMDP value
functions that are easy to partition
using our techniques.

Calculate the regions for which
each vector is best

(Linear Programming)

28

1.3. 2.

POMDP Solution Algorithms

Point-Based Methods

Backing up one belief state is easy!

↵a,b

n

= ↵a

h

+ �
X

o2O
arg max

↵n+12�n+1

X

s2S
b(s)

X

s

02S
T (s, a, s0)O(a, s0, o)↵

n+1(s)

1. Take vectors at n+1;

2. Plug in b;

3. Get one optimal vector at n (at b).

Select belief points randomly
(or by exploration)

and find the vectors for each.

29

B

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

⍺1 ⍺2

V

0 1

1. Find a set of belief points

belief

30

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

⍺1 ⍺2

V

0 1 belief

2. From that set, pick a point randomly

b

30

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

⍺1 ⍺2

V

0 1 belief

3. Find the best vector for that point (for horizon n+1)

b

⍺1’

30

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

⍺1 ⍺2

V

0 1 belief

4. If that vector improves the value at a belief point, remove it.

b

⍺1’

30

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

⍺1 ⍺2

V

0 1 belief

5. Repeat until there are no more points left.

b

⍺1’

⍺2’

30

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

⍺1 ⍺2

V

0 1 belief

5. Repeat until there are no more points left.

b

⍺1’

⍺2’
⍺3’

30

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

V

0 1 belief

Approximate value function for horizon n+1:

b

⍺1’

⍺2’
⍺3’

30

POMDP Solution Algorithms

Point-Based Methods (PERSEUS)

V

0 1 belief

Remember that we only care about the maximum!

b

⍺1’

⍺2’
⍺3’

30

State “Factors”

Factored Models

Example:

In some cases, it is easier to define states, actions, and
observations as combinations (tuples) of variables.

S = {battery High, battery Low} x
{room 1, room 2, …., room N}

A =
{up, down, left, right} x

{move slow, normal speed, move fast}

a = hadir, aspeedi

= Adir ⇥Aspeed

= X1 ⇥ X2

s = hx1, x2i

31

Factored Models

Such models are said to be factored.

All factored models have an equivalent
“flat” representation.

But they can expose the structure of the
decision-making problem, making it

easier to solve.

32

Factored Models

Factored models can be represented as
Dynamic Bayesian Networks (DBNs)

at

ot ot+1

x2,t+1

x1,t+1x1,t

x2,t

Arrows represent
conditional dependence

Each variable at time t+1
has a Conditional

Probability Distribution
(CPD)

!
Can be a table (CPT) or a

decision diagram

33

