Sequential Decision Making for Cooperative Agents

Part |: An Introduction to Decision Theory

Stefan J. Witwicki Jodo V. Messias
~ Robotic Systems Laboratory (LSRO) Institute for Systems and Robotics (ISR)
Ecole Polytechnique Fédérale de Lausanne IST, Universidade de Lisboa
EASSS-2014

July 15, 2014

Motivation

Sequential Decision Making

Maintenance and Scheduling Queue Management

Autonomous Robots i -

Renewable Energy

Medical Decision Making

What do these domains have in common?

The outcome of each decision is uncertain

It is hard to manually prescribe decisions for every possible outcome

Decision Theory provides mathematical tools to model
and solve sequential decision-making problems
in the presence of uncertainty

Obtaining a decision- 0
- making “plan”

A Markov Decision Process:

State s

(Omni the)

Robot

1. The agent observes state s

A Markov Decision Process:

S

e

Action a

State s

(Omni the)

Robot

2. The agent selects action a

A Markov Decision Process:

Only depends on the last state and action!
(Markov Property) Stochastic

transition

o

S

e

Action a

State s’

(Omni the)

Robot

3. The state of the system
changes randomly to s’

A Markov Decision Process:

Reward r

Stochastic
transition

o

S

e

Action a

State s’

(Omni the)

Robot

4. A reward is assigned for the execution

of action ain state s
(not necessarily observed by the agent)

A Markov Decision Process:

Reward r’

Stochastic
transition

o

State s”’

(Omni the)

Robot

The process is repeated for a
certain number of steps

A Markov Decision Process:

Reward r’

Stochastic
transition

o

S
4
Action a’ State s
(Omni the)
Robot
Objective:

Find the actions that maximize a function
of the reward collected over all steps

Ingredients:
State space, S A set describing the possible
‘ states of the system
: A set describing the possible
Action space, A < actions of the agent
. : < A function describing the stochastic
Transition function, I’ behaviour of the system
T:SxAXS = |0,1] T(s,a,s") =Pr(s'|s,a)
Reward function, R A function describing the utility or cost
R:SxA—-R of each state and action

The tuple (S, A, T, R) is an MDP

An Example of a Real-World MDP

Autonomous Surveillance

Problem statement: a mobile robot should patrol its environment in search of
visitors, trespassers, and emergencies

Autonomous Surveillance

Real environment State space abstraction

Common Room

-3 South Hallway

=R .

-

. lofr
1 ;.g 3

Robotics Lab

Fr
3;“1

ot
M 2)

West Hallway

Elevator

Soccer Field

Autonomous Surveillance

State space =
{location X visited’}
X {'visitor?’}

X {‘trespassing?’}

X {‘emergency?’}

Action space =
{‘'Up’,’Down’,’ Left’,'Right’}

State space abstraction

Common Room

-3 South Hallway

West Hallway

Robotics Lab

P
31‘1: -
oy Elevator

Soccer Field

We are interested in determining a set of decision rules:

W:{50,51,...,5h_1}, O, : S — A

This is an h-horizon policy for the MDP agent

Remember: a policy is not simply a sequence of actions!

A common measure of performance is the
expected discounted rewarda:
(h—1)

E_ < Z’YnR(5m5n(3n)) ’

. =0 J

v € (0,1] IS a discount factor.

How do we find 7 that maximizes this quantity?

10

Two approaches: Planning and Learning

Planning
Looking at the future

Requires a model of
the system

11

Two approaches: Planning and Learning

@—> a1 H@—»
(: —> aga@—y T

(Reinforcement)
() (1) Learning

Looking at the past

Many trials are needed

Difficult for multi-agent
systems.

12

The expected discounted reward, a.k.a. the Value
h—1
Vi (s) = E, {Z V" R(s, 5n(sn))}
n=0

Can be calculated recursively as:

Vii(s) = R(5,0() +9 Y T(5,0n(s), 8V, (5")

- s’eS

Immediate Discount Future

Reward Reward

13

Value lteration

The best policy is the one that maximizes the expected value:

V*(s) = max< R(s,a) + 7 Z T(s,a,s’) ;H(s’)}

acA
\ s’'eS

0% (s) = arg max {R(s, a) + 7y Z T(s,a, 3’)V,,f+1(s’)}

cA
. s'eS

14

Value lteration

V*(s) = max< R(s,a) + 7 Z T(s,a,s’) gfﬂ(s’)}

ac A
\ s’'eS

Reward of -0.04 for each step

-0.04 | -0.04 | -0.04 1
Actions:

A

-0.04 -0.04 -1

\4

0.8 Prob. to move correctly; -0.04 | -0.04 | -0.04

0.2 Prob. to move In
right angles.

15

Value lteration

(

V* — R T .a, / * /
n (8)]gleajH (s,a) +7 Ze;s (s,a,8)V, 1(s)
\ S

s
Reward of -0.04 | V**(s) = —0.04 +
Pr(”move correctly”) x 1+ 07592 1
Actiorn Pr(”move incorrectly”) x — 0.04 —p
s ——
-0.08 -0.08 -1
> >

\4

0.8 Prob. to move correctly; -0.08 | -0.08 | -0.08

0.2 Prob. to move In
right angles.

15

Value lteration

f

V* — R T ’ / k /
n (8) E,neajl(9 (87 CL) -+ Y E/ES: (87 a, S) n—i—l(s)
\ S

Reward of -0.04 for each step

-0.12 | 0.546 | 0.827 1
Actions:

A

-0.12 0.454 | -1

\4

0.8 Prob. to move correctly; -0.12 | -0.12 | -0.12

0.2 Prob. to move In
right angles.

15

Value lteration

V*(s) = max< R(s,a) + 7 Z T(s,a,s’) Jﬂ(s’)}

acA
\ s’'eS

Reward of -0.04 for each step

0.372 | 0.731 | 0.888 1
Actions:

A

0.16 0567 | -1

\4

0.8 Prob. to move correctly; -0.16 | 0.299 | -0.16

0.2 Prob. to move In
right angles.

15

Value lteration

V*(s) = max< R(s,a) + 7 Z T(s,a,s’) gfﬂ(s’)}

acA
\ s’'eS

Reward of -0.04 for each step

0.812 | 0.868 | 0.918 1
Actions:

A

0.762 0.660 | -1

\4

0.8 Prob. to move correctly; 0.655 | 0.611 | 0.388

0.2 Prob. to move In
right angles.

15

Value lteration

f

V* — R T ’ / * /
n (8) E,neajl(9 (87 CL) -+ Y E/ES: (87 a, S) n—i—l(s)
\ S

Reward of -0.04 for each step

Actions:

A

v
0.8 Prob. to move correcitly;

0.2 Prob. to move In
right angles.

15

Policy lteration

Another option is to search directly in the space of policies:

1. Pick a policy, 7

2. Calculate the value
0 = R+ 700
‘<

3. It we can improve the value by changing the first action,
update 7 accordingly.

16

Policy lteration

Reward of -0.04 for each step

Actions: « T T 1

A

v
0.8 Prob. to move correcitly;

0.2 Prob. to move In
right angles.

Remember: a policy prescribes actions

for every state. -

Policy lteration

Vi (s) = R(s,0n(5)) +7 D T(s,6,(s),8")V, 1(s")

s’'eS
Reward of -0.04 for each step
| A+
Actions: -00 -266.5 -132.9
A
+— | _1
< > -266.5
v
0.8 Prob. to move correctly; * *

0.2 Prob. to move In
right angles.

17

Policy lteration

For each state, calculate:

n = : T
On(s) = argr;leajMR(s a) VSEE:S s,a, s YV 1 (s)}

Reward of -0.04 for each step

— | —> | 1

Actions: -266.5 -132.9

A

1]

v
0.8 Prob. to move correcitly;

-0 -0

0.2 Prob. to move In
right angles.

17

Policy lteration

Reward of -0.04 for each step

— | —> | —>| 1

Actions: 0.456 | 0.698 0.748
t —l
< > -0.867
v
0.8 Prob. to move correctly; *
-1.02 -1.05

0.2 Prob. to move In
right angles.

17

Policy lteration

On(s) = argmax < R(s,a) + v Z T(s,a,s)V 1(s")

A
1S \ s'eS
Reward of -0.04 for each step
— | — | — 1
Actions: 0.456 0.698 0.748
A
-1
b > -0.867
\/
0.8 Prob. to move correctly; * *
| -1.82 -1.02 -1.05
0.2 Prob. to move Iin

right angles. | |
..Will converge to the same optimal polic
| ge to th ptimal policy

1/

So far we have assumed that the state is known to the agent.

In many domains the state is not known with certainty,
but it can be estimated.

Stochastic
transition

s

O stochastic |q. .- .[-
observation

State s’

d

Partially Observable Markov Decision Process (POMDP)

18

Partial Observability can mean:
1. Incomplete or partial knowledge regarding the state (perceptual aliasing);
2. The observation of noisy, possibly misleading information.

The actions of a POMDP agent depend on a probability distribution
over the states of the system.

bn(x) — PI’(Sn — & ‘ b07 ag,00y.--,0n—-1,0n—-1, O’n,)

Also known as a belief state

19

Instead of knowing that we are in state s...

20

Pr=0.025

...There is a probability distribution over the state of the system.

This distribution depends on the agent’'s actions and observations.

21

A POMDP policy is a map from belief states to actions

observations

Belief
State b

Action a

actions

22

Belief states are updated after each action and observation:

the probability of the the probability of being in state s
observation o and jumping to s’

h /
O(a,s’,0) > b(s)T(s,a,s)

bCL,O(S/) _ N - s€ES /
> Of(a,u’,0) b(u)T (u,a,u)
u' €S ueS

l

Normalization (all possible ways of observing o
after any transition)

23

Belief states are updated after each action and observation:

Initial Belief A P(s)

()

24

Belief states are updated after each action and observation:

|. Select an Action

Moyve Forward

(@)

24

Belief states are updated after each action and observation:

|. Select an Action

N
.fl Resulting state follows

o T(s,a,s’)

24

Belief states are updated after each action and observation:

2. Receive an Observation

Door

N
~ Opbservation follows
€ O(a,s’,0)

24

Belief states are updated after each action and observation:

3. Update Belief A P(s)

24

Belief states are updated after each action and observation:

3. Update Belief

O(o,s,a) > b(s")T(s,s,a)

b/(S) _ s’eS
> O(o,s",a) > b(s")T(s,s,a)
s'"’eS s'eS

24

Value Functions can also be calculated recursively for POMDPs:

I;leaj{ {Z b(s (s,a) + 7y S: S: T(s,a,s)O(a,s’, O)V:+1(ba’o))> }

s€S s’e€S ocO

Instead of a table, this is now a continuous function over
the space of possible probability distributions

25

As it turns out, POMDP Value Functions have useful properties:

)
> b(s)a(s)
\s€S Inner product with a
set of vectors

(one for each <a,o> at step n)

V.*(b) = max 4

n acel’,

\V T N — 170)

Piecewise Linear and Convex (PWLC)

20

Solving a POMDP optimally is a difficult problem
(MDPs are P-complete, POMDPs are PSPACE-hard)

Solution by enumeration (Monahan, ‘82)

\

1. Compute all vectors; V,5(b) = max ¢ » b(s)a(s) ¢

n a€el’,

. SES J
2. Pick the best at b.

The number of vectors is really big!

A o=

27

Linear Support Methods

Calculate the regions for which
each vector is best
(Linear Programming)

28

Point-Based Methods

Backing up one belief state is easy!

3. 2. 1 .
a®’ = ol 4+~ Z arg max Z b(s) Z T(s,a,s)O(a,s’,o0)ani1(s)
sES

o el
oc® nl=t A s'eS

1. Take vectors at n+1;
Select belief points randomly

2. Plug in b; (or by exploration)

and find the vectors for each.
3. Get one optimal vector at n (at b).

29

Point-Based Methods (PERSEUS)

1. Find a set of belief points

v 1! |

0 1 pelief

30

Point-Based Methods (PERSEUS)

2. From that set, pick a point randomly

V A

0 b 1 pelief

30

Point-Based Methods (PERSEUS)

3. Find the best vector for that point (for horizon n+1)

1 pelief

30

Point-Based Methods (PERSEUS)

4. |t that vector improves the value at a belief point, remove it.

V1 ;

1 pelief

30

Point-Based Methods (PERSEUS)

5. Repeat until there are no more points left.

" belief

30

Point-Based Methods (PERSEUS)

5. Repeat until there are no more points left.

V1 ;

o[b 1 pelief

30

Point-Based Methods (PERSEUS)

Approximate value function for horizon n+1:

V1 ;

o[b 1 pelief

30

Point-Based Methods (PERSEUS)

Remember that we only care about the maximum!

V1 ;

ol b 1 pelief

30

In some cases, it is easier to define states, actions, and
observations as combinations (tuples) of variables.

Example: State “Factors”
S — {battery High, battery Low} x = X1 X Ao
{froom 1, room 2,, room N}

S = <$17£E2>

A — {up, down, left, right} x = A X Aspeed
{move slow, normal speed, move fast}

A = <adz’ra aspeed>

31

Such models are said to be factored.

All factored models have an equivalent
“flat” representation.

But they can expose the structure of the
decision-making problem, making it
easier to solve.

32

Factored models can be represented as
Dynamic Bayesian Networks (DBNs)

Arrows represent
conditional dependence

Each variable at time t+1
has a Conditional
Probability Distribution
(CPD)

Can be a table (CPT) or a
decision diagram

33

