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“We observe a fraction of the process, like hearing a single string in an orchestra of

supergiants. We know, but cannot grasp, that above and below, beyond the limits of

perception or imagination, thousands and millions of simultaneous transformations are at

work, interlinked like a musical score by mathematical counterpoint.”

- Stanislaw Lem, Solaris





Abstract

This thesis addresses the design of nonlinear navigation systems for autonomous vehicles,

following two main approaches: Kalman filter based estimators, and Lyapunov theory

based nonlinear observers.

The proposed Kalman filter architectures are designed for accurate position and at-

titude estimation using low-cost sensor suites. An extended Kalman filter is adopted

to merge a high accuracy inertial navigation system with advanced aiding information,

namely i) frequency contents of vector measurements, ii) vehicle model dynamics, and

iii) LASER range measurements. In alternative, simple yet effective multirate comple-

mentary Kalman filters are proposed, endowed with stability and performance properties.

The navigation systems are validated using realistic vehicle simulators, and experimental

data collected onboard the DELFIMx autonomous surface craft.

The second approach addresses the design of nonlinear observers in non-Euclidean

spaces. The observers are derived resorting to Lyapunov theory, bearing stability and ro-

bustness properties in the presence of inertial sensor non-idealities. The considered sensor

readings are provided by an inertial measurement unit and i) landmark measurements,

ii) vector observations, and iii) GPS receivers. The regions of attraction are explicitly

characterized, and an output feedback configuration is proposed, allowing for the practi-

cal implementation of the algorithms.

Keywords: Nonlinear observers, Lyapunov stability theory, Navigation systems, Kalman

filters, Complementary filters, Autonomous vehicles.
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Resumo

Esta tese aborda o projecto de sistemas de navegação não-lineares para véıculos autónomos,

com recurso a duas metodologias: estimadores baseados em filtros de Kalman, e obser-

vadores não-lineares baseados em teoria de Lyapunov.

As arquitecturas de filtragem de Kalman são desenhadas para estimação precisa de

posição e orientação, com recurso a sensores de baixo custo. As estimativas de um sistema

de navegação inercial de alta precisão são processadas por um filtro de Kalman estendido,

utilizando informação auxiliar como i) conteúdos na frequência de leituras vectoriais ii)

modelo dinâmico de véıculos, e iii) leituras de distância LASER. São também propostos

filtros complementares de Kalman, com estrutura simples, dotados de garantias de esta-

bilidade e de desempenho. Os sistemas de navegação são validados utilizando simuladores

realistas de véıculos e dados experimentais obtidos com o catamarã autónomo DELFIMx.

A segunda metodologia proposta assenta em observadores não-lineares formulados em

variedades. Recorrendo à teoria de Lyapunov, os observadores derivados são estáveis e

robustos a não-idealidades presentes na unidade de medida inercial. Os dispositivos sen-

soriais auxiliares considerados são i) leitura de marcas, ii) observações vectoriais, e iii)

receptores de GPS. A determinação de regiões de atracção expĺıcitas, e a possibilidade de

utilização directa do dados dos sensores auxiliares permitem a implementação prática dos

algoritmos.

Palavras-chave: Observadores não-lineares, Teoria de estabilidade de Lyapunov, Sis-

temas de navegação, Filtros de Kalman, Filtros complementares, Véıculos autónomos.

iii





Acknowledgments

First and foremost, I would like to express my gratitude to my thesis supervisor, Professor

Carlos Silvestre. Under his stimulating guidance, I was introduced to the exciting world of

scientific research, exposed to challenging problems, and taught valuable research methods.

I also owe much to his unusual ability of overcoming difficulties and boosting achievements.

The thesis supervision was strengthened by the enthusiastic support of my co-advisor,

Professor Paulo Oliveira, that provided timely comments, suggestions, and criticisms, and

was always open to passionate discussions and good laughs.

Among the decisive moments in the making of this thesis, I’m grateful to Professor João

Sentieiro for encouraging me to pursue a PhD, and for keeping in touch throughout these

years. Professor Michael Athans was a cornerstone in my personal development, whose

supportive and provocative discussions helped me grow more confident and broadened my

researcher skills. Besides his enlightening insights over many matters, Professor Athans

is a living encyclopedia of control theory and a wonderful storyteller, and I hope that

someday he will present the scientific community with his memoirs.

I would also like to acknowledge the follow-up thesis committee, Professor Maria Isabel
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ques, Mohammadreza Bayat, Nelson Martins, Pramod Maurya, Ricardo Ferreira, Vahid

Hassani, or Victor Silva were around.

Outside the academic domain, my friends Adélia, Filipe, João Neto, João Pequenão,
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Notation

The notation used in this work is fairly standard. A list of conventions, definitions,

symbols, and quantities frequently adopted is listed in the ensuing.

Notational Conventions

• Column vectors are denoted by lowercase boldface type, e.g. s.

• Matrices are denoted by uppercase boldface type, e.g. S.

• Matrix dimensionality subscripts are omitted whenever clear from the context.

Cartesian Coordinate Frames

{B} body frame.

{E} Earth frame.

{L} local frame.

Sets

B(n) n-dimensional ball, {x ∈ R
n : x′x ≤ 1}.

D(n) set of diagonal matrices, {S ∈ M(n) : S = diag(s), s ∈ R
n}.

D+(n) set of diagonal, positive definite matrices, {S ∈ D(n) : S > 0}.
K(n) set of skew-symmetric matrices, {K ∈ M(n) : K = −K′}.
L(n) set of symmetric matrices, {S ∈ L(n) : S = S′}.
M(n,m) set of n×m matrices with real entries.

M(n) set of n× n matrices with real entries, {M ∈ M(n, n)}.
O(n) set of orthogonal matrices, {U ∈ M(n) : U′U = In}.
S(n) n-dimensional sphere, {x ∈ R

n+1 : x′x = 1}.
SO(n) set of special orthogonal matrices, {R ∈ O(n) : det(R) = 1}.
SE(n) set of special Euclidean matrices, i.e. the product space of SO(n) with R

n.

R set of real numbers.

R
n set of n-dimensional column vectors with real entries.

xix



xx Notation

Z set of integers.

Symbols

a acceleration expressed in {E}.
aSF accelerometer measurement (specific force), expressed in {B}.
αi(S) ith largest eigenvalue of S having real eigenvalues.

bs bias of the sensor measuring s, expressed in {B}.
bρ pseudorange measurement bias.

ei unit norm vector with element ei = 1.

g Earth’s gravitic field expressed in {E}.
h height.

In n× n identity matrix.

λ vector of the Z-Y-X Euler angles, i.e. λ = [ψ θ φ].

m Earth’s magnetic field expressed in {E}.
ns measurement or process noise associated with s.

N (µ,Ξ) Gaussian distribution with mean µ and covariance Ξ.

N (S) null space of S.

ω angular velocity of {B} with respect to {E}, expressed in {B}.
1m×n m× n matrix with all entries equal to 1.

1m shorthand notation for 1m×1.

p position expressed in {E}.
φ roll angle.

φ unit vector of the Euler angle-axis attitude parameterization.

ϕ angle of the Euler angle-axis attitude parameterization.

ψ yaw angle.

q landmark coordinates expressed in {B}.
Q(λ) transformation from angular rate to Euler angle rate.
A2
A1

R rotation matrix from coordinate frame {A1} to coordinate frame {A2}.
ρij pseudorange measurement of receiver j with respect to satellite i.

R shorthand notation for E
BR.

σi(S) ith largest singular value of S.

t time.

θ pitch angle.

v velocity expressed in {E}.
0m×n m× n matrix with all entries equal to 0.

0m shorthand notation for 0m×1.

0M origin of manifold M .

zs Kalman filter measurement residual of s.

ŝ estimate of vector s.

δs perturbation of vector s, defined as δs = ŝ − s unless otherwise noted.



Notation xxi

s̃ estimation error of vector s.

Subscripts and Superscripts

f(x)|x0
function f(x) evaluated at point x0.

[sij ] matrix with element sij in row i and column j.

sij element in row i and column j of matrix S.

si ith element of vector s.

sk vector s at the discrete-time instant tk, k ∈ Z.

sr measurement of vector s.

sx, sy, sz x-, y- and z-axis components of the 3 × 1 vector s.
As vector represented in coordinate frame {A}.
B ṡ derivative of Bs, i.e. d Bs

dt .
B(ṡ) derivative of s expressed in {B}, i.e. B(d s

dt ).

ŝ−k predicted estimate of vector s.

ŝ+
k updated estimate of vector s.

Functions

S−1 inverse of S.

S′ transpose of S.

(s)× cross-product matrix of the 3 × 1 vector s, defined as







0 −sz sy

sz 0 −sx

−sy sx 0






.

E(·) expected value.

blkdiag(·) block diagonal concatenation of matrices.

diag(s) diagonal matrix with ith diagonal element given by si.

div(·) divergence operator [85, 121].

eigvec(·) set of eigenvectors.

‖·‖ Frobenius norm.

|·| absolute value.

rank(·) rank.

rot(ϕ,φ) rotation matrix parameterized by Euler angle-axis coordinates ϕ and φ.

sign(s) sign of s, i.e. s
|s| if s 6= 0, 0 if s = 0 .

span(·) span.

tr(·) trace.

(·)⊗ unskew operator such that
(

(s)×
)

⊗ = s, s ∈ R
3.

vec(·) vector obtained by stacking the columns of a matrix from left to right.



xxii Notation

Acronyms

a.a. almost all.

aGAS almost Globally Asymptotically Stable.

aISS almost Input-to-State Stable.

ASC Autonomous Surface Craft.

CKF Complementary Kalman Filter.

DCM Direction Cosine Matrix.

DSP Digital Signal Processing.

EKF Extended Kalman Filter.

ES Exponentially Stable.

GAS Globally Asymptotically Stable.

GES Globally Exponentially Stable.

GPS Global Positioning System.

IMU Inertial Measurement Unit.

INS Inertial Navigation System.

ISS Input-to-State Stable.

KF Kalman Filter.

LASER Light Amplification by Stimulated Emission of Radiation.

LTI Linear Time-Invariant.

LTV Linear Time-Varying.

MEKF Multiplicative Extended Kalman Filter.

MLE Maximum Likelihood Estimator.

PSD Power Spectral Density.

RMS Root Mean Square.

SVD Singular Value Decomposition.

UAV Uninhabited Air Vehicle.

UAS Uniformly Asymptotically Stable.

UES Uniformly Exponentially Stable.

VD Vehicle Dynamics.

VTOL Vertical Take-Off and Landing.



Chapter 1

Introduction

The latest technological developments bring about autonomous vehicles as versatile plat-

forms, capable of performing a wide and valuable range of operational tasks in challenging

scenarios. Autonomous surface crafts (ASCs) are increasingly being adopted for inspection

of coastal areas and the maintenance of large critical semi-submerged infrastructures, like

bridges and breakwaters. Likewise, unmanned air vehicles (UAVs) are being considered

for coastal surveillance, power line monitoring, traffic watch, to domestic security, and

search and rescue missions in extreme environments. Most of these operations are com-

plex and expensive, and great emphasis is being placed on the use of autonomous vehicles

as a cost-effective, high-quality solution.

These practical applications often demand for high performance, robust navigation

systems to provide high resolution position and attitude localization. To satisfy the accu-

racy requirements, most autonomous vehicles are usually equipped with ultra light weight,

low-cost, low-power strapdown systems, that integrate the information from the available

sensors. The low-cost sensors found in these systems are strongly affected by non-idealities,

such as bias and noise, that degrade the accuracy of the estimates in the short term. The

severe limitations to open-loop estimation motivate the autonomous vehicles community to

continuously develop new navigation algorithms, that take full advantage of the available

data, compensate for sensor non-idealities, and satisfy stability and performance criteria.

This thesis studies the design of nonlinear navigation systems, for position and at-

titude determination of autonomous vehicles, using inertial sensors and advanced aiding

information sources. The main contributions are:

• advanced aiding techniques for inertial navigation system/extended Kalman filtering

(INS/EKF) architectures, that exploit the available models of the robotic platform.

The characterization of the vehicle dynamics, provided by a state model or a fre-

quency domain description, are integrated in the navigation system to produce high

accuracy results. The integration techniques are computationally efficient and de-

signed for implementation on low-cost hardware.

• nonlinear complementary Kalman filters for attitude and position estimation, en-

1



2 Chapter 1. Introduction

dowed with stability and performance properties. The frequency domain approach

of complementary filters is combined with the stability and performance properties

of Kalman filters, to yield a nonlinear attitude and position filter for autonomous

surface crafts. A steady-state like architecture is formulated, bearing straightforward

gain design, and filter implementation.

• nonlinear observers for the problem of attitude and position determination, using

velocity and landmark readings. The rigorous formulation in non-Euclidean spaces

where attitude is represented, namely SO(3), allows for almost global stabilization

of the estimation errors, and for stability and convergence properties with non-ideal

velocity sensors. A technique for the derivation of the observers is proposed, based

on a synthesis Lyapunov function conveniently defined by the measurement error of

the aiding sensors.

• new stability results for nonlinear systems, based on the combination of density

and Lyapunov functions. The dual characterizations of the state space trajectories,

provided by Lyapunov and density functions, are combined to produce new analysis

tools for almost global stability, and input-to-state stability of nonlinear systems.

The proposed techniques are illustrated for nonlinear observers with disturbances in

the velocity sensors.

• a nonlinear navigation system using an inertial measurement unit (IMU) aided by

GPS receivers. The solution illustrates the results for nonlinear systems proposed

in the thesis, for a classical navigation problem that is commonly addressed using

Kalman filtering techniques.

As shown in the diagram of Fig. 1.1, the contributions of the thesis can be grouped in

two approaches: Kalman filter based estimators, and nonlinear observers designed using

Lyapunov methods. The following sections present a brief overview of these fields of

research, and relate the contributions of the thesis with the latest development in those

areas.

1.1 Kalman filtering based navigation systems

The first part of this work studies the design of high-performance, low-cost navigation

systems based on Kalman filtering techniques. Kalman filtering is a classical estimation

theory [4, 56, 69], widely adopted in attitude and position estimation [10, 22, 46, 62], and

still subject to new advances in the present [35, 37, 54, 71]. Recent navigation systems for

oceanic vehicles resorting to Kalman filtering are found in [2, 47, 48, 64, 86, 105, 132], and

further references can be found in the valuable survey on ocean vehicle navigation [79]. The

choice of Kalman filtering architectures ranges from classical methodologies, to recently

proposed approaches [37]. As depicted in Fig. 1.1(a), the Kalman filtering techniques
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Figure 1.1: Thesis outline, organized according to the proposed navigation systems. The chapters

numbers associated with each topic are identified in brackets.

considered in this thesis are the extended Kalman filter (EKF) and the complementary

Kalman filter (CKF).

The EKF is one of the most well known and widely adopted filtering algorithms [37],

based on the linearization of the system dynamics [56], and that keeps track of the global

quantities by processing incremental estimates. The EKF algorithms adopted in this thesis

merge aiding information with a low-cost inertial navigation system (INS), to produce

high accuracy estimation results. While global positioning system (GPS) measurements

are a common aiding source [22, 46, 62], this work studies the integration of diverse

and advanced aiding information in the EKF/INS architecture. Namely, the efficient

integration of vector observations, LASER measurements, vehicle dynamics model and

frequency domain information is studied, allowing for accuracy enhancements of classical

GPS aided EKF/INS architectures.

The proposed CKF architecture is focused on stability and performance, as well as

ease of implementation. Although the EKF is one of the most widely adopted filtering

algorithms, filter divergence due to the use of a linearized models can occur. The proposed

CKF solution is derived for position and attitude estimation, endowed with stability and

performance properties for operating conditions usually found in ASCs. Interestingly

enough, the CKF is also a motivational approach to the nonlinear observers presented in

the second part of the thesis.
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Figure 1.2: Feedback configuration of an EKF/INS architecture.

1.1.1 Advanced aiding techniques for EKF/INS architectures

The proposed EKF/INS system is based on the classical feedback configuration architec-

ture [22], depicted in Fig. 1.2. The INS is a dead-reckoning algorithm that computes

attitude, velocity and position by integrating rate gyro and accelerometer triads data

[17, 20, 67, 68, 119, 120, 126, 127], rigidly mounted on the vehicle structure (strapdown

configuration). For highly maneuverable vehicles, the INS numerical integration must

properly address the fast dynamics of inertial sensors output, to avoid estimation errors

buildup. High precision, multirate INS algorithms that accounts for high frequency atti-

tude, velocity and position motions (denoted as coning, sculling and scrolling respectively),

have been developed in [68, 126, 127], and a technique to convert the high accuracy atti-

tude algorithms into its velocity/position counterpart was later proposed in [120].

Since the INS is based on open-loop integration of the inertial sensors, the resulting

position and attitude estimates are corrupted by sensor bias and noise, among other error

sources. A unified error analysis for INS can be found in the literature [20, 119]. Filtering

techniques such as the EKF are adopted to dynamically compensate for non-ideal sensor

characteristics, that otherwise would yield unbounded INS errors. The EKF compares the

aiding sensor and vehicle model information with the INS output, under the form of a

measurement residual. The inertial unit errors are compensated using a direct feedback

configuration [22] illustrated in Fig. 1.2, where the error estimates are corrected internally

in the INS, as opposed to correcting only the INS output. This method prevents the

estimation error buildup, and hence preserves the validity of the linearized state model

used in the EKF.

Navigation strategies based on GPS and INS fusion are commonly integrated using

the EKF algorithm, see [10, 22, 46, 62, 119] and references therein. Classical GPS/INS

architectures comprising inertial sensor biases estimation are found to hold only partial

observability for a time-invariant configuration, as discussed in [59, 60]. The observability

of position, attitude, and sensor non-idealities can be enhanced by using advanced filter-

ing techniques to fully exploit aiding sensors, as well as information about the vehicle
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Figure 1.3: Classical architecture of an EKF/INS aided by vehicle dynamics.

dynamics.

Vehicle dynamics aiding is a software based solution that provides information about

the vehicle motion, and is combined with the inertial navigation estimates using filtering

techniques, allowing for the compensation of inertial estimation errors. This aiding tech-

nique can be adopted in nearly any application where the vehicle dynamics are known,

bearing performance improvements on state variables that are critical for precise maneu-

vering. It is of paramount importance in indoor applications, urban scenarios, or hostile

environments, where other aiding sensor can be inoperative or subject to jamming or

distortion.

Simple motion constraints have been successfully implemented in the past for land

vehicle applications, by introducing the concept of virtual observations, see [23, 42, 95].

Non-holonomic constraints of wheeled vehicles, namely the inability to takeoff or perform

lateral translation, are exploited in the navigation system by inputting zero valued virtual

measurements of the body frame y and z axes velocity. Full state, complex aircraft dy-

namics have been adopted to enhance the observability of the navigation system in recent

work presented in [23, 82], and experimental results for a model-aided inertial navigation

system for underwater vehicles can be found in [64].

The classical technique to integrate the vehicle in the EKF/INS architecture, described

in [23, 64, 82] and illustrated in Fig. 1.3, is composed by a vehicle dynamics (VD) block

that plays the role of an extra INS unit. In this configuration, the vehicle dynamics are

computed by a vehicle model simulator, and the output is compared with the INS state

estimates, producing a measurement residual that is processed by the EKF. The EKF

state model is augmented to dynamically estimate both the INS and the VD errors, and

error compensation routines are implemented in the VD and INS algorithms. The distinct

nature of the error sources and system dynamics allows the EKF to separate the INS errors

from the VD errors and to perform their mutual updating in the compensation routines.
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Figure 1.4: Navigation system using advanced vector observation integration.

Recalling the fundamentals of filtering and sensor fusion, the VD and INS ensemble is

expected to yield better performance than any of the systems independently [82].

A limitation in complex vehicle dynamics lies in the modeling errors, over-parameterization

of the model, and poor observability of the vehicle states, which degrades the filter per-

formance, and that must be accounted for as state model uncertainty and/or using weak

constraints. A discussion about the impact of process model complexity on the improve-

ment of the navigation system performance is presented in [70]. In this reference, vehicle

model aiding is shown to tackle state uncertainty, and it is evidenced that small improve-

ments in the VD model are more relevant to the performance enhancement than the choice

of aiding sensor suites.

The development of advanced aiding techniques for EKF/INS architectures is pre-

sented in Chapters 2 and 3. The aiding techniques studied in Chapter 2 exploit vector

observations and frequency domain characterization of the autonomous vehicle. As illus-

trated in Fig. 1.4, aiding magnetic and pendular observations are integrated in the EKF,

to compensate for inertial sensor non-idealities. Information about the vehicle is provided

to the EKF, by modeling the pendular reading as the result of a gravitic measurement,

and of disturbances due to the vehicle motion, that are characterized in the frequency

domain. The proposed aiding techniques enhance the observability of the system errors,

and hence allow the EKF to compensate the inertial sensor non-idealities, such as bias

and noise, improving the attitude and position estimates.

The aiding techniques presented in Chapter 2 resort to a simple vehicle characterization

in the frequency domain, that is straightforward to implement. In Chapter 3, a new

methodology is derived to exploit the explicit, nonlinear dynamic model of the vehicle.

Whereas the classical vehicle model integration method, illustrated in Fig. 1.3, considers a

full state VD simulator and requires the estimation and compensation of the vehicle model
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Figure 1.5: Proposed EKF/INS architecture aided by embedded vehicle dynamics.

errors, the new method integrates the VD directly in the EKF to estimate exclusively

the INS errors, as shown in Fig. 1.5. The proposed technique is based on using the

vehicle dynamics to propagate the INS state estimates, exploiting the redundancy of the

information provided by the VD and by the INS integration algorithm.

The proposed technique reduces the computational load associated with the classical

VD aiding, and introduces flexibility in the implementation of the vehicle model, while

preserving the accuracy enhancements. Vehicle model differential equations are decoupled

using the INS states in the VD computations, and it is possible to select only those dy-

namics that are more accurately modeled, or that yield relevant information. For example,

the classical VD aiding technique computes the attitude kinematics in the INS and in the

vehicle simulator [82], whereas the proposed VD aiding technique computes the attitude

kinematics only in the INS. Also, in the proposed aiding technique, some of the vehicle

differential equations are integrated numerically, while others are formulated directly as

a filter measurement, which reduces the number of computations associated with the ve-

hicle model aiding. The correction routines adopted in the classical vehicle model aiding,

illustrated in Fig. 1.3, are not necessary in the proposed technique due to the embedding

of the vehicle dynamics in the filter state model.

The integration of other aiding sources is also studied. A solution to integrate vector

observations directly in the EKF is discussed. Although a snapshot attitude reconstruc-

tion can be obtained from the vector measurements using numerically efficient algorithms

such as QUEST or TRIAD [8, 37, 129], the vector readings are fed directly to the Kalman

filter. The measurement residual is obtained by comparing the estimated and measured

vector observations, and it is modeled in the filter as a function of the attitude estimation

error. Consequently, the EKF acts as an attitude determination algorithm, by comput-

ing the perturbational attitude term based on vector observations. Vector measurement

characteristics, such as sensor noise covariance, are described directly in the filter state

model, providing physical interpretation to the filter design parameters that are used in

the computation of optimal gains. Also, a LASER range finder sensor implementation is
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detailed, to estimate the coordinates of a target, necessary in structure surveillance, or to

enhance the distance-to-ground estimation, critical for takeoff and landing maneuvers of

aerial vehicles.

Interestingly enough, the navigation system architecture adopted in Chapters 2 and 3

comprises state-of-the-art EKF and INS algorithms. The adopted INS solution is a

discrete-time, high accuracy integration algorithm, based on the work presented in [126,

127]. The inertial integration algorithm resorts to a multirate approach to properly ac-

count for high-order dynamic angular and acceleration effects, namely coning, sculling

and scrolling. The high-frequency dynamics are accounted for in a high-speed computa-

tion that performs simple incremental updates, while the moderate-speed computations

estimate the attitude and position using analytically exact formulations, that sum up the

contribution of the high-speed and moderate-speed integrations.

The EKF developed in this work is based on the Multiplicative EKF (MEKF) [22, 99].

One of the caveats in Kalman filtering for attitude estimation lies in the use global attitude

representations in the filter: linear Kalman filter operates in Euclidean spaces, and hence

the update step violates the constraints of global attitude representations, such as the

rotation matrix or the unit quaternion. Although projection methods can be used in the

update process to force the normalization of the attitude representation [32, 33], the opti-

mality of the measurement fusion process and the physical interpretation of the covariance

matrix become arguable [37]. The problem of attitude representation is dealt with in the

MEKF by adopting a perturbational representation of the attitude error, that is locally

linear and non-singular. The linear differential equations of the filter are derived using a

perturbational analysis of a rigid body kinematics, a detailed derivation of this classical

methodology can be found in [20]. Consequently, the local attitude parameterization can

be estimated by the Kalman filter, while a global attitude parameterization, such as the

rotation matrix, is stored in the INS. As shown in Fig. 1.2, the estimated attitude error

is transferred from the EKF to the INS to update the nonlinear global attitude estimate,

and reset in the filter. This incremental procedure can be regarded as a storage technique

that prevents the filter’s attitude error estimates to fall outside the linearization region.

As evidenced in [99], the uncertainty of the estimate, i.e. the estimation error covariance,

is unaffected by the reset step.

The proposed EKF/INS architectures are designed for application to autonomous aerial

and oceanic vehicles. The aiding techniques and the performance of the EKF/INS system

proposed in Chapter 2 are assessed using experimental data, obtained at sea trials with a

low-cost hardware architecture installed on-board the DELFIMx platform, an autonomous

surface craft developed at Instituto for Systems and Robotics/Instituto Superior Técnico

(ISR/IST) for automatic marine data acquisition. A description of the DELFIMx char-

acteristics and of the implemented hardware architecture is found in Appendix B. The

vehicle and LASER aiding techniques presented in Chapter 3 are motivated by consid-

ering a generic fully actuated rigid body, and extended to a model-scale Vario X-Treme

helicopter, to demonstrate the application of the navigation system to realistic robotic
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platforms. A summary of the Vario X-Treme helicopter model, derived from first princi-

ples in [39], is presented in Appendix C.

1.1.2 Nonlinear complementary Kalman filter

The complementary filtering theory is deeply rooted in the work of Wiener [142]: an

unknown signal can be estimated using corrupted measurements from one or more sensors,

whose information naturally stands in distinct and complementary frequency bands [10,

21, 22, 65]. The minimum mean-square estimation (MMSE criteria) problem was first

solved by Wiener [142], assuming that the unknown signal had noise-like characteristics,

which usually does not fit the signal description. Complementary filtering estimates a

generic signal by exploiting the sensor redundancy and rejecting measurement disturbances

in complementary frequency regions, without distorting the signal. The slight loss of

performance in complementary filters, due to disregarding noise stochastic description, is

beneficial in the presence of irregular measures that occur out of the expected variance,

as convincingly argued in [21].

Complementary filters have been widely used in the past in sensor fusion problems.

The frequency domain formulation, and the simple filter structure, allow for straightfor-

ward implementation without requiring high performance signal processing hardware, see

[76, 102] and references therein. These algorithms are highly appealing in face of expensive

computational resources, and are adopted in navigation systems for autonomous vehicles

such as oceanic crafts [113, 141, 143], model-scale helicopters [118], and autonomous air-

crafts [72, 112] due to the algorithm simplicity and reliability in practical implementations.

In Chapter 4, a navigation system based on complementary filtering, for position and

attitude estimation, is derived. The problem of accurate position and attitude estimation

is addressed by exploiting information over distinct but complementary frequency regions,

that is provided by the inertial and aiding sensors. Namely, inertial measurements from

accelerometers and rate gyros are merged with the linear position computed by a low-cost

GPS receiver, and with Earth’s magnetic field observations, respectively.
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The derivation of the proposed complementary filters is focused on i) stability and

performance of the algorithms, and ii) obtaining a simple navigation system architecture

that can be easily implemented on low-cost, low-power signal processing hardware. The

navigation system is formulated in discrete-time and, as shown in Fig. 1.6, comprises an

attitude filter and a position filter.

The attitude filter inputs are the rate gyro readings, corrupted by bias, and a snapshot

attitude reconstruction based on vector observations, such as Earth’s magnetic field and

pendular readings. The rigid body attitude is parameterized using Euler angles, that is a

simple representation and bears physical intuition about the attitude of the vehicle. The

position filter resorts to accelerometers readings and to GPS measurements, and estimates

velocity in body frame and position in Earth frame.

Stability and performance properties of the proposed attitude and position filters,

under operating conditions usually found in oceanic and terrestrial applications, are de-

rived. Moreover, steady state feedback gains are adopted, that can be tuned given either

the frequency domain or the stochastic characterization of the sensors, yielding filtering

algorithms that are easy to implement in practice.

The navigation system is also endowed with a multirate synthesis methodology, based

on optimality results for periodic systems [15], that can integrate aiding sensors sam-

pled at diverse rates. Experimental results are presented, obtained in tests at sea with

an implementation of the proposed navigation system, running on-board the DELFIMx

catamaran.

The attitude observations, used in the complementary attitude filter as shown in

Fig. 1.6, are obtained by deriving an attitude reconstruction algorithm, based on mag-

netic and pendular measurements. Denoted an the Magneto-Pendular Sensor (MPS), the

algorithm computes pitch and roll from the pendular measurements, and yaw using the

magnetic field observations.

The magnetometer readings adopted in the MPS are often distorted by the influence

of the vehicle structure, sensor bias and scaling. Consequently, the sensor non-idealities

and magnetic disturbances must be compensated prior to integrating the magnetometer

readings in the navigation system. Appendix K derives a magnetometer calibration al-

gorithm, that is formulated in the sensor frame and allows for online calibration of the

magnetometer without external references. Also, insight on the magnetometer errors and

on the corresponding mathematical model is obtained in the derivation of the algorithm.

1.2 Lyapunov based navigation system design

The second part of this work addresses the design of nonlinear navigation systems, formu-

lated rigorously in non-Euclidean spaces where attitude is represented, such as the groups

of rotation matrices SO(3) and unit quaternions S(3) [107]. Using global parameteriza-

tions of the rigid body orientation, exciting properties can be derived, such as almost

global stabilization of the estimation error [28, 97, 123], and explicit characterization of
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RI = I is lifted to the quaternions qI = [0′
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and −qI , and the controller/estimator is derived on

S(3) such that qI is aGAS and −qI is an unstable equilibrium point. The rotation matrix RA is

lifted to the quaternions qA and −qA and, conversely, qA and −qA project to RA. Consequently,

two distinct trajectories emanate from RA on SO(3): the trajectory with initial condition qA

(dark arrows), that converges monotonically to the origin on SO(3), and the trajectory with initial

condition −qA (gray arrows), that exhibits unwinding on SO(3).

the regions of attraction [96, 117, 124, 137].

This approach brings about insight on the topological issues for achieving global sta-

bilization on manifolds. Guidelines for observer design on manifolds such as SO(3) and

S(3) are presented in [13, 28, 49, 81, 97]. For example, [13] discusses the “unwinding”

phenomenon, verified in the stabilization of rotation motion on coverings of SO(3) such as

the quaternion group S(3). As demonstrated in [13], stabilization in the covering manifold,

combined with the one to many correspondence of coverings, may lead to an unwinding

phenomenon in the covered manifold. A representation of the unwinding phenomenon on

SO(3) is suggested in Fig. 1.7, where it is shown that an asymptotically stable trajectory

on S(3) projects to a trajectory on SO(3) that circulates away from, before converging to,

the origin.

Moreover, an important topological obstacle to continuous global stabilization arises

from the fact that, for any continuous state feedback law, the region of attraction of a

stable equilibrium point is homeomorphic to some Euclidean vector space [28, 81, 97].

Since SO(3) and SE(3) are not diffeomorphic to an Euclidean vector space, there is no

continuous state feedback law that yields global asymptotic stability of an equilibrium

point. An illustration of this limitation for S(1) is shown in Fig. 1.8. This result motivates

the relaxation from global to almost global stability [81], and from input-to-state to almost

input-to-state stability [5], providing a suitable framework for stabilization of rotational

motion, where stability of the equilibrium point is guaranteed for any initial condition

outside a set of zero measure.

The second part of the thesis proposes new nonlinear observers for attitude and posi-
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Figure 1.8: Illustration of topological limitation to global stabilization on manifolds, for the case

of a system θ̇ = f(θ) defined on S(1), where f(θ) is continuous on θ. The arrows depict the

“direction” and magnitude of f(θ), and show that if the origin is stable, there is another θ∗ such

that f(θ∗) = 0.

tion estimation of autonomous vehicles, using sensor suites adopted in classical navigation

systems. In general, the design of nonlinear observers is sensor-dependent, and incorpo-

rating new aiding sensors or accounting for other sensor non-idealities requires guessing

a new stabilizing feedback law. An observer design technique is proposed, which derives

the feedback law using a Lyapunov function defined by the observation error of the aiding

sensors.

As depicted in Fig. 1.1(b), the Lyapunov based design technique is adopted in the syn-

thesis of three nonlinear observers: an attitude and position observer based on landmark

and velocity measurements; an attitude observer based on vector measurements; and an

attitude and position observer using an IMU aided by GPS readings. The system are

formulated on SO(3) and SE(3) manifolds, and the derivation is focused on the stability of

the systems, using the sensor readings directly, and considering sensor non-idealities such

as bias and noise.

The stability of the observers is studied using advanced tools for nonlinear systems,

such as analysis techniques based on density functions [115], and recently derived results for

parameterized LTV systems [92]. Motivated by the presence of non-modeled disturbances

in the inertial measurements, new stability results for nonlinear systems are derived in this

work. These results yield new techniques for the study of input-state and almost global

stability of nonlinear systems.

1.2.1 Nonlinear observers for attitude and position estimation

Nonlinear attitude and position observers, with application to aerospace, terrestrial and

oceanic vehicles, have been proposed in recent literature. A seminal nonlinear attitude
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Figure 1.9: Adopted sensors and estimated quantities of the nonlinear observers based on landmark

measurements and vector observations.

observer is found in [123], which derives an eventually globally exponentially convergent

observer, expressed in the unit quaternion representation, and that resorts to attitude

and torque measurements. In many applications it is of interest to construct an attitude

observer based only on the rotation kinematics, that can be implemented on any robotic

platform, irrespective of its dynamics. Research work devoted to the development of

nonlinear observers based on the attitude and position kinematics, is found in [80, 96,

117, 135, 138].

Kinematic observers endowed with almost global stability can be found in [96, 135, 138],

and methodologies for the design of this class of observers have been put forth in recent

publications [16, 28, 83]. These recent advances motivate the growing interest in extending

the design of nonlinear observers, namely to exploit information sources adopted in clas-

sical navigation problems. Also, it is desirable to integrate the sensor readings directly in

the observer, without using intermediate state reconstruction algorithms. This approach

enables the analysis of how the observer estimates are influenced by the characteristics of

the sensor measurements.

Landmark based navigation is recognized as a promising strategy for providing aerial

vehicles with critical position and attitude information for operations in delimited scenar-

ios. Chapter 5 presents a nonlinear observer for position and attitude estimation on SE(3)

using landmark observations and velocity measurements, as shown in Fig. 1.9(a). A design

technique for nonlinear observers is proposed, based on a Lyapunov function conveniently

defined by the observation error of the landmarks. Almost global asymptotic stabiliza-

tion (aGAS) of the position and attitude errors is obtained, which is the most embracing

stability property that can be obtained for systems defined on manifolds. Moreover, the

region of attraction of the origin is characterized explicitly, and the trajectories are shown

to converge exponentially fast to the origin.

The observer structure exploits directly the sensor readings, without intermediate at-

titude/position reconstruction, which brings about the characterization of the observer

given the sensor properties. Namely, the proposed attitude feedback laws are explicit

functions of the landmark measurements and velocity readings, exploiting the sensor in-

formation directly in the observer. Also, it is shown that the landmark geometry defines

the directionality of the observer trajectories, as well as the shape and coordinates of

the anti-stable manifold. This characterization of the observer trajectories allows for the
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modeling of the convergence properties of the observer, using the available feedback design

parameters.

The problem of non-ideal velocity readings is also addressed, and the observer is aug-

mented to compensate for bias in the angular and linear velocity readings. In this case, the

stability analysis is more complex due to the stronger coupling of the attitude and position

observer, and to the non-autonomous formulation of the error dynamics. Recent results

for parameterized linear time-varying systems [93] are adopted in the stability analysis of

the system. The resulting position, attitude, and bias estimation errors are shown to con-

verge exponentially fast to the desired equilibrium points, for bounded initial estimation

errors.

The stability and convergence properties of the observer are verified in simulation, for

trajectories described by time-varying linear and angular velocities. Simulation results

illustrate the directionality and convergence properties of the observer given the land-

mark geometry. Also, the convergence rate and the transient response for distinct initial

conditions on SE(3) are analyzed.

An attitude observer using vector observations is proposed in Chapter 6. The sensors

adopted and the quantities estimated by the observer are presented in Fig. 1.9(b). The

derivation of the attitude observer evidences how the design technique of Chapter 5 can be

used to address the classical problem of attitude estimation using inertial measurements

and attitude aiding sensors, such as magnetometers, star trackers and pendulums [37].

Resorting to the proposed technique, the attitude feedback law is obtained constructively,

using a Lyapunov function conveniently defined by the measurement error of the vector

observations.

Consequently, the stability properties of the attitude observer are similar to those

of the landmark based observer. Namely, almost global asymptotic stabilization of the

attitude errors is obtained, with exponential convergence, for ideal angular velocity mea-

surements; the region of attraction is characterized explicitly; exponential stability of the

origin is obtained in the presence of biased velocity readings, given worst-case initial esti-

mation errors; and the proposed attitude feedback law is an explicit function of the vector

measurements and observer estimates. The properties of the observer are illustrated in

simulation for time-varying angular velocities, and diverse initial estimation errors.

In Chapter 7, the stability analysis of the nonlinear attitude observer is extended for the

case of velocity measurements corrupted by bounded disturbances. The properties of the

system are analyzed using new stability results, which are one of the main contributions of

this thesis. Input-to-state stability of the attitude estimation error, with known ultimate

bounds, is guaranteed for almost all disturbances. Also, new seminal results are presented

for the derivation of aGAS with biased angular velocity measurements. The novelty of the

results, and the concepts underlying their derivation are described later in this introductory

chapter.

The design of a nonlinear navigation system, comprising an IMU aided by GPS mea-

surements, is studied in Chapter 8. The derivation of a nonlinear navigation system for the
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GPS/IMU configuration demonstrates how the results for nonlinear observers, proposed

in the second part of the thesis, can be adopted for a classical estimation problem, that is

studied in the first part of the thesis using the Kalman filtering approach.

The GPS/IMU based nonlinear navigation system is formulated on SE(3) and, as

illustrated in Fig. 1.10, is characterized by a cascade composition of attitude and position

observers. The GPS receiver, installed onboard the vehicle, provides the position observer

with pseudorange measurements with respect to satellites in view. The GPS pseudorange

measurements are used directly in the position observer, without resorting to the position

computation from the GPS units. The observations of the attitude observer are also

obtained directly from GPS pseudorange measurements from multiple GPS units, without

using an intermediate attitude reconstruction. The integration of vector observations in

the attitude observer is also discussed.

The stability results are obtained for non-ideal sensor measurements. The navigation

system compensates dynamically for the bias in the angular velocity sensor and the clock

offset in GPS pseudorange measurements. The resulting navigation solution yields expo-

nential convergence of the position and attitude estimation errors, for worst-case initial

estimation errors. It is also shown that the origin is stable in the presence of bounded

measurement disturbances in the accelerometer and in the rate gyro. The properties of

the GPS/IMU based observer are illustrated in simulation, for sensor disturbances found

in very low quality IMUs and for a rigid body describing a challenging trajectory.

1.2.2 New results for stability analysis of nonlinear systems

Global stability is usually a highly desirable property in control and estimation algorithms.

However, topological obstacles to continuous global stabilization arise in many dynamic

systems, due to the fact that no smooth vector field can have a global attractor, unless

the state space on which it is defined is homeomorphic to R
n [81]. As a consequence,

controllers and observers designed using continuous state feedback on smooth manifolds,

will always produce some trajectories that do not converge to the origin [13, 97]. Due to
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the presence of unstable manifolds, stability analysis using Lyapunov’s second theorem is

more complex.

New analysis tools have been introduced recently for the study of the milder notion

of almost global stability [5, 115]. In this framework, an equilibrium is ”almost globally

stable” in the sense that for all initial states outside of a set of zero measure, the dynamics

converge to the equilibrium. A dual to the Lyapunov second method for analysis of almost

global stability is developed in [115, 116], based on density functions, that represent the

stationary density of a substance that flows along the system trajectories [101, 103, 115].

Almost global stability is obtained by verifying that, for a time-invariant density function,

particles are generated almost everywhere and hence must flow to a sink, located at the

origin.

A similar approach has been adopted for the analysis of input-to-state stability (ISS).

The ISS paradigm has been extensively developed in recent years, as presented in the

comprehensive survey of ISS notions and results found in [131], and in the list of references

contained therein. The limitations to global stability on non-Euclidean spaces, and the fact

that global stability is a necessary condition for ISS, motivate the relaxation to almost

ISS, proposed in [5]. The notions of robust and weakly almost ISS are proposed, and

results for these properties using density functions are investigated. More important, it is

suggested that a combination of Lyapunov methods with density function results may be

the right technique for proving almost ISS in general. Surprisingly enough, this enriching

insight seems to have gone unnoticed in the subsequent literature.

The work presented in Chapter 7 develops the idea of combining Lyapunov and density

functions, for the stability analysis of nonlinear systems. Results are formulated for the

analysis of almost global asymptotic stability, and of almost input-to-state stability of

the origin. In the proposed analysis techniques, the Lyapunov function is adopted to

characterize the system trajectories, however the Lyapunov stability analysis is limited

by the existence of unstable manifolds. On the regions where the Lyapunov method is

inconclusive, the convergence is studied using density functions. Using a suitable density

function, sufficient conditions for instability of undesirable equilibrium points are derived,

yielding convergence of almost all solutions to the region where stability is guaranteed by

the Lyapunov function. Consequently, the proposed combination of Lyapunov and density

functions bears stabilization of almost all trajectories.

As depicted in Fig. 1.1(b), the proposed techniques are adopted for the stability analy-

sis of the nonlinear observers proposed in Chapters 6 and 8. Using the derived techniques,

the stability of the attitude observer in the presence of bounded angular velocity distur-

bances is demonstrated, and seminal results for aGAS of the origin with biased velocity

readings are presented. The stability of the GPS/IMU observer in the presence of distur-

bances in the inertial sensors is also obtained.
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1.3 Thesis outline

As shown in Fig. 1.1, the contents of this thesis are organized according to navigation

solutions, in chapters that are mostly self-contained, while minimizing repetition. In

general, the concepts and formulations that are common to more than one chapter will be

detailed in the first occurrence, or presented in appendix, and briefly reviewed or referenced

to in subsequent chapters.

In the first part, the design of high-performance, low-cost navigation systems based

on Kalman filtering techniques is studied. In Chapters 2 and 3, the adopted architecture

is based on a high accuracy, multirate INS, combined with an EKF and a GPS unit, for

precise inertial estimation error compensation. The key problem of integrating diverse

aiding sources with the low cost INS is studied.

Advanced aiding techniques are presented in Chapter 2, for precise position and at-

titude estimation of autonomous vehicles. Aiding magnetic and gravitic observations are

integrated using the EKF, enabling the compensation of inertial sensor non-idealities such

as bias and noise. The magnetometer measurements and the information embodied in

pendular measurements, modeled using a characterization of the vehicle dynamics in the

frequency domain, are exploited to properly trace attitude errors and reject measurement

disturbances. The techniques are demonstrated in experimental tests, performed by the

DELFIMx autonomous surface craft described in Appendix B.

Chapter 3 proposes a methodology to embed dynamic models of autonomous vehicles

in the EKF/INS architecture. The proposed methodology integrates the vehicle model

information directly in the EKF state model, bearing a computationally efficient vehicle

model aiding. A LASER range finder sensor is also integrated in the navigation system, to

provide high precision distance-to-ground readings for critical takeoff and landing maneu-

vers. The aiding techniques are implemented and simulated for the nonlinear dynamics of

a Vario X-Treme model-scale helicopter, detailed in Appendix C.

Chapter 4 derives a navigation system architecture based on the theory of comple-

mentary filtering. The proposed complementary filters provide attitude estimates in Euler

angles representation and position estimates in inertial frame coordinates, using strapdown

inertial measurements, vector observations, and GPS aiding. Filter stability and perfor-

mance properties are presented, under operating conditions usually found in oceanic and

terrestrial applications. The filter is designed for simplicity and to be easily implemented

on low-cost, low-power signal processing hardware, and experimental results with an im-

plementation of the proposed algorithm running on-board the DELFIMx catamaran are

presented.

Interestingly enough, the practical implementation of the algorithms in the DELFIMx

catamaran motivated the derivation of a calibration algorithm for magnetometers, pre-

sented in Appendix K. The proposed calibration method is independent of external atti-

tude aiding, and compensates for non-idealities such as soft iron, hard iron, sensor non-

orthogonality and bias. Experimental results with low-cost magnetometers are presented
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and discussed.

The second part of the thesis addresses the design of nonlinear observers, formulated

rigorously in non-Euclidean spaces where attitude is represented. Design and analysis

techniques based on Lyapunov and density functions are derived, and illustrated in the

synthesis of nonlinear observers that resort to diverse aiding sensors.

Chapter 5 presents a nonlinear observer for position and attitude estimation on SE(3),

using velocity measurements and landmark observations. An observer synthesis tech-

nique is proposed, that resorts to a Lyapunov function based on the observation error of

the aiding sensors. Exponential stabilization of the estimation error is derived, and the

directionality of the observer is discussed. The topological obstacles to stabilization in

manifolds are also illustrated using the proposed observer. The derived synthesis tech-

nique and the stability analysis results will be central to the development of the nonlinear

observers presented in the following chapters.

Chapter 6 derives an attitude observer based on angular velocity and vector measure-

ments. The observer is obtained using the synthesis techniques proposed in Chapter 5. By

appealing to the stability results found therein, it is shown that the attitude and angular

velocity bias estimation errors converge exponentially fast to the origin. The attitude

observer is obtained under a uniform design transformation for the sake of presentation,

and a similar attitude observer endowed with directionality is presented in Appendix G.

Chapter 7 proposes new stability results, based on the combination of Lyapunov and

density functions. Stability tools are discussed for almost global stability and input-to-

state stability of nonlinear systems. The results are motivated by, and applied to the

nonlinear attitude observer presented in Chapter 6.

Chapter 8 describes a nonlinear observer for attitude and position estimation, using

the GPS and inertial sensor ensemble studied in the first part of the thesis. The design of

the nonlinear GPS/IMU observer illustrates the proposed observer derivation techniques,

and the new stability analysis results for nonlinear systems, applied to a classical sensor

configuration. Exponential convergence of the attitude and position estimates is obtained,

with stability in the presence of bounded noise in the inertial sensors.

A review of the main results of this work, and a discussion of directions for future work

are presented at the end of the thesis.



Chapter 2

INS/GPS aided by frequency

contents of vector observations

This chapter presents a high accuracy, multirate Inertial Navigation System (INS) integrat-

ing Global Position System (GPS) measurements and advanced vector aiding techniques

for precise position and attitude estimation of Autonomous Surface Crafts (ASCs). A

multirate, high accuracy INS is proposed to compute attitude, velocity and position, and

is combined with an Extended Kalman Filter (EKF) to integrate GPS position measure-

ments, vector observations and frequency domain characterization of the vehicle. Mag-

netic and gravitic observations are integrated optimally in the EKF, by modeling the

sensor readings directly in the filter and by taking into account the vehicle’s dynamics

bandwidth information.

The direct-feedback configuration of the proposed architecture is illustrated in Fig. 2.1.

The INS computations adopted in this work account for high frequency attitude, veloc-

ity and position motions (denoted as coning, sculling and scrolling respectively), and are

based on the algorithm developed in [126, 127]. The magnetometer and pendular readings

are fed directly to the system, and the measurement residual is obtained by comparing

the estimated and measured vector observations. The proposed vector aiding technique

decomposes and optimally integrates gravitic observations in the EKF, however gravity

readings are distorted in the presence of linear and angular accelerations. In this work,

angular acceleration is compensated using the INS information, while linear acceleration of

the vehicle is compensated by characterizing the dynamics of the vehicle in the frequency

domain. The resulting measurement model allows the EKF to exploit the frequency con-

tents of the gravity readings, compensating for inertial sensor errors and enhancing the

attitude estimates.

The proposed aiding techniques and the performance of the navigation system are as-

sessed using experimental data obtained at sea trials with a low-cost hardware architecture

installed on-board the DELFIMx platform. It is shown that inertial sensor non-idealities

such as bias and noise are effectively compensated for, using the magnetometer measure-

ments and the low frequency information embodied in pendular measurements. Also, the

19
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Figure 2.1: Navigation system block diagram.

problem of poor GPS signal detection when the vehicle operates in the vicinity of struc-

tures, such as bridges and breakwaters, demands for a navigation system able to operate

under medium term position aiding shortage. The overall improvements obtained with the

vector aiding observations are illustrated for the case of GPS signal outage, emphasizing

the extended autonomy of the navigation system with respect to position aiding.

The chapter is organized as follows. Section 2.1 briefly discusses the INS algorithm

adopted in this work. In Section 2.2, the linear differential equations describing the inertial

sensor errors are derived and introduced in the EKF state space model. In Section 2.3, the

integration of vector measurements directly in the EKF is derived using perturbational

techniques and illustrated for magnetometer measurements. The method is extended for

gravity measurements obtained from the accelerometer triad, which require modeling vehi-

cle dynamics bandwidth information in the EKF, compensating in the frequency domain

for accelerated motion. The EKF state space model is summarized in Section 2.4, the

discrete-time equivalent filter is obtained, and the correction and reset procedures to up-

date the INS states using the EKF estimates are detailed. Simulation results to validate

the proposed navigation system prior to experimental testing are shown in Section 2.5.

The contribution of vector measurements and gravity selective frequency contents to the

accuracy of the estimation results is analyzed. Experimental results obtained during the

DELFIMx sea trials are presented in Section 2.6, to assess the navigation system perfor-

mance in practice. Concluding remarks are found in Section 2.7.
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2.1 Inertial navigation system algorithm

In this section, an INS algorithm is briefly introduced, based upon the tutorial work

presented in [126, 127] for attitude, velocity, and position computation, where complex

angular, velocity and position high-frequency motions, referred to as coning, sculling, and

scrolling respectively, are properly accounted for using a multirate integration approach.

In this framework, a high-speed, low order algorithm computes dynamic angular

rate/acceleration effects at a small sampling interval, and its output is periodically fed

to a moderate-speed algorithm that computes attitude/velocity resorting to exact, closed-

form equations. Given the limited operational time and confined mission scenarios for the

application at hand, an invariant gravity model is adopted without loss of precision, while

equations were derived to the highest accuracy. Also, the intermediate coordinate frames,

such as local and navigation frames, are identified with Earth frame, denoted as {E}.
As depicted in Fig. 2.2, the inputs provided to the inertial algorithms are the integrated

inertial sensor output increments

υ(τ) =

∫ τ

tk−1

ardt, α(τ) =

∫ τ

tk−1

ωrdt,

which correspond to the integral of the inertial sensor readings, obtained using strapdown

accelerometer and rate gyro triads, corrupted by white noise and bias errors and modeled

as follows

ar = Ba − Bg + ba + na − b̂a, (2.1a)

ωr = ω + bω + nω − b̂ω, (2.1b)

where g represents Earth’s gravitic field, the sensor biases are denoted by ba and bω, and

na ∼ N (0,Ξa), nω ∼ N (0,Ξω) are Gaussian white noises.

The attitude moderate-speed integration algorithm detailed in [126] computes body

attitude in DCM form

Bk−1

Bk
R(φk) = I3 +

sin(‖φk‖)
‖φk‖

(φk)× +
1 − cos(‖φk‖)

‖φk‖2
(φk)

2
× , (2.2)

where {B} denotes the body frame, {Bk} is the body frame at time k, and (s)× represents

the skew symmetric matrix defined by the vector s ∈ R
3 such that (s)× r = s× r, r ∈ R

3.

Rotation vector dynamics, based on Bortz equation [17], are formulated in order to denote

angular integration and coning attitude terms αk and βk, respectively

φk = αk + βk, (2.3)

where αk = α(t)|t=tk
and the coning attitude term measures the attitude changes due to

the effects of angular rate vector rotation. A high-speed attitude algorithm is required to

compute βk as a summation of the high-frequency angular rate vector changes using sim-

ple, recursive computations [126]. Equations (2.2) and (2.3) summarize both the moderate
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Figure 2.2: Inertial navigation system with estimation error compensation.

and high-speed attitude dynamics in the DCM format using exact, error-free equations,

enabling high accuracy results.

Exact linear velocity updates can be computed at moderate-speed rate using the equiv-

alence between strapdown attitude and velocity/position algorithms [120], that yields

vk = vk−1 + E
Bk−1

R ∆Bk−1vSF k + ∆vG/Cor k,

where ∆Bk−1vSF k is the velocity increment related to the specific force, and ∆vG/Cor k

represents the velocity increment due to gravity and Coriolis effects, see [127] for further

details. High-speed velocity rotation and high-frequency dynamic variations due to angu-

lar rate vector rotation, are likewise accounted for in the high-frequency algorithm and

included in the moderate-speed calculations as

∆Bk−1vSF k = υk + ∆vrot k + ∆vscul k,

where υk = υ(t)|t=tk
and ∆vrot k and ∆vscul k represent velocity increments due to rotation

and sculling, respectively.

The INS algorithm execution rates are set as a trade-off between the available hardware

and the performance requirements [68, 126, 127]. Simulation environments and trajectory

profiles to tune the algorithm’s repetition rate according to the accuracy requirements are

thoroughly described in [128] and algorithm evaluation procedures are presented in [126,

127]. Interestingly enough, high repetition rates can be implemented in a standard low-

power consumption Digital Signal Processing (DSP) based hardware architecture. This

allows for accurate integration results, that are only diminished by inertial sensor non-

idealities such as noise and bias.
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2.2 Inertial error dynamics

In a stand-alone INS, bias and inertial sensor errors compensation is usually performed

offline. The usage of filtering techniques in navigation systems, such as the EKF, allows for

the dynamic estimation of inertial sensor non-idealities, bounding the INS errors. The EKF

error equations adopted in this work are based on perturbational rigid body kinematics,

and were brought to full detail in [20]. The nominal rigid body kinematics are given by

ṗ = v, v̇ = RBa, Ṙ = R (ω)× , ḃa = nba
, ḃω = nbω

, (2.4)

where R is the shorthand notation for E
BR, the inertial sensor biases are modeled as random

walk processes, and nba
∼ N (0,Ξba

), nbω
∼ N (0,Ξbω

) are Gaussian white noises. The

position, velocity and bias estimation errors are defined by the difference of the estimated

and nominal quantities,

δp := p̂ − p, δv := v̂ − v, δba := b̂a − ba, δbω := b̂ω − bω,

and the attitude error, denoted as δφ, is parameterized by an unconstrained rotation

vector representation in Earth coordinates, which can be assumed locally linear and non-

singular, for details and equivalent attitude parameterizations, see [99, 114]. Define the

rotation error matrix as R(δφ) := R̂R′, the attitude error rotation vector δφ is described

by the first order approximation

R(δφ) ≃ I3 + (δφ)× ⇒ (δφ)× ≃ R̂R′ − I3, (2.5)

that is valid for “small-angle” attitude errors [20]. The rigid body coordinates are esti-

mated using the available inertial sensor information

˙̂p = v̂, ˙̂v = R̂ar + Eg,
˙̂R = R̂ (ωr)× ,

˙̂
ba = 0,

˙̂
bω = 0, (2.6)

Combining (2.4-2.6), the attitude, velocity, and position error kinematics are obtained

by retaining the first-order terms of Taylor’s series expansions or by using perturbation

algebraic techniques [20], producing

δṗ = δv, δv̇ = R̂(ar − aSF) −
(

R̂ar

)

×
δφ, δφ̇ = R(ωr − ω), (2.7a)

˙δba = −nba
, ˙δbω = −nbω

, (2.7b)

where aSF =B a−B g is the specific force, defined as the nominal reading of an accelerom-

eter. The terms (ar − aSF) and (ωr −ω) represent the non-idealities of the accelerometer

and rate gyro readings, (2.1a) and (2.1b) respectively, and are described by

(ar − aSF) = −δba + na, (ωr − ω) = −δbω + nω. (2.8)

Combining (2.7) and (2.8), the error state space model is

δṗ = δv, δv̇ = −R̂δba −
(

R̂ar

)

×
δφ + R̂na, δφ̇ = −R̂δbω + R̂nω, (2.9a)

˙δba = −nba
, ˙δbω = −nbω

(2.9b)
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The continuous-time error state space model δẋ = F(x̂,u)δx + G(x̂)nx is described

by

δx =
[

δp′ δv′ δφ′ δb′
a δb′

ω

]′
, nx =

[

n′
p n′

v n′
ω n′

ba
n′

bω

]′
, (2.10a)

F(x̂,u) =



















0 I 0 0 0

0 0 −
(

R̂ar

)

×
−R̂ 0

0 0 0 0 −R̂
0 0 0 0 0

0 0 0 0 0



















, G(x̂) = blkdiag(I3, R̂, R̂,−I3,−I3), (2.10b)

where x = (p, v, R) are the quantities computed by the INS algorithm, u = (ar, ωr)

are the inertial measurements, blkdiag(·) denotes a block diagonal matrix obtained by

the concatenation of its matrix arguments, nv = na, and np ∼ N (0,Ξp) is a Gaussian

white noise that accounts for linearization and modeling errors and is used in the practical

tuning of the filter.

In the adopted architecture, the INS calculates the body attitude using the high-

precision algorithms described in Section 2.1, and the EKF estimates the attitude, velocity,

position errors using the aiding sensor measurements. After each filter update step, the

EKF estimated inertial errors are transferred to the INS, as illustrated in Figs. 2.1 and 2.2,

and reset in the filter. As evidenced in [99], this procedure preserves the small error as-

sumption underlying the linearized model (2.10) used in the EKF. Note that normalization

procedures usually found in linear attitude filtering are avoided in this architecture, that

resorts to a locally linear parameterization for attitude estimation in the EKF, while a

global attitude representation is propagated and stored in the INS [99].

2.3 Vector aiding techniques

The EKF relies on aiding sensor readings to successfully estimate the INS errors. The

physical coupling between attitude and velocity errors (2.7) enables the use of GPS po-

sition readings to partially estimate attitude errors. As convincingly argued in [60], for

observability analysis purposes a GPS based navigation system with bias estimation can

be approximated by a concatenation of piece-wise time-invariant systems and, under that

assumption, full observability is met by performing specific maneuvers along the desired

trajectory. Recent work has been directed towards replacing the necessity for alignment

maneuvers by equipping the filter with additional information sources, namely aiding sen-

sors or vehicle dynamic model information, see [64, 82, 95, 136].

The vector observation technique enhances the system accuracy by providing attitude

observations and vehicle dynamics bandwidth information to the EKF. For example, batch

attitude determination algorithms can be used to compute an attitude matrix observation

RVO, using the measurements of the Earth’s magnetic and gravitic field in {B}, provided

by the magnetometer and the accelerometer triads. Several batch attitude determination
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algorithms can be found in the literature [8, 37, 61, 129] and an intuitive, easy to imple-

ment, TRIAD-like algorithm is also proposed in Section 4.2.1. A straightforward but naive

method to introduce the attitude measurement RVO in the filter is obtained by defining

the attitude measurement residual zVO after the attitude error (2.5), yielding

(zVO)× = R̂R′
VO − I3,

and modeling it in the filter as

zVO = δφ + nVO,

using a noise term nVO to compensate for the effect of magnetometer, accelerometer, rate

gyro and INS disturbances on the attitude computation RVO. Nonetheless, characterizing

nVO as white noise can degrade the filter performance because it does not properly model

the non-linear influence of pendular/magnetic sensors errors in RVO computations. Also,

the aiding attitude matrix RVO is computed using the vector measurements available at

each time instant (snapshot algorithm), and hence dynamic disturbances in the vector

observation readings are not accounted for.

In this work, vector observations are embedded in the EKF, as depicted in Fig. 2.1.

The magnetometer reading and gravity selective frequency contents provided by the ac-

celerometer triad are modeled directly in the filter, bearing a more clear and accurate

stochastic description of the measurement errors and disturbances.

The EKF computes the attitude based on the vector observations, without external

attitude determination algorithms and using optimality criteria, yielding an alternate so-

lution to Wahba’s problem [37, 139]. Sensor error characteristics other than just white

noise are properly modeled in the filter, using the EKF covariance matrices and the struc-

ture of the error state space model. The algorithm presented herein can be generalized

to any number of vector observations, devising a straightforward procedure to enhance

the accuracy of the navigation system results, which also reinforces the EKF linearization

assumption.

2.3.1 Vector measurement residual model

The attitude measurement residual is obtained by comparing the estimated and the mea-

sured vectors. The considered vector measurement model is

sr = R′Es + ns, (2.11)

where ns ∼ N (0,Ξs) is a Gaussian white noise. The attitude measurement residual in

Earth frame coordinates is described by

Ezs = Es − R̂sr.

Using the sensor model (2.11) and replacing the INS attitude estimate R̂ by the attitude

error approximation (2.5) yields

Ezs = Es − R̂R′Es − R̂ns ≈ Es − (I + (δφ)×)Es − R̂ns = − (δφ)×
Es − R̂ns,
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which relates the EKF measurement residual Ezs with the attitude error δφ, producing

the linearized model

Ezs ≈
(

Es
)

× δφ − R̂ns. (2.12)

The measurement residual can be represented in Earth or in body frame coordinates,

which are related by a rotation transformation and hence contains the same information.

Repeating the same algebraic manipulations, the linearized model of the measurement

residual in body coordinates is given by

Bzs := R̂′Es − sr ≈ R̂′ (Es
)

× δφ − ns. (2.13)

Although the measurement residuals (2.12) and (2.13) describe the same attitude infor-

mation, the linearized measurement matrix for (2.12) is constant and the components of

δφ can be related directly with those of Ezs. For example, the measurement model (2.12)

for the vector Es =
[

0 0 1
]′

is given by Ezs =
[

−δφy δφx 0
]′
− R̂ns, that contains

information solely about the rotation error along the x-axis and y-axis, and illustrates the

fact that the yaw angle error, i.e. δφz, cannot be determined by gravity readings.

In general, the vector reading sr can be corrupted by other additive sensor disturbances,

namely biases bs, and dynamic disturbances ds, as follows

sr = R′Es + ns − δbs + ds, (2.14)

where δbs is the bias compensation error term, and ds is the output of a process modeled

in the state space form. The linearized measurement residual representations for the sensor

reading (2.14), in Earth and in body coordinates, are respectively described by

Ezs =
(

Es
)

× δφ + R̂δbs − R̂ds − R̂ns,
Bzs = R̂′ (Es

)

× δφ + δbs − ds − ns. (2.15)

Using the measurement model (2.15), vector observations obtained by sensors such

as pendulums and magnetometers can be introduced directly in the EKF. The sensor

non-idealities are modeled in the filter, as opposed to using intermediate attitude recon-

struction, which allows for the integration of any number of vector measurements, at

different sampling rates, and compensating for dynamic disturbances. The observation

noise covariance matrix, used in the computation of the optimal feedback gains, is directly

given by the sensor noise variance Ξs.

2.3.2 Magnetic and pendular measurements integration

The magnetometer model considered in this work is given by

mr = R′Em + nm, (2.16)

where m denotes Earth’s magnetic field, nm ∼ N (0,Ξm) is a Gaussian white noise, and

magnetic distortions such as soft iron and hard iron are compensated offline using the
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Figure 2.3: Vector measurement residual computation (magnetometer and pendular readings).

calibration algorithm proposed in Appendix K. The sensor description (2.16) is identical

to the vector reading model (2.11). As illustrated in Fig. 2.3, the measurement residual

(2.12) is adopted to integrate the magnetometer information in the EKF, yielding

zm := Em − R̂mr =
(

Em
)

× δφ − R̂nm.

A gravity vector measurement is obtained from the accelerometer reading (2.1a), which

can be decomposed in Coriolis and linear acceleration components

ar =
d Bv

dt
+ ω × Bv − Bg − δba + na. (2.17)

To obtain a gravity measurement reading gr, adequate modeling is adopted to remove the

acceleration terms in (2.17). Typical maneuvers of autonomous oceanic vehicles involve

mostly short term linear accelerations, and hence the d Bv
dt term is modeled in the filter

state model as a high-frequency process. The Coriolis term ω × Bv occurs in transient

but also in trimming maneuvers such as helicoidal paths, and is compensated for using

the linear and angular velocities information provided by the INS. The gravity vector

measurement gr is given by

gr , −
(

ar − ω̂ × Bv̂
)

= Bg − d Bv

dt
+ δ

(

ω × Bv
)

+ δba − na. (2.18)

where the δ
(

ω × Bv
)

= ω̂ × Bv̂ − ω × Bv is the error of the centripetal acceleration

removal, and Bv̂ = R̂′Ev is the estimated velocity in body coordinates. The gravity

reading (2.18) is modeled as

gr = Bg − aLA + δ
(

ω × Bv
)

+ δba − na, (2.19)

where aLA =
[

aLAx aLAy aLAz

]′
represents the linear acceleration estimate. Each of the

aLA components is modeled as a band-pass signal whose bandwidth is shaped according

to the vehicle characteristics, often to filter out high-frequency INS acceleration jitter and

to simultaneously avoid the influence of erroneous low-frequency accelerometer bias. The
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(b) Specific force model.

Figure 2.4: Linear acceleration modeling.

state model dynamics for the x-axis component is generically represented in Fig. 2.4, and

can be written as

ẋLA x =

[

0 1

−αhαl − (αh + αl)

]

xLA x +

[

0

αh

]

nLA x, (2.20a)

aLA x =
[

0 1
]

xLA x. (2.20b)

where αh and αl are the high-frequency and low-frequency cutoff frequencies, respectively,

and nLAx is modeled as a zero-mean, Gaussian white noise process with variance σ2
LA.

Using the results for the vector reading model (2.14), the measurement residual for

the gravity reading (2.18) is defined as Ezg = Eg− R̂gr and the first-order formulation is

given by

Ezg ≈
(

Eg
)

× δφ − R̂δba − R̂δ
(

ω × Bv
)

+ R̂aLA + R̂na.

Using (2.1b) and (2.5), the centripetal acceleration compensation term is given by

δ
(

ω × Bv
)

≈ (ω̂)× R̂′δv + (ω̂)×
(

Bv̂
)

× R̂′δφ +
(

Bv̂
)

× (δbω − nω),

and the observation equation of the gravity measurement residual equation is

Ezg = −
(

R̂ω̂
)

×
δv +

(

(

Eg
)

× −
(

R̂ω̂
)

×

(

Ev̂
)

×

)

δφ − R̂δba

−
(

Ev̂
)

× R̂δbω + R̂aLA + R̂na +
(

Ev̂
)

× R̂nω, (2.21)

where aLA is the output of triaxial generalization of the state model dynamics (2.20),

integrated in the EKF, and tuned according to the maneuverability characteristics of the

vehicles. Fig. 2.3 illustrates the computation of the gravity measurement residual Ezg,

which is fed to the filter using the observation model (2.21).
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2.4 Implementation

The continuous-time state space model ẋC = FC(x̂,u)xC + GC(x̂)nxC adopted in the

filter is described by

xC =
[

δx′ x′
LAx x′

LAy x′
LAz

]′
, nxC =

[

n′
x nLAx nLAy nLAz

]′
,

FC(x,u) = blkdiag(F(x,u),FLA,FLA,FLA), GC(x) = blkdiag(G(x),GLA,GLA,GLA),

FLA =

[

0 1

−αlαh −(αl + αh)

]

, GLA =

[

0

αh

]

,

where δx, nx, F(x,u) and G(x) are defined in (2.10). The measurement model z =

H(x̂,u)xC + nz can be written as

z =
[

z′GPS
Ez′m

Ez′g

]′
, nz =

[

−n′
GPS −R̂n′

m

(

−R̂na +
(

Ev̂
)

× R̂nω + R̂ng

)′]
,

H(x̂,u) =









I3 0 0 0 0 0

0 0
(

Em
)

× 0 0 0

0
(

R̂ω
)

×

(

Eg
)

× +
(

R̂ω
)

×

(

Ev̂
)

× −R̂ −
(

Ev̂
)

× R̂ R̂HLA









,

HLA = blkdiag
([

0 −1
]

,
[

0 −1
]

,
[

0 −1
])

, (2.22)

where ng is a fictitious white noise associated with zg observation, and zGPS is the GPS

measurement residual, classically defined by the difference between the position estimated

by the INS and that measured by the GPS [22], that is

zGPS := p̂ − pGPS = δp − nGPS,

where nGPS N (0,ΞGPS) is a Gaussian white noise that models the GPS measurement

noise.

The state and observation noise covariance matrices are

QC = blkdiag(Ξp,Ξa,Ξω,Ξba
,Ξbω

,ΞLA),

RC(x̂) = blkdiag(ΞGPS,Ξm, R̂ΞaR̂′ −
(

Ev̂
)

× R̂ΞωR̂′ (Ev̂
)

× + R̂ΞgR̂′),

where ΞLA = σ2
LAI3. The discrete-time state space model

xk+1 = Φkxk + wk, zk = Hkxk + vk,

is obtained by sample-and-hold of the inputs [22] and is given by

Φk = eFkT , Hk = H(x,u)|t=tk
,

and the discrete-time noise covariance matrices are [56]

Qk ≃ GkQCG′
kT, Rk ≃ RCk

T
,
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where T is the sampling period, Fk = FC(x,u)|t=tk
, Gk = GC(x)|t=tk

, RCk = RC(x)|t=tk

and Φk = Φ(tk+1, tk) denotes the state transition matrix.

The gravity measurement residual Ezg introduces state and measurement noise corre-

lation matrix [22]

CC(x̂) =







0 0 0 0 0 0

0 0 0 0 0 0

0 −R̂Ξa −
(

Ev̂
)′
× R̂Ξω 0 0 0







′

,

Ck =
1

T

∫ tk

tk−1

Φ (tk, τ)G (τ)CC (τ) dτ ≃ (I3 +
FkT

2
)GkCCk,

where CC (x) is the continuous state and measurement noises correlation matrix, CCk =

CC(x)|t=tk
, and the discrete-time equivalent matrix Ck is computed using a first order ap-

proximation similar to those discussed in [22] for Qk and Rk. The following Kalman gains

and error covariance matrix equations are modified to include the state and measurement

noises correlation matrix

Kk = (P−
k H′

k + Ck)[HkP
−
k H′

k + Rk + HkCk + C′
kH

′
k]

−1,

P+
k = (In − KkHk)P

−
k − KkC

′
k,

and the filter covariance matrix is updated using P−
k+1 = ΦkP

+
k Φ′

k + Qk.

After each EKF update, error estimates are fed into the INS error correction routines

as depicted in Figs. 2.1 and 2.2, where the quantities predicted by the INS are denoted

by the superscript − and the updated quantities are identified with the superscript +. It

is important to stress that linearization assumptions are kept valid during the algorithm

execution since the EKF error estimates are reset after being used to compensate the

corresponding variables [99]. The error correction procedures are specific to the INS

algorithms and error state space representations. For the INS adopted in this work, error

routines are detailed next.

The attitude estimate is compensated using the rotation error matrix R(δφ) definition,

which yields

R̂+
k = R′(δφ̂k)R̂−

k , (2.23)

where matrix R′(δφ̂k) is described exactly as

R′(δφ̂k) = I3 −
sin(‖δφ̂k‖)

‖δφ̂k‖

(

δφ̂k

)

×
+

1 − cos(‖δφ̂k‖)
‖δφ̂k‖2

(

δφ̂k

)2

×
,

and is computationally implemented using power series expansion of the scalar trigonomet-

ric terms up to an arbitrary accuracy [128]. In the case where few computational resources

are available, R′(δφ̂k) can be approximated to first order by R′(δφ̂k) ≃ I3 −
(

δφ̂k

)

×
that, nonetheless, introduces DCM orthogonalization problems in R̂+

k whose compensa-

tion usually requires considerable computational effort [9]. The remaining state variables

are simply compensated using

p̂+
k = p̂−

k − δp̂k, v̂+
k = v̂−

k − δv̂k, b̂+
a k = b̂−

a k − δb̂a k, b̂+
ω k = b̂−

ω k − δb̂ω k. (2.24)
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Table 2.1: Sensor non-idealities.

Sensor Bias Noise Variance

Rate Gyro 5 ◦/s (0.02 ◦/s)2

Accelerometer 12 mg (0.6 mg)2

Magnetometer (calibrated) (60 µG)2

GPS - 10 m2

The INS block structure with EKF corrections is depicted in Fig. 2.2, where the error

compensation and bias update routines, (2.23) and (2.24) respectively, are executed after

the INS outputs have been fed to the EKF and errors estimates are available. Note

that the EKF sampling rate is synchronized with the moderate-speed INS output rate

and that no corrections are involved in the high-speed computation algorithms. After

the error correction procedure is completed, the EKF error estimates are reset δx̂k = 0.

The INS error correction and EKF estimate reset do not influence the uncertainty of

the estimated quantities, and hence the estimation error covariance is unaffected by this

procedure [99]. At the start of the next computation cycle (t = tk+1), the INS attitude

and velocity/position updates presented in Section 2.1 are performed on the corrected

estimates (R̂+
k , v̂

+
k , p̂

+
k ) to provide new inputs (R̂−

k+1, v̂
−
k+1, p̂

−
k+1) to the EKF.

2.5 Simulation results

This section presents a simulation study of the proposed navigation system, prior to the

practical implementation of the algorithm in the autonomous surface craft. The impact

of the vector observation in the estimation results is analyzed, by considering three case

study simulations. In the first case, the navigation system is initialized with large estima-

tion errors to evidence how the estimation results can be enhanced by the use of vector

measurements. A standard rigid body trimming trajectory with constant centripetal ac-

celeration is generated to demonstrate the necessity of centripetal acceleration removal

in the pendular measurements. In the second case study, the linear acceleration model

(2.19) is validated, by presenting the response of the navigation system when the vehicle

is subject to a step acceleration with damping. In the third case study, poor GPS signal

detection is simulated to illustrate how the position estimates remain within acceptable

bounds by means of the pendular measurements.

The INS high-speed algorithm is executed at 100 Hz and the normal-speed algorithm is

synchronized with the EKF discrete-time frequency of 50 Hz. The GPS position measure-

ments are obtained at the nominal frequency of 1 Hz. The characteristics of the simulated

inertial and aiding sensors are presented in Table 2.1.
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(c) X-axis rate gyro bias estimation error.
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(d) Z-axis accelerometer bias estimation error.

Figure 2.5: Initial estimation error compensation.

2.5.1 Initial calibration error

The contribution of the magnetic and pendular measurements to the accuracy of the es-

timates is studied for the initial estimation error of 5o in the roll angle, and calibration

errors in the rate gyro and accelerometer bias given by δbωx = 0.57o/ s and δba z = 1 mg,

respectively. The rigid body describes the ascending helix depicted in Fig. 2.5(a), which

is a standard trimming trajectory subject to constant centripetal acceleration. The con-

vergence of the estimation errors shown in Figs. 2.5(b), 2.5(c) and 2.5(d) evidences that

the pendular readings improve on the GPS and magnetometer aiding, by enhancing the

observability of errors such as the gyro bias, roll angle and vertical accelerometer bias,

as expected from physical intuition and analysis of the observability matrix for trimming

trajectories. Interestingly enough, the obtained estimation results were stable and accu-

rate although the small error assumption underlying the EKF derivation was not verified

by the initial estimation errors.
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Figure 2.6: Linear accelerated motion compensation results.

Table 2.2: Filter results, straight path trajectory.

RMS Error

px (m) py (m) pz (m) Yaw (◦) Pitch (◦) Roll (◦)

z = zGPS 1.35 1.77 0.91 12.97 0.26 0.17

z =
[

z′GPS z′m z′g

]′
0.65 1.51 0.91 3.16 × 10−3 0.18 0.14

2.5.2 Linear accelerated motion

The impact of the vector aiding in the navigation system results is analyzed for the case

of a straight line trajectory. The vehicle is subject to a constant acceleration input that

is progressively compensated by the linear drag effects, as depicted in Fig. 2.6(a), and

linear uniform motion is attained. Fig. 2.6(b) validates the assumption that vehicle’s

linear acceleration component in zg can be modeled as a band-pass signal (2.20), and

hence the low frequency contents of zg are used to estimated the inertial system errors.

Numerical results obtained with the proposed technique are presented in Table 2.2, where

improvements due to the inclusion of aiding vector observations are evidenced.

2.5.3 Trimming trajectory

The medium term navigation system behavior is assessed for the trimming trajectory with

standard initial estimation errors. Fig. 2.7 demonstrates the performance enhancements

introduced by the magnetometer readings and the selective frequency contents of the ac-

celerometers measurements. As presented in Table 2.3, the magnetometer readings smooth

out yaw errors, and pendular observations enhance the estimation of roll and pitch. Due

to the position and attitude errors correlation expressed in (2.9), x-axis and y-axis position

errors are improved by the magnetic and pendular observations, respectively. Also, the

constant centripetal acceleration of the trimming trajectory is successfully compensated
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for.

Simulation results for a GPS signal with output frequency of 0.2 Hz are depicted

in Fig. 2.8, with and without pendular measurement aiding. The figure shows that x-

and y-axes position estimates are enhanced by the selective frequency contents of the

accelerometers measurements. The filter exploits the pendular measurements, limiting the

position estimate divergence when the GPS signal is sparse, and extending the navigation

system autonomy with respect to the GPS aiding source.

2.6 Experimental results

The proposed navigation system is validated using a low-power hardware architecture en-

closing low-cost sensors and mounted on-board the DELFIMx catamaran. Experimental

results obtained at sea illustrate the performance of the navigation system in practice

for standard ASC trajectories, emphasizing its robustness characteristics. Namely, the

compensation of the pendular measurements disturbances in the frequency domain is val-

idated, and the autonomy of the navigation system with respect to GPS measurements is

demonstrated. A detailed description of the DELFIMx craft and the adopted hardware is

found in Appendix B.

2.6.1 Experimental results analysis

This section evaluates the navigation system for a set of experimental data. The results

were obtained for a DELFIMx sea-trial conducted on October 2007 on the coast of Ses-

imbra, Portugal, located at 38 ◦ 26′N, 9 ◦ 6′W. The trajectory described by the catamaran

was obtained using the path-following preview controller proposed in [57], and was de-

signed to demonstrate the maneuverability of the vehicle in challenging applications by

comprising straight lines, curves and oscillatory trajectories generated by coning motion,

as shown in Fig. 2.9.

The parameters of the EKF were tuned as follows. The covariances of the inertial

and aiding sensors were computed by processing sensor data obtained with the DELFIMx

at rest on the harbor facilities. The pendular model (2.20) was characterized by the

covariance σ2
LA = 10−5 and the poles αl = 3.64 Hz and αh = 27 Hz, which describe a high

frequency process given that the sampling frequency of the navigation system is 56 Hz.

The classical technique of system robustification by inflating the noise covariances was

adopted [4], namely the covariance of the pendular observation noise ng was defined as

Ξg = 10−5I3 to account for second order terms in the observation model (2.21), and the

velocity error state covariance was set as Ξv = Ξa + 7 × 10−4I3, to balance the influence

of the GPS aiding and the IMU computations in the estimated position and velocity. To

validate the adopted covariances, it will be shown that the navigation system successfully

merges the available information and, to better illustrate the qualities of the proposed

solution, navigation system results with GPS signal blockage are also considered.
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Table 2.3: Filter results, trimming trajectory.

RMS Error

px (m) py (m) pz (m) Yaw (◦) Pitch (◦) Roll (◦)

z = zGPS 1.35 1.77 0.91 12.96 0.26 0.17

z =
[

z′GPS z′m

]′
0.66 1.79 0.91 3.17 × 10−3 0.20 0.17

z =
[

z′GPS z′m z′g

]′
0.65 1.51 0.91 3.16 × 10−3 0.18 0.14
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(b) GPS, magnetic and pendular aiding.

Figure 2.7: Trimming trajectory results.

0 50 100 150 200
−10

−5

0

5

10

15

Time (s)

P
o
s
it
io

n
 (

m
)

 

 

X est.
Y est.
X nom.
Y nom.

(a) GPS aiding only.

0 50 100 150 200
−10

−5

0

5

10

15

Time (s)

P
o
s
it
io

n
 (

m
)

 

 

X est.
Y est.
X nom.
Y nom.

(b) GPS and gravity aiding.

Figure 2.8: Position results for sparse GPS signal, sampled at 0.2Hz.
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Figure 2.9: Measured and estimated DELFIMx trajectory.

The navigation system was initialized using attitude and position estimates provided

by the aiding sensors. The diverse frequency rates of the aiding sensors, i.e. GPS, magne-

tometer, and pendular measurement, are easily handled in the filter by selecting the rows

of the measurement matrix (2.22) according to the available measurement at each time

instant. The initial attitude guess was obtained using the QUEST attitude reconstruction

algorithm [129] to process the first magnetometer and accelerometer measurements, and

the position estimate was acquired directly from the first good quality GPS measurement

available.

The position and attitude estimation results are presented in Figs. 2.9 and 2.10, and are

consistent with the trajectory outlined by the GPS measurements. The estimated position

smoothly tracks the trajectory described by the DELFIMx catamaran. The estimated yaw

is according to the described trajectory, and to the heading measurement provided by the

GPS, which is depicted only for comparison purposes. The average estimated pitch and

roll angles are according to the installation angles of the IMU architecture in the DELFIMx

platform.

The estimated angular and linear velocities of the catamaran are shown in Fig. 2.11.

The angular velocity is consistent with the vehicle maneuvers. The linear velocity is

represented in body fixed coordinates because the velocity variations occur naturally in

the body axis. As expected, Bvx is positive and characterized roughly by concatenation

of forward velocities, while the lateral and vertical velocities fluctuate around zero.

Although the navigation system was stable in extensive simulation studies where large

initial bias estimation error was considered, offline calibration was adopted in practice to

guarantee that the small error assumption of the EKF perturbational model was kept valid

from the start. An initial guess of the accelerometer and rate gyro biases was obtained

offline and after warming up the IMU. The initial covariance of the filter was set to com-

pensate for small errors of the offline calibration, and to account for the bias fluctuations

between the time instants of the calibration procedure and the navigation system initial-
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Figure 2.10: Attitude estimation results (DELFIMx trajectory).
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Figure 2.11: Velocity estimation results (DELFIMx trajectory).
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Figure 2.12: Bias estimation results (DELFIMx trajectory).

ization. The filter covariances Ξba
, Ξbω

were designed small enough to compensate for the

slow variations of the bias in the course of the mission, Ξba
= Ξbω

= 10−12I3. As shown in

Fig. 2.12, the bias estimate is approximately constant, which supports the slowly varying

bias model.

The vector aiding technique described in Section 2.3 was adapted to the application at

hand. Analyzing the measurement model (2.21) for Eg =
[

0 0 g
]′

, it is straightforward

to verify that the z-axis measurement residual Ezz does not relate to the attitude error

δφ, i.e. it is uninformative for the purpose of attitude determination. Also, the collected

magnetometer data were roughly planar and hence enough to calibrate only the soft iron

and hard iron distortions in the xy plane of the magnetometer. Consequently, the vertical

components of the measurement residuals Ezz and Ezm were neglected in the filtering

algorithm, by omitting the corresponding rows of the measurement matrix H. The aiding

measurements components can be easily selected, which shows the flexibility of the present

navigation solution.

The modeling of the pendular vector measurements described in Section 2.3.2 is vali-

dated using frequency domain analysis of the measured and estimated signals. The power

spectral density (PSD) of the desired signals was obtained using Matlab’s pwelch function,

i.e. Welch’s averaged modified periodogram method of spectral approximation. Fig. 2.13

presents the frequency contents of the pendular reading gr, defined in (2.18), and of the

linear acceleration estimate aLA, defined in (2.20). The PSDs of gr and aLA are very sim-

ilar in the medium and high frequency regions, and diverge in the low frequency domain

where the PSD of aLA is smaller than the PSD of gr. This shows that the filter exploits in

fact the low frequency contents of gr for attitude estimation, while the medium and high

frequency linear acceleration disturbances are associated with the signal aLA, as desired.

The PSD of the signals in the low frequency region is shown in detail in Fig. 2.14.

The dependency of the navigation system with respect to the aiding measurements is
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Figure 2.13: Frequency contents of the pendular reading and estimated linear acceleration.
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Figure 2.14: Frequency contents of the pendular reading and estimated linear acceleration (low

frequency region).
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Figure 2.15: Measured and estimated DELFIMx trajectory with GPS outage.

Table 2.4: Position drift due to GPS outage.

With Pendular Aiding Without Pendular Aiding

Time Interval (s) Final (m) Average (m/s) Final (m) Average (m/s)

[370 380] 1.76 0.176 5.65 0.565

[480 550] 4.24 0.061 28.51 0.407

[615 750] 20.3 0.150 720.5 5.337

[800 820] 5.60 0.280 11.96 0.598

studied by disabling the GPS measurements at selected time intervals when the vehicle

turns or enters in long straight paths. The nominal and estimated trajectories are shown

in Fig. 2.15, a zoom of the trajectories at the GPS outage time intervals is presented

in Fig. 2.16, and an estimate of the position estimation error is presented in Fig. 2.17.

The position and attitude estimates track the curve and straight line paths in the short

term, which shows that the performance of the system without GPS aiding is adequate for

practical applications. It also evidences that the navigation system acts according to the

concept of filtering, by merging the IMU and aiding measurements without relying solely

on the GPS data.

The tests in the presence of GPS outage also illustrate the necessity of pendular mea-

surements, as shown in Table 2.4, where the position drift is approximated by the first

measurement residual zGPS when the GPS is successfully reacquired. The performance of

the navigation system is clearly enhanced by the pendular measurements, which extend

the autonomy of the unit with respect to GPS measurements.
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(b) GPS outage at [480 550] s.
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(c) GPS outage at [615 750] s.
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Figure 2.16: Estimated and measured position at the time intervals of the GPS outage.
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Figure 2.17: Difference between the estimated and the measured positions, with GPS outage

(DELFIMx trajectory).
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2.7 Conclusion

An advanced GPS/INS architecture combined with an EKF algorithm and integrating

vector observations was described. The navigation system comprised an high accuracy,

multirate INS algorithm, combined with an EKF in a direct-feedback configuration to

compensate for inertial sensors non-idealities. An aiding technique that directly inte-

grates vector measurements in the filter was detailed, allowing for the use of a frequency

domain model of the vehicle motion in the filter. The experimental results obtained at

sea with the DELFIMx ASC showed that the proposed navigation system can accurately

estimate position and attitude. The compensation of sensor non-idealities such as bias

and noise effects, and the autonomy with respect to GPS aiding by exploiting the vector

measurement directly in the filter, were evidenced in practice.





Chapter 3

Embedded UAV Model and

LASER aiding techniques for high

accuracy inertial navigation

systems

This chapter proposes advanced aiding techniques for precise position and attitude estima-

tion of autonomous vehicles, using low-cost sensors. The navigation system architecture

considered in this chapter is obtained by merging a high accuracy inertial navigation

system (INS) with the information obtained from the vehicle dynamics (VD), using an

Extended Kalman Filter (EKF). A new method to integrate the vehicle dynamics in the

navigation system is proposed, based on using the vehicle dynamics to propagate the INS

state estimates, exploiting the redundancy of the information provided by the VD and by

the high quality INS integration algorithms.

The backbone structure of the navigation system is based on a classical EKF/INS ar-

chitecture, depicted in Fig. 3.1, and previously detailed in Sections 2.1 and 2.2. In classical

architectures using vehicle dynamics aiding, the VD block plays the role of an extra INS

unit [23, 64, 82], as shown in Fig. 3.1(a). That is, the vehicle dynamics are computed by a

vehicle model simulator and the output is compared to the INS estimates. The EKF state

model is augmented to dynamically estimate both the INS and the VD errors, improving

the overall navigation system accuracy. This classical VD aiding configuration enhances

the accuracy of the INS at the cost of integrating the VD model, augmenting the EKF

states to compensate for the VD errors, and using error compensation routines in the

external vehicle model.

The proposed technique to integrate the VD dynamics, depicted in Fig. 3.1(b), merges

the VD information directly in the EKF. In this technique, the INS estimates are propa-

gated simultaneously using the vehicle dynamics and the INS algorithm. The distinct VD

and INS differential equations applied to the same inertial quantity enables the EKF to

45
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(a) External vehicle dynamics.
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(b) Embedded vehicle dynamics.

Figure 3.1: Navigation system block diagram.

estimate and compensate for the inertial errors. The computational cost associated with

VD aiding is reduced due to i) the embedding of the vehicle model, that allows for the

exclusive estimation of the INS errors, and ii) the use of inertial estimates in the computa-

tion of the vehicle dynamics, that enables formulating some of the VD equations directly

as a filter measurement. Also, the VD equations are decoupled, and it is possible to select

only those that characterize the vehicle more accurately.

The advanced aiding techniques proposed in this chapter are motivated by model-scale

helicopters, that are highly maneuverable platforms with the ability to perform Vertical

Takeoff and Landing (VTOL). The derived vehicle aiding techniques are introduced and

validated using a generic fully actuated rigid body simulator example, and extended to

a model-scale Vario X-Treme helicopter model simulator to demonstrate its application

to realistic setups. Since takeoff and landing maneuvers of VTOL crafts require precise

estimates of the distance-to-ground, a LASER range finder sensor implementation is also

detailed, enhancing the vertical channel position and velocity estimates.
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This chapter is organized as follows. Section 3.1 describes the inertial navigation sys-

tem and the Kalman filtering algorithm adopted in this work. Section 3.2 presents the

vehicle model aiding architectures, and the two methods to integrate the vehicle informa-

tion in the navigation system are detailed. The dynamics of a fully actuated rigid body

are described, and adopted to illustrate the VD aiding techniques. Section 3.3 charac-

terizes the LASER sensor and describes the integration of the sensor information in the

navigation system structure. Section 3.4 provides the implementation details. Namely, the

state model of the EKF for each aiding technique, the discretization process and the error

correction routines are detailed. Simulation results for the VD model and LASER range

finder sensor are presented in Section 3.5. The classical VD is validated using a standard

UAV trajectory, and tested with the Vario X-Treme helicopter model. The LASER aiding

is studied by simulating a landing maneuver where the distance-to-ground is unknown.

Concluding remarks are presented in Section 3.6.

3.1 Navigation system structure

This section describes the adopted navigation system architecture, that comprises a high

accuracy, multirate INS integration algorithm, combined with advanced error compensa-

tion techniques based on Kalman filtering, as illustrated in Fig. 3.1. The INS algorithm

integrates the rigid body kinematics differential equations from the output of inertial sen-

sors, which allows for its use in any robotic platform regardless of the available position and

attitude references, and irrespective of the vehicle dynamics. However, the INS position

and attitude estimation errors will drift with time under the influence of accelerometer

and rate gyro non-idealities such as noise, scaling factors, sensor misalignment and bias

calibration errors, among others.

The EKF dynamically estimates the INS errors, by merging available aiding infor-

mation such as GPS position measurements, attitude information contained in vector

observations, and vehicle model dynamics, as illustrated in Fig. 3.1. The INS errors are

then compensated by modeling their first order description in state space form, comparing

the aiding information with the INS estimates, and feeding back the errors estimate to

the INS (direct-feedback configuration).

This section presents the main characteristics of the INS and EKF algorithms adopted

in this work. The concept of multirate high accuracy inertial integration algorithm, the

EKF state space formulation and the error compensation routines are introduced. The

navigation system is presented concisely and for the sake of completeness, providing the

necessary background for the LASER and the vehicle dynamics aiding techniques, for

further details on the present architecture see Sections 2.1 and 2.2.

3.1.1 Inertial navigation system

The INS performs attitude, velocity and position numerical integration from rate gyro and

accelerometer triads data, rigidly mounted on the vehicle structure (strapdown configu-
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ration). For highly maneuverable vehicles, the INS numerical integration algorithm must

properly address the fast dynamics of inertial sensors output, to avoid estimation errors

buildup. The adopted INS algorithm is proposed on the tutorial work found in [126, 127]

and is described in Section 2.1. The INS multirate approach accounts for angular position,

linear velocity, and linear position high frequency motions, referred to as coning, sculling,

and scrolling, respectively. In this framework, a high speed, low order algorithm computes

dynamic angular rate/acceleration effects at a small sampling interval, and its output is

periodically fed to a moderate-speed algorithm that computes attitude/velocity resorting

to exact, closed-form equations.

The moderate-speed inertial algorithms represent attitude in rotation matrix form, and

velocity and position are expressed in Earth frame coordinates. Simulation environments

and case study trajectories to tune the algorithm’s execution rates according to perfor-

mance specifications are described in [126, 127]. A standard low-power consumption DSP

based hardware architecture is found sufficient to run the algorithm at the highest accu-

racy repetition rates. Therefore, for a low cost architecture, high computational precision

is obtained and the discrete-time integration errors are very small with respect to the

other INS error sources such as inertial sensor bias and noise.

3.1.2 Extended Kalman Filter

The inertial estimation errors are compensated for by merging the INS estimates with

aiding information in the EKF algorithm [22]. The EKF error equations, based on pertur-

bational rigid body kinematics, were brought to full detail in [20], and yield a first-order

model of the INS estimation errors and sensor non-idealities. The nominal rigid body

kinematics are given by

ṗ = v, v̇ = RBa, Ṙ = R (ω)× , (3.1)

where the Earth and body frames are respectively denoted by {E} and {B}, R is the

shorthand notation for the rotation matrix E
BR, and (s)× represents the skew symmetric

matrix defined by the vector s ∈ R
3 such that (s)× r = s × r, r ∈ R

3. The angular

velocity and the acceleration of the body are measured respectively by the rate gyro and

accelerometer triads, corrupted by noise and bias as follows

ωr = ω + bω + nω − b̂ω, (3.2a)

ar = Ba − Bg + ba + na − b̂a, (3.2b)

where g represents Earth’s gravitic field, the sensor biases are denoted by ba and bω, and

na ∼ N (0,Ξa), nω ∼ N (0,Ξω) are Gaussian white noise processes. The inertial sensor

biases are modeled as random walk processes,

ḃω = nbω
, ḃa = nba

,

where nbω
∼ N (0,Ξbω

) and nba
∼ N (0,Ξba

) are Gaussian white noise processes.
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The rigid body coordinates are estimated using the available inertial sensor information

˙̂p = v̂, ˙̂v = R̂ar + Eg,
˙̂R = R̂ (ωr)× ,

˙̂
ba = 0,

˙̂
bω = 0. (3.3)

The position, velocity and bias estimation errors are defined by the difference between the

estimated and nominal quantities,

δp := p̂ − p, δv := v̂ − v, δba := b̂a − ba, δbω := b̂ω − bω,

and the attitude error, denoted as δφ, is parameterized by an unconstrained rotation

vector representation in Earth coordinates, which can be assumed locally linear and non-

singular, for details and equivalent attitude parameterizations, see [99, 114]. Define the

rotation error matrix as R(δφ) := R̂R′, the attitude error rotation vector δφ is described

by the first order approximation

R(δφ) ≃ I3 + (δφ)× ⇒ (δφ)× ≃ R̂R′ − I3, (3.4)

that is valid for “small-angle” attitude errors [20].

Combining (3.1-3.3), the attitude, velocity, and position error kinematics are obtained

by retaining the first-order terms of Taylor’s series expansions or by using perturbation

algebraic techniques [20], producing

δṗ = δv, δv̇ = R̂(ar − aSF) −
(

R̂ar

)

×
δφ, δφ̇ = R(ωr − ω), (3.5a)

˙δba = −nba
, ˙δbω = −nbω

, (3.5b)

where aSF = Ba−Bg is the specific force, defined as the nominal reading of an accelerom-

eter. The terms (ωr −ω) and (ar − aSF) represent the non-idealities of the accelerometer

and rate gyro readings (3.2a) and (3.2b) respectively, and are described by

(ωr − ω) = −δbω + nω, (ar − aSF) = −δba + na. (3.6)

Combining (3.5) and (3.6), the error state space model is

δṗ = δv, δv̇ = −R̂δba −
(

R̂ar

)

×
δφ + R̂na, δφ̇ = −R̂δbω + R̂nω, (3.7a)

˙δba = −nba
, ˙δbω = −nbω

. (3.7b)

The Kalman filter adopted in this work is based on the concept of Multiplicative EKF

[90, 99]. In this architecture, global position and attitude parameterizations are adopted

in INS algorithm, while local representations of the estimation errors are modeled in the

EKF. In particular, the adopted attitude error parameterization is locally linear and hence

can be integrated in the EKF algorithm without violating the constraints found in global

attitude parameterizations, such as rotation matrices and quaternions. As illustrated in

Fig. 3.1, the EKF estimates the INS error vector δx =
[

δp′ δv′ δφ′ δb′
a δb′

ω

]′
, that

is then fed back and stored in the global quantity xINS = (p,v,R,ba,bω), and reset in

the filter. This process preserves the small error assumption underlying the linearized

model (3.7), and its validity is demonstrated in [99], where it is also evidenced that the

estimation error covariance is unaffected when δx is incorporated in xINS.
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3.2 Vehicle model aiding

In this section, the vehicle model aiding techniques are detailed. The classical technique to

exploit the vehicle dynamics in the navigation system is presented, and a new methodology

to directly embed the VD information in the EKF is proposed.

The external VD structure, depicted in Fig. 3.1(a), follows from previous work found in

[23, 82], where the integration of the VD in the system is analogous to that adopted for the

INS. Vehicle state estimates are computed by a vehicle simulator block, using the thrusters

input information. The full state vehicle model algorithm computes attitude and velocity

estimates that are compared to the INS output, under the form of measurement residuals.

Whereas the vehicle aiding information is expected to help the INS, computational and

modeling errors of the vehicle dynamics itself must be addressed by the filter. Therefore,

the EKF state model is also augmented to compensate for the vehicle modeling errors.

This work presents an alternative method to exploit the VD model by including the

vehicle simulator equations directly in the EKF state model. Vehicle dynamics are inte-

grated in the filter state space, linearized about the inertial state estimates. The vehicle

dynamics propagate the inertial estimates, so the VD integration is a function of the INS

errors. Therefore, the EKF algorithm internally solves the VD equations and only outputs

the INS error estimates, as shown in Fig. 3.1(b).

Without any loss of generality, the VD aiding technique proposed in this work is

illustrated using the dynamics of a 6-DOF rigid body polyhedron with uniform mass

density and fully actuated. Afterwards, the proposed technique is applied to a Vario X-

Treme helicopter dynamic model, to demonstrate that the VD aiding technique is valid

for realistic robotic platforms. Note that the Vario X-Treme helicopter is a challenging

platform due to the complex dynamics of the vehicle, detailed in Appendix C, that are

highly nonlinear and coupled.

3.2.1 Rigid body dynamics

The body coordinate frame origin, denoted pBorg, is located at the body’s center of mass

and geometric center. The axes of the body frame define a plane of symmetry for the mass

distribution of the body, so the resulting body inertia tensor, denoted IB, is described by

the principal moments of inertia [34], yielding

IB =
m

12







h2 + l2 0 0

0 w2 + h2 0

0 0 l2 + w2






,

where m is the body mass and (l, w, h) represent the polyhedron length, width and height,

respectively. The rigid body is subject to the thrusters force and momentum, denoted by

fth and nth respectively, and to viscous linear and angular damping, denoted by fd and nd



3.2. Vehicle model aiding 51

respectively, yielding

Bfth =
∑

i

Bfi,
Bnth =

∑

i

Bpth i × Bfi,
Bfd = −Klin

Bv, Bnd = −Kangω,

where i = 1, . . . , 6 is the index of the thruster applying force fi to the body, Bpth i are the

thrusters’ coordinates in body frame, and Klin and Kang are respectively the linear and

the angular damping coefficients.

Applying the Newton and Euler equations to determine body’s translation and rotation

with respect to the inertial frame, the body dynamics are expressed by the nonlinear state

space model

ω̇V :=fω(ωV ,nth) = −I−1
B

(

(ωV )× IBωV +KangωV

)

+ I−1
B nth, (3.8a)

Bv̇V :=fv(ωV ,
BvV , fth)

= − M−1
T

(

(ωV )× MT
BvV +Klin

BvV

)

+ M−1
T fth + R′

V
Eg, (3.8b)

ṘV :=fR(ωV ,RV ) = RV (ωV )× , (3.8c)

where the body and center of mass coordinate frames are defined with the same orientation

and position, so that the body frame attitude dynamics (3.8a) do not depend on the linear

velocity. To avoid ambiguity in the adopted notation, Bv̇ denotes d Bv
dt , whereas B(dv

dt ) is

denoted by B(v̇).

The simple rigid body dynamics (3.8) allow for physical intuition on the contribution

of the vehicle model to the inertial states errors compensation. The V subscript for

the angular velocity and body linear velocity (3.8) is adopted to emphasize that these

quantities are computed using the vehicle dynamics, given that some are also computed

by the INS, using distinct integration algorithms and inputs.

The position is not computed in the vehicle model aiding technique because the position

is decoupled from the other vehicle states in (3.8), and the vehicle position kinematics are

identical to those of the INS. Although the vehicle attitude kinematics are also identical

to those of the INS, the attitude is coupled with the other states of the vehicle and hence

is explicitly modeled in (3.8). Interestingly enough, (3.8c) is computed in the external

vehicle model aiding technique, replicating the INS computations, while the embedded

vehicle model aiding technique exploits the INS attitude computations directly, as shown

in the ensuing.

3.2.2 External vehicle model aiding

In the classical VD aiding, presented in Fig. 3.1(a), the vehicle dynamics are computed

using a standalone vehicle simulator, included in the navigation system but external to

the EKF/INS system. The EKF state model is augmented to estimate and compensate

for the VD block errors, using model specific error compensation routines.

The VD block error dynamics are formulated using the technique adopted to describe

the INS error dynamics in Section 3.1.2. These are obtained by applying a perturbational
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analysis to the nominal dynamics (3.8). Let x̂V = (ω̂V ,
Bv̂V , R̂V ) denote the states

estimated by the vehicle model simulator, the vehicle model error dynamics are described

by the first order terms of the Taylor series expansion

˙̂ωV = fω(ω̂V , n̂th) ⇒ ˙δωV ≈ ∂fω

∂ω

∣

∣

∣

∣

xV

δωV +
∂fω

∂nth

∣

∣

∣

∣

xV

δnth, (3.9a)

B ˙̂vV = fv(ω̂V ,
Bv̂V , R̂V , f̂th) ⇒

δBv̇V ≈ ∂fv

∂ωV

∣

∣

∣

∣

xV

δωV +
∂fv

∂BvV

∣

∣

∣

∣

xV

δBvV +
∂fv

∂δφ

∣

∣

∣

∣

xV

δφV +
∂fv

∂fth

∣

∣

∣

∣

xV

δfth, (3.9b)

˙̂RV = fR(ω̂V , R̂V ) ⇒ ˙δφV = RV δωV , (3.9c)

where δωV = ω̂V − ω, δBvV = Bv̂V − Bv, δnth = n̂th − nth, δfth = f̂th − fth, and the

Jacobians are given by

∂fω

∂ω

∣

∣

∣

∣

xV

= I−1
B

(

(IBωV )× − (ωV )× IB − I3Kang

)

,
∂fω

∂nth

∣

∣

∣

∣

xV

= I−1
B , (3.10a)

∂fv

∂ω

∣

∣

∣

∣

xV

= M−1
T

(

MT
BvV

)

× ,
∂fv

∂fth

∣

∣

∣

∣

xV

= M−1
T , (3.10b)

∂fv

∂Bv

∣

∣

∣

∣

xV

= M−1
T

(

− (ωV )× MT − I3Klin

)

,
∂fv

∂δφ

∣

∣

∣

∣

xV

= R′
V

(

Eg
)

× , (3.10c)

The first order model (3.9) can also be obtained by perturbational analysis of the dynamics

(3.8). The rotation matrix kinematics (3.8c) are identical to the inertial rigid body kine-

matics expressed in (3.1), and consequently do not yield new information to the system.

However, the computation of RV is necessary for the vehicle dynamics simulator (3.8),

and the associated error dynamics (3.9c), which are identical to the INS attitude error

(3.5), must be compensated for.

The INS and VD state estimates are compared under the form of measurement resid-

uals, obtained by the perturbational method adopted in [20], and described by

zω := ω̂ − ω̂V = ω + δω − (ω + δωV ) = δω − δωV = −δbω − δωV + nω, (3.11a)

zu := R̂′v̂ − Bv̂V = R̂′v − (Bv + δBvV ) = (R̂′ −R′)v + R′δv − δBvV

= −R̂′ (φ)× v + R′δv − δBvV ≈ R′δv + R′ (v)× δφ − δBvV , (3.11b)

zR := R̂R̂′
V − I ≈

[

I + (δφ)×
]

RR′ [I − (δφV )×
]

− I ≈ δφ − δφV . (3.11c)

where ω̂ is the angular velocity estimate given by the INS, i.e. ω̂ = ωr.

The external VD aiding technique is detailed in Fig. 3.2. The vehicle model equations

(3.8) are computed by a variable-step Runge-Kutta differential equation solver, using

the thrusters force fth and momentum nth information. The vehicle state errors and

covariances are propagated by the EKF using the first order model (3.9) and assuming that

the thrusters input is known from the control system, δnth = δfth = 0. In experimental

applications the inputs of the vehicle model may not be accurately known, and δnth,

δfth may be modeled as small stochastic uncertainties to increase the navigation system

robustness.
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Figure 3.2: External vehicle model aiding for the 6-DOF rigid body polyhedron.

The INS and VD errors are estimated by processing the measurement residuals (3.11)

in the EKF algorithm. Similar to the storage technique used for the INS error compensa-

tion, described in Section 3.1.2, the estimated VD errors δxV =
[

δω′
V δBv′

V δφ′
V

]′
are

transferred to the external VD block and used to update the state xV = (ωV ,
BvV ,RV ).

This method preserves the small error conditions of the first order model (3.8), however

it requires the implementation of error compensation routines in the vehicle model.

3.2.3 Embedded vehicle model aiding

The vehicle model aiding enhances the accuracy of the navigation system by providing

specific information about the robotic platform, e.g. its linear and angular velocity dy-

namics, (3.8a) and (3.8b) respectively. In the classical technique described in the last

section, the attitude kinematics (3.8c) are computed simultaneously in the INS and in the

self-contained vehicle simulator, and vehicle model errors compensation routines must be

implemented, as illustrated in Fig. 3.1. The necessity of these auxiliary computational

routines, and of distinct vehicle states that partially replicate those found in the INS,

motivates an alternative vehicle model integration method.

The embedded VD aiding concept is based on using the vehicle dynamics to propagate

the INS estimates. Due to the presence of inertial estimation errors, the results obtained

by solving the vehicle dynamics using the inertial estimates is different from the INS

state estimate derivatives, that is ˙̂ω 6= fω(ω̂, n̂th),
B ˙̂v 6= fv(ω̂,

Bv̂, R̂, f̂th). To exploit the

distinct, but compatible models enclosed in the VD and INS computations, the VD results

are described as a function of the INS errors, enabling the EKF to estimate and compensate

for the inertial errors. Interestingly enough, the proposed embedded VD aiding reduces

the computational cost associated with vehicle aiding, while bearing the same estimation

error accuracy.

With a slight abuse of notation, let x̂ = (ω̂, v̂, R̂, b̂a, b̂ω) denote the INS state esti-

mates. In the embedded VD methodology, nominal vehicle dynamics (3.8) are linearized

about the INS state estimates, using the first order terms of the Taylor series expansion,
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yielding

ω̇ =fω(ω,nth) ≈ fω(ω̂, n̂th) +
∂fω

∂ω

∣

∣

∣

∣

x̂

(ω − ω̂) +
∂fω

∂nth

∣

∣

∣

∣

x̂

(nth − n̂th),

Bv̇ =fv(ω,
Bv,R, fth) ≈ fv(ω̂,

Bv̂, R̂, f̂th) +
∂fv

∂ω

∣

∣

∣

∣

x̂

(ω − ω̂)

+
∂fv

∂Bv

∣

∣

∣

∣

x̂

(Bv − Bv̂) +
∂fv

∂δφ

∣

∣

∣

∣

x̂

δφ +
∂fv

∂fth

∣

∣

∣

∣

x̂

(fth − f̂th).

Given the definition of the INS estimation error, the nominal angular and linear velocities

are expressed as a function of the INS states and estimation errors by

ω̇ ≈ fω(ω̂, n̂th) −
∂fω

∂ω

∣

∣

∣

∣

x̂

δω − ∂fω

∂nth

∣

∣

∣

∣

x̂

δnth

= fω(ω̂, n̂th) +
∂fω

∂ω

∣

∣

∣

∣

x̂

δbω − ∂fω

∂ω

∣

∣

∣

∣

x̂

nω − ∂fω

∂nth

∣

∣

∣

∣

x̂

δnth, (3.12a)

Bv̇ ≈ fv(ω̂,
Bv̂, R̂, f̂th) −

∂fv

∂ω

∣

∣

∣

∣

x̂

δω − ∂fv

∂Bv

∣

∣

∣

∣

x̂

δBv − ∂fv

∂δφ

∣

∣

∣

∣

x̂

δφ

− ∂fv

∂nth

∣

∣

∣

∣

x̂

δnth − ∂fv

∂fth

∣

∣

∣

∣

x̂

δfth

= fv(ω̂,
Bv̂, R̂, f̂th) −

∂fv

∂Bv

∣

∣

∣

∣

x̂

R′δv −
(

∂fv

∂δφ

∣

∣

∣

∣

x̂

+
∂fv

∂v

∣

∣

∣

∣

x̂

R′ (v)×

)

δφ

+
∂fv

∂ω

∣

∣

∣

∣

x̂

δbω − ∂fv

∂ω

∣

∣

∣

∣

x̂

nω − ∂fv

∂nth

∣

∣

∣

∣

x̂

δnth − ∂fv

∂fth

∣

∣

∣

∣

x̂

δfth, (3.12b)

where body linear velocity error δBv is rewritten as a function of the INS state errors

δBv := R̂′v̂ −R′v ≈ R′ (v)× δφ + R′δv.

The angular velocity information expressed in (3.8a) is exploited by modeling the error

dynamics (3.12a) in the EKF, and feeding the angular velocity measurement to the filter

zω := ω̂ = ω − δbω + nω. (3.13)

The dynamics of Bv expressed in (3.8b) are exploited by feeding the filter with the

measurement residual

zv := fv(ω̂,
Bv̂, R̂, f̂th) − B ˙̂v, (3.14)

where fv(ω̂,
Bv̂, R̂, f̂th) is given by computing (3.8b) with the inertial estimates. The

estimate B ˙̂v is obtained from the INS measurements and estimates by rewriting the ac-

celerometer measurement (3.2b) as the sum of the linear acceleration and Coriolis terms

ar =
d Bv

dt
+ ω × Bv −R′Eg − δba + na,

yielding

d Bv̂

dt
= ar − ω̂ × Bv̂ + R̂′Eg.
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Figure 3.3: Embedded vehicle model aiding for the 6-DOF rigid body polyhedron.

The measurement residual zv is formulated in the EKF using a linearized model, that is

obtained by expanding (3.14) as follows

zv = fv(ω̂,
Bv̂, R̂, f̂th) −

(

ar − ω̂ × Bv̂ + R̂′Eg
)

≈ fv(ω̂,
Bv̂, R̂, f̂th) −

(

fv(ω,
Bv,R, fth) − δ(ω × Bv) + δBg − δba + na

)

.

Using the first order expansion (3.12b) and applying the perturbational method described

in [20], produces

zv =

(

(ω)× +
∂fv

∂Bv

)

R′δv +

(

(ω)×
(

Bv
)

× −
(

Bg
)

× +
∂fv

∂Bv

(

Bv
)

× +
∂fv

∂δφ
R
)

R′δφ

+ δba +

(

(

Bv
)

× − ∂fv

∂ω

)

δbω − na +

(

∂fω

∂ω
−
(

Bv
)

×

)

nω.

A block diagram of the embedded vehicle model aiding technique is presented in

Fig. 3.3. The propagation of the vehicle dynamics using INS estimates allows for valu-

able computational savings and flexibility. Namely, in the embedded VD aiding i) the

number of filter states is smaller than that of the external VD aiding, since the linear

velocity information is used in the form of measurement residual (3.14), and the attitude

kinematics are computed using the INS algorithm, ii) numerical integration methods are

necessary only for the computation of (3.9a), while the linear velocity information is used

without integrating the differential equation (3.9b), and the attitude kinematics (3.9c)

are computed by the INS, iii) the angular and linear velocity aiding can be implemented

separately, i.e. (3.9a) and (3.9b) can be exploited independently, whereas the external VD

aiding requires the computation of the full vehicle dynamics (3.9) iv) error compensation

routines are only performed in the INS, as opposed to implementing error compensation

routines associated with the external vehicle model aiding. From the viewpoint of alge-

braic derivation, the Jacobians computed for the embedded VD aiding are also computed

in the classical method, see (3.10), and hence the first order analytical results needed to

integrate the vehicle model in the EKF are the same for both architectures. The computa-

tional advantages of the embedded vehicle model are illustrated in the simulation results

presented later in this work.
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Figure 3.4: LASER range finder reading (B
MR = I).

3.3 LASER aiding

In this section, the LASER range finder aiding sensor is described and the corresponding

filter observation equation is introduced. By definition, and without loss of generality,

the sensor is mounted along the z axis of the frame {M}, whose relative orientation to

the body frame is described by the known installation rotation matrix B
MR, for calibration

methods see [63] and references therein. The LASER reads the distance L from the vehicle

to the ground, along the z axis of the {M} coordinate frame, as depicted in Fig. 3.4. By

processing this information in the filter architecture, an estimate of the vehicle’s distance

to the ground can be obtained with high accuracy, as required for landing and takeoff

operations of an air vehicle.

In the current work, the landing area is assumed to be locally planar. The ground

height hS , given by the distance from the Earth frame origin to the helicopter landing

zone, is modeled as being approximately constant

ḣS = nhS
, (3.15)

where nhS
∼ N (0,ΞhS

) is a Gaussian white noise process whose variance reflects small

variations on the ground’s flatness. As depicted in Fig. 3.4, the z axis Earth coordinate of
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the vehicle is given by

pz = −(hS + hV ), (3.16)

where hV ≥ 0 is the vehicle’s height, that is, the distance from Body frame origin to the

ground.

Using elementary trigonometric relations yields

hV

L
=

∣

∣

Mh′
V e3

∣

∣

∣

∣Eh′
V e3

∣

∣

,

where EhV =
[

0 0 −hV

]′
is the vehicle’s height in Earth coordinates, e3 =

[

0 0 1
]′

is the unit z axis vector and Mh′
V e3 corresponds to the projection of hV on the z axis of

the {M} frame. Applying the coordinate transform MhV = B
MR′R′EhV and developing

the terms in the previous equation, the LASER range is described by

L =







hV

e′3RB
M

Re3
, if e′3RB

MRe3 > 0

not defined, if e′3RB
MRe3 ≤ 0

, (3.17)

that is not defined for the cases where the LASER is pointing upwards. The LASER range

finder sensor measures the actual range L corrupted by the sensor noise

Lr = L+ δL, (3.18)

where δL = nL ∼ N (0,ΞL) is modeled as a Gaussian white noise process. The measure-

ment residual is computed by

zL := p̂z −
(

−ĥV

)

, (3.19)

where the height estimate from the LASER reading is given by rearranging the terms in

(3.17) and using the INS estimates in the unknown terms, producing

ĥV = e′3R̂B
MRe3Lr. (3.20)

The vehicle and ground heights, hS and hV respectively, are filtered apart by modeling

the hS dynamics (3.15) in the EKF, measuring hV from the LASER reading as in (3.20),

and feeding the measurement residual (3.19) to the EKF.

To model the measurement residual (3.19) in the EKF, the INS position estimate is

expressed as a function of the vehicle and ground heights, given by

p̂z = pz + δpz = −hS − hV + e′3δp.

Expanding the INS attitude estimate R̂ with the attitude error approximation (3.4) and

neglecting second order terms yields the ĥV description

ĥV = e′3R̂B
MRe3Lr ≈ e′3

[

I3×3 + (δφ)×
]

RB
MRe3Lr

≈ e′3RB
MRe3(L+ δL) − Lre

′
3

(

RB
MRe3

)

× δφ

= hV + e′3RB
MRe3δL− Lre

′
3

(

RB
MRe3

)

× δφ, (3.21)
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Combining (3.18-3.21), the measurement residual is described as a function of the EKF

state variables as

zL = e′3δp − Lre
′
3

(

RB
MRe3

)

× δφ − hS + e′3RB
MRe3nL. (3.22)

In practical applications, the terrain height hS is unknown along the flight path. Af-

ter the takeoff and during flight operations, the LASER sensor is switched off to prevent

erroneous readings due to the terrain height fluctuations, and to the interference of obsta-

cles located between the vehicle and the ground. When the landing maneuver starts, the

LASER is switched on to estimate the new hS and the distance-to-ground.

3.4 Implementation

This section details the state model of the EKF, that integrates the INS with the vehicle

model and LASER aiding techniques. The state dynamics and measurement residuals of

the EKF are determined by the choice of aiding techniques, and obtained by the concate-

nation of the INS error model presented in Section 3.1 with the state and measurement

models of the aiding sources described in Sections 3.2 and 3.3. The state models for the ex-

ternal and the embedded vehicle model aiding techniques evidence the differences between

the two approaches, and clarify the computational savings and flexibility of the proposed

technique. The discretization of the continuous state space model and the Kalman filter

algorithm are presented for the purpose of implementation.

The standard continuous-time state space model can be described by

ẋC = FC (xC)xC + GC (xC) nxC
+ uC , zC = HC (xC) xC + nzC

, (3.23)

where xC is the state vector, FC is the state dynamics matrix, nxC
is the state noise

transformed by matrix GC , uC is the system input vector, and z is the state measurement,

corrupted by the noise vector nzC
. The state and measurement noises are modeled as zero-

mean, Gaussian white noise processes with covariance matrices denoted by QC and RC ,

respectively.

3.4.1 EKF/INS state model

The state model dynamics for the INS errors are obtained directly from (3.5). Let

xINS = (p,v,R,ba,bω) denote the INS quantities, the state model dynamics of the EKF

describing the INS errors are given by

δ̇x = FI(xINS)δx + GI(xINS)nINS, (3.24)
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where

δx =
[

δp′ δv′ δφ′ δb′
a δb′

ω

]′
, nINS =

[

n′
p n′

a n′
ω n′

ba
n′

bω

]′
,

FI(xINS) =

















0 I3 0 0 0

0 0 − (Rar)× −R 0

0 0 0 0 −R
0 0 0 0 0

0 0 0 0 0

















, GI(xINS) = blkdiag (I3,R,R,−I3,−I3) ,

where blkdiag(...) represents a block diagonal matrix, np ∼ N (0,Ξp) is a Gaussian white

noise process associated with the position error estimate and the state noise covariance

matrix is given by

QINS = blkdiag(Ξp,Ξa,Ξω,Ξba
,Ξbω

).

The measurement model for the proposed VD and LASER aiding techniques are de-

scribed in the ensuing, however additional information sources are considered. A GPS

receiver and a magnetometer are integrated in the system using the measurement residu-

als

zGPS := p̂ − pGPS ≈ δp − nGPS, (3.25a)

zm := Em − R̂mr ≈
(

Em
)

× δφ −Rnm, (3.25b)

where pGPS is the position measured by the GPS unit, mr is the magnetometer reading,
Em represents the Earth’s magnetic field in Earth coordinates, and nGPS ∼ N (0,ΞGPS),

nm ∼ N (0,Ξm) are Gaussian white noise processes. For further details on the derivation

of the measurement residuals (3.25), the reader is referred to Sections 2.3 and 2.4.

3.4.2 Vehicle model aiding

The EKF state space model, formulated using (3.23), is obtained by concatenating the

state space model (3.24) that describes the INS estimation errors, with the state model and

measurements of the vehicle model aiding techniques described in Sections 3.2.2 and 3.2.3.

With a slight abuse of notation, the state model (3.23) is defined for the external and

embedded vehicle model dynamics using the same state xC and measurement zC variables.

External vehicle model aiding

In the external vehicle model aiding technique, the vehicle dynamics are computed by

a self-contained VD simulator as shown in Fig. 3.2, and consequently the INS and the

VD states are distinct. As a mean to estimate and compensate for the INS errors, the

EKF state model is augmented with the VD error dynamics (3.9), and the measurement

residuals (3.11) are a linear combination of the INS and the VD errors. The classical

VD aiding methodology requires specific computational routines to compensate for the

estimation errors in the VD simulator.
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The continuous-time error state space model for the navigation system with external

VD aiding is obtained directly from the EKF/INS state model (3.24) augmented with the

VD error dynamics (3.9), yielding

xC :=
[

δx′ δx′
V

]′
, nxC

:=
[

n′
INS n′

xV

]′
, uC = 0,

FC(xINS,xV) =

[

FI(xINS) 015×9

09×15 FV(xV)

]

, GC(xINS) =

[

GI(xINS) 015×9

09×15 GV

]

,

with the vehicle states, noises and model submatrices given by

δxV :=
[

δω′
V δBv′

V δφ′
V

]′
, nxV :=

[

n′
ωV

n′
vV

n′
φV

]′
,

FV(xV) =







∂fω

∂ω
0 0

∂fv

∂ω
∂fv

∂Bv

∂fv

∂φ

RV 0 0







∣

∣

∣

∣

∣

∣

∣

xV

, GV =







I 0 0

0 I 0

0 0 I






,

where nωV , nvV , and nφV
are zero-mean, Gaussian white noise processes with covariances

ΞωV , ΞvV , and ΞφV
respectively, that characterize the vehicle modeling errors.

The measurement residuals (3.11) are a function of the INS and VD errors, given in

the state space form by

zC :=
[

z′ω z′u z′R

]′
, nzV :=

[

n′
ω + n′

zω
n′

zu
n′

zR

]′
,

HC(xINS) =







0 0 0 0 −I −I 0 0

0 R′ R′ (v)× 0 0 0 −I 0

0 0 I 0 0 0 0 −I






,

where nzω , nzu , and nzR are zero-mean Gaussian white noise processes associated with

the zω, zu, and zR observations, with covariances Ξzω , Ξzu , and ΞzR , respectively. The

vehicle states and measurements noise covariance matrices are

QC = blkdiag(QINS,ΞωV ,ΞuV ,ΞRV
), RC = blkdiag(Ξzω + Ξω,Ξzu ,ΞzR),

where the white noise variances account for the effects of neglecting high order terms and

unmodeled uncertainties in the measurement residual derivation.

The observation zω is disturbed by rate gyro noise, so a state and measurement noise

correlation matrix is introduced in the Kalman filter equations

CC =

[

0 0 Ξω 0 0 03×9

06×15 06×9

]′

,

for details on the definition and derivation see [22] and references therein.

As presented in Table 3.1, the external vehicle model aiding increases the EKF di-

mensionality by 9 states, and propagate fω(ω,nth), fv(ωV ,
BvV , fth), and fR(ωV ,RV )

although the latter is also computed by the inertial integration algorithm. As discussed

in Section 3.2.3, the proposed embedded VD aiding technique reduces the computational

cost of vehicle model integration, by requiring a smaller state space augmentation and by

propagating only the necessary vehicle model differential equations.
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Table 3.1: Comparison of the vehicle model aiding techniques with a standard GPS aided IMU.

Aiding Technique

GPS External VD Embedded VD

EKF State Space Dimension 15 24 18

Propagated VD equations -

fω(ω,nth)

fv(ωV ,
BvV , fth)

fR(ωV ,RV )

fω(ω,nth)

Embedded vehicle model aiding

The implementation of the embedded vehicle model aiding technique for the 6 DOF rigid

body is illustrated in Fig. 3.3. In this technique, the VD angular velocity is integrated

in the navigation system by augmenting the EKF state model with (3.12a), propagating

fω(ω,nth) using the INS estimates, and using the measurement residual (3.13). The VD

linear velocity information is integrated in the filter using the measurement residual (3.14),

where fv(ω,
Bv,R, fth) is computed using the INS estimates. The continuous-time state

space model is given by

xC :=
[

δx′ x′
V

]′
, nxC

:=
[

n′
INS n′

xV

]′
, uC = fω(ω,nth),

FC(xINS) =

[

FI(xINS) 015×3

FV(xINS) 03×3

]

, GC(xINS) =

[

GI(xINS) 09×3

GV(xINS) I3

]

,

where

xV = ω, nxV = nωV ,

FV(xINS) =
[

0 0 0 0 ∂fω

∂ω

∣

∣

∣

x̂

]

, GV(xINS) =
[

0 0 − ∂fω

∂ω

∣

∣

∣

x̂
0 0

]

,

where nωV is a zero-mean, Gaussian white noise with covariance ΞωV , that characterizes

the vehicle modeling errors. The xV state variable is propagated using the INS estimates

as expressed in (3.12a), and the EKF state matrices depend only on the INS quantities

xINS, as expected from the derivation of the technique presented in Section 3.2.3.

The measurement state model (3.13, 3.14) is described in the state space form by

z :=
[

z′ω z′v

]′
, nzV :=

[

n′
ω + n′

zω
−n′

a +
((

∂fω

∂ω
−
(

Bv
)

×

)

nω

)′
+ n′

zv

]′
,

HC(xINS) =

[

0 0 0 0 −I I

0
(

(ω)× + ∂fv

∂Bv

)

R′ HvR(xINS) I
(

Bv
)

× − ∂fv

∂ω
0

]∣

∣

∣

∣

∣

x̂

,

where HvR(xINS) :=
(

(ω)×
(

Bv
)

× −
(

Bg
)

× + ∂fv

∂Bv

(

Bv
)

× + ∂fv

∂δφ
R
)

R′, and nzω ∼ N (0,Ξzω)

and nzv ∼ N (0,Ξzu) are zero-mean Gaussian white noise processes associated with the
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measurement. The vehicle states and measurements noise covariance and covariance cor-

relation matrices are given by

QC = blkdiag(QINS,ΞωV),

RC = blkdiag

(

Ξω + Ξzω ,Ξa +

(

∂fω

∂ω
−
(

Bv
)

×

)

Ξω

(

∂fω

∂ω
−
(

Bv
)

×

)′
+ Ξzv

)

,

CC =

[

0 0 Ξω 0 0 03×3

0 −Ξa

(

∂fω

∂ω
−
(

Bv
)

×

)

Ξω 0 0 03×3

]′

.

The number of EKF states for the embedded VD aiding is smaller than that of the

external VD aiding, as evidenced in Table 3.1, due to the use of fv(ω̂,
Bv̂, R̂, f̂th) directly in

the measurement (3.14) and to the propagation of the attitude kinematics using the INS.

The computational cost of using VD model is also smaller because numerical integration

methods are only adopted to solve for fω(ω̂, n̂th). Moreover, the angular velocity and

linear velocity aiding can be independently enabled or disabled, contrary to the external

VD aiding, by including or omitting zω and zv respectively.

3.4.3 LASER aiding

The LASER sensor is integrated with the INS by defining the variables and matrices of

the EKF state model (3.23) as

xC :=
[

δx′ hS

]′
, nxC

:=
[

n′
INS nhS

]′
, uC = 0,

FC(xINS) =

[

FI(xINS) 015×1

01×15 0

]

, GC(xINS) =

[

GI(xINS) 09×1

01×9 1

]

.

The measurement model is obtained from (3.22) and given by

zC := zL, nzC
:= nzL

,

HC(xINS) =
[

e′3 01×3 −e′3
(

RB
MRe3

)

× 01×3 01×3 −1
]

,

where

QC = blkdiag(QINS,ΞhS
), RC = (e′3RB

MRe3)
2ΞL, CC = 0.

The LASER sensor is adopted for takeoff and landing maneuvers. Previous to the

LASER’s activation, the estimation covariance of hS is defined large enough to account

for the uncertainty in the terrain height. When the LASER sensor is activated, the EKF

recursively estimates the terrain height hS based on the sensor measurements, and the

uncertainty on the terrain’s height converges asymptotically to a steady state value, that

depends on the sensor’s accuracy.

When the LASER is switched off, the uncertainty on the terrain height hS will grow

at a rate defined by the noise covariance ΞhS
. Techniques to avoid numerical problems in

the EKF covariance matrices should be adopted, namely square root filtering [22] or by

setting ΞhS
= 0 if the uncertainty reaches a specific upper bound.
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3.4.4 State model discretization

The discrete-time state space model

xk+1 = Φkxk + wk, zk = Hkxk + vk,

is obtained using the zero-order hold discretization technique [22], and is given by

Φk = eFkT , Hk = HC |t=tk
,

and the discrete-time noise covariance matrices are described by

Qk ≃ [GkQCG′
k]T, Rk ≃ RCk

T
,

Ck =
1

T

∫ tk

tk−1

Φ(tk+1, ϕ)GC(τ)CC(τ)dτ ≈ (I +
FkT

2
+

F2
kT

2

6
)GkCCk,

where T is the sampling period, xk = xC |t=tk
, zk = zC |t=tk

, wk and vk are discrete-time

zero-mean Gaussian white noise processes, Fk = FC |t=tk
, Gk = GC |t=tk

, RCk = RC |t=tk
,

CCk = CC |t=tk
and Φk = Φ(tk+1, tk) denotes the state transition matrix.

3.4.5 State estimation and error compensation

The Kalman filter state estimation is described by the following linear, recursive form

x̂+
k = x̂−

k + Kk(zk − Hkx̂
−
k )

where the − and + superscripts denote respectively the quantities before and after the

update using the measurement zk, more details can be found in the classical Kalman

filtering reference [56] and in [22]. The Kalman filter gain Kk and updated error covariance

matrix are given by

Kk = (P−
k H′

k + Ck)[HkP
−
k H′

k + Rk + HkCk + C′
kH

′
k]

−1,

P+
k = (In − KkHk)P

−
k − KkC

′
k.

In the current direct feedback configuration, the position and attitude estimates stored in

the INS are updated using the EKF error estimates as follows

p̂+
k = p̂−

k − δp̂+
k , v̂+

k = v̂−
k − δv̂+

k , R̂+
k = R′(δφ̂

+

k )R̂−
k ,

b̂+
a k = b̂−

a k − δb̂+
a k, b̂+

ω k = b̂−
ω k − δb̂+

ω k, (3.26)

where matrix R′(δφ̂k) is implemented using power series expansion of trigonometric terms

up to an arbitrary accuracy [126]. This procedure updates the linearization point and

keeps filter perturbational dynamics valid under the first order assumptions. The EKF

error estimates are reset after being applied to compensate the INS states, i.e. the error

estimates are set as δp̂+
k = δv̂+

k = δφ̂
+

k = δb̂+
a k = δb̂+

ω k = 0 after computing (3.26). The

state estimate and the estimation error covariance matrix are propagated using

x̂−
k+1 = Φkx̂

+
k , P−

k+1 = ΦkP
+
k Φ′

k + Qk.
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Table 3.2: Sensor non-idealities.

Sensor Bias Noise Variance

Rate Gyro 0.05 ◦/s (0.02 ◦/s)2

Accelerometer 10 mg (0.6 mg)2

LASER - (10−2 m)2

Magnetometer - (1 mG)2

GPS - 10 m2

Note that the derivation of the external vehicle model aiding technique is similar to

that adopted for the INS, and hence it is necessary to feed back the estimated VD errors

as shown in Figs. 3.1(a) and 3.2. The VD error compensation routines are described by

ω̂+
V k = ω̂−

V k − δω̂V k,
Bv̂+

V k = Bv̂−
V k − δBv̂V k, R̂+

V k = R̂′
V k(δφ̂V)R̂−

V k.

By construction, the embedded VD technique propagates some vehicle dynamics using

the EKF state space. Vehicle model error compensation routines are not necessary in

this technique, since the estimation error compensation is automatically performed by the

EKF in the state update step.

3.5 Simulation results

This section presents the simulations results that validate and illustrate the properties

of the proposed aiding techniques. The integration of the VD and LASER range finder

information in the navigation system is studied using three simulation setups. The first

simulation compares the estimation results of the VD aided navigation system with those

obtained using a classical GPS/INS architecture, for a 6-DOF rigid body describing a

trimming trajectory, and the embedded VD aiding technique is validated with respect to

the classical VD aided navigation system.

In the second simulation, the proposed VD aiding is applied for the case of a model-

scale Vario X-Treme helicopter, to demonstrate the implementation of the technique for

highly nonlinear, realistic vehicle models. Simulation results are presented for a takeoff

and turning trajectory, and the estimation results of a GPS based and the VD aided

navigation architectures are analyzed.

The third simulation emphasizes the role of the LASER range finder sensor for critical

maneuvers. The vehicle describes a hovering maneuver, and has to acquire the distance-to-

ground for automatic landing. Accuracy improvements obtained with the LASER range

finder sensor integrated on a GPS/INS configuration are evidenced. Dynamic estimation

of distance-to-ground is performed, and position and velocity vertical channel accuracy

enhancements are shown.

The INS high speed algorithm is set to run at 100 Hz and the normal speed algorithm

is synchronized with the EKF, both executed at 50Hz. The LASER sensor operates at
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Figure 3.5: Rigid body trimming trajectory.

Table 3.3: Rigid body characteristics.

Property Nominal Value

Mass m = 10 Kg

Length, Width, Height (l, w, h) = (1.00, 0.75, 0.25) m

Rear Thrusters Position Bpth 1,2 =
[

−0.50 ±0.30 0
]

m

Side Thrusters Position Bpth 3,4 =
[

0 −0.375 ±0.10
]

m

Bottom Thrusters Position Bpth 5,6 =
[

±0.40 0 −0.125
]

m

Damping Coefficients Kang = 4, Klin = 2

10Hz and the GPS provides position measurements at the nominal frequency of 1Hz. The

characteristics of the sensors non-idealities are presented in Table 3.2.

3.5.1 Vehicle model aiding

The VD aiding technique is validated using the 6-DOF rigid body model described in

Section 3.2.1, with the parameters detailed in Table 3.3. The external VD, embedded VD

and a classical GPS/INS architectures are studied for the rigid body model subject to

constant linear and centripetal acceleration, describing the upwards trimming trajectory

shown in Fig. 3.5. The bias estimation and compensation is analyzed by considering a

30% bias calibration error in each channel of the accelerometer and rate gyro sensors.

A magnetometer is also integrated in the system, using the measurement residual model

(3.25).

The linear and angular velocity information provided by the vehicle model clearly

endows the filter to compensate for the inertial sensor biases, as shown in Fig. 3.6. Bias

calibration errors are reduced almost instantly by the VD aided navigation system, yielding

smaller bias steady-state estimation error, and allowing for smaller estimations errors

of the other state variables. While accelerometer bias compensation using a GPS/INS
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Figure 3.6: Bias estimation errors of the GPS and the VD aided navigation systems (rigid body,

magnetometer on).
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Figure 3.7: Rate gyro bias estimation error of the GPS and the VD aided navigation systems

(Rigid body, Magnetometer off).
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Figure 3.8: Velocity estimation errors of the GPS and the VD aided navigation systems (rigid

body, magnetometer on).

architecture requires specific maneuvers that excite the unobservable directions, the VD

aiding can effectively estimate the sensor bias in a standard trimming trajectory, as shown

in the simulation results. Given that the contribution of the VD aiding to the rate gyro

bias compensation is occluded by the use of a magnetometer, Fig. 3.7 presents the bias

estimation results for a VD aided navigation system without magnetometer observations,

showing that VD aiding is critical for the bias estimation, in particular in the z-axis.

The velocity results are dramatically enhanced by the VD aiding, as shown in Fig. 3.8

and detailed in Table 3.4. Although position and attitude information are not directly

provided for by the vehicle model, position and attitude estimates are more accurate with

VD aiding, as shown in Tables 3.5 and 3.6, due to the smaller velocity and bias estimation

errors.

The accuracy of the embedded and the external VD architectures are similar, which

validates the proposed aiding technique. Both architectures use the same vehicle model,

and hence the aiding information introduced in the filter is the same, and the estimation

results are thus similar. However, the embedded VD aiding brings about computational
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Table 3.4: Velocity estimation error (rigid body).

RMS Error

Aiding information vx (m/s) vy (m/s) vz (m/s)

GPS 9.55 × 10−2 0.19 9.09 × 10−2

Ext. VD 2.07 × 10−3 7.68 × 10−3 4.35 × 10−4

Emb. VD 2.15 × 10−3 7.94 × 10−3 5.94 × 10−4

Table 3.5: Position estimation error (rigid body).

RMS Error

Aiding information px (m) py (m) pz (m)

GPS 0.93 1.16 1.07

Ext. VD 3.92 × 10−2 0.11 1.90 × 10−2

Emb. VD 4.71 × 10−2 0.12 8.13 × 10−3

Table 3.6: Attitude estimation error (rigid body).

RMS Error

Aiding information Yaw (◦) Pitch (◦) Roll (◦)

GPS 1.35 × 10−2 7.60 × 10−2 7.58 × 10−2

Ext. VD 1.22 × 10−2 1.70 × 10−2 1.74 × 10−2

Emb. VD 1.21 × 10−2 1.70 × 10−2 1.70 × 10−2
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Table 3.7: Estimation error for the embedded VD aiding, Bv observation only (rigid body).

RMS Error

Yaw, Pitch, Roll (◦) 1.35 × 10−2 1.70 × 10−2 1.63 × 10−2

vx, vy, vz (m/s) 2.26 × 10−2 7.50 × 10−3 5.93 × 10−4

px, py, pz (m) 4.88 × 10−2 0.12 7.60 × 10−3

Table 3.8: Execution time of the navigation systems for 200 s of simulation time.

GPS Aided External VD Aided
Embedded VD Aided

(ω,Bv) aiding Bv aiding

Execution Time (s) 293 543 400 310

savings, as demonstrated in the simulation execution times presented in Table 3.8. As

discussed in Section 3.2.3, the smaller number of states associated with the embedded VD

aiding, and the propagation of solely the angular velocity, reduce the computational cost

of using the vehicle model information in the system.

The embedded VD aiding allows for the independent use of the angular and linear

velocity aiding, as opposed to using the full dynamics computed by the external vehicle

simulator. Interestingly enough, simulation runs for the embedded VD aiding using only

the velocity observation, i.e. zC = zv, show that the execution time is close to that of the

GPS aided architecture, while the estimation results, shown in Table 3.7, are very similar

to those of the linear and angular velocity aiding case. Although the angular velocity

component is a valuable contribution in general, the accuracy improvements obtained by

using solely the linear velocity aiding suggest that, for some operating scenarios, merging

the velocity information of the vehicle model brings about good accuracy results, at a very

small computational cost.

Note that the execution times presented in Table 3.8 were obtained in a Matlab 7.3

implementation, running on a Pentium 4 CPU 3 Ghz with a Linux operating system,

and were presented for the purpose of comparing the diverse navigation systems. The

computational efficiency of the implemented EKF algorithm, that is common to all of the

analyzed architectures, is beyond the scope of the present work. The filter implementation

can be further improved by adopting numerically efficient and/or suboptimal formulations

described in [22, 56] and references therein.

3.5.2 Vario X-Treme helicopter

The simple dynamic model of the fully actuated 6-DOF rigid body was adopted to il-

lustrate and validate the proposed aiding technique. In this section, simulation results

are presented for the Vario X-Treme helicopter, depicted in Fig. 3.9. This autonomous

helicopter features a six degrees of freedom rigid body dynamic model driven by external
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Figure 3.9: Vario X-Treme model-scale helicopter.

Table 3.9: Velocity estimation error (Vario X-Treme helicopter).

RMS error

Aiding information vx (m/s) vy (m/s) vz (m/s)

GPS 0.13 0.26 0.20

Vario X-Treme Model 2.65 × 10−2 9.62 × 10−3 3.75 × 10−3

forces and moments that encompass the main rotor and tail rotor effects, including the

first order blade pitching dynamics with Bell-Hiller mechanism and the steady-state blade

flapping dynamics. The model dynamics, derived from first-principles in [39, 40], are sum-

marized in Appendix C. The considered model, although simplified, is highly nonlinear

and coupled, and is adopted to take a step towards the implementation of the embedded

VD aiding technique in field applications.

The simulated takeoff trajectory, depicted in Fig. 3.10, consists of an ascending turn,

followed by a straight upwards path. A 30% bias calibration error is assumed and a

magnetometer is also incorporated in the navigation system.

Although the Vario X-Treme model is highly nonlinear, the combination of the embed-

ded VD aiding with the linear extended Kalman filtering yields accurate velocity, position,

and attitude estimates, as presented in Tables 3.9, 3.10, and 3.11 respectively. The heli-

copter model aiding enhances the INS estimates, as shown in the bias and velocity errors

illustrated in Figs. 3.11 and 3.12, and in the position results of Fig. 3.13. Bias compen-

sation errors are effectively reduced and velocity estimation is enhanced. The position

results presented in Table 3.10 and depicted in Fig. 3.13 show that the VD aiding tech-

Table 3.10: Position estimation error (Vario X-Treme helicopter).

RMS error

Aiding information px (m) py (m) pz (m)

GPS 1.15 1.46 1.55

Vario X-Treme Model 0.23 5.71 × 10−2 0.20
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(a) 3D view

(b) xz-plane projection (c) yz-plane projection

Figure 3.10: Vario X-Treme simulated trajectory.
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(c) Rate gyro bias (bωy).
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(d) Accelerometer bias (ba y).
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(e) Rate gyro bias (bωz).
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Figure 3.11: Vario X-Treme VD vs GPS aiding estimation errors (solid line) and estimated error

standard deviation (dashed line).
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Table 3.11: Attitude estimation error (Vario X-Treme helicopter).

RMS error

Aiding information Yaw (◦) Pitch (◦) Roll (◦)

GPS 1.26 × 10−2 9.15 × 10−2 7.95 × 10−2

Vario X-Treme Model 1.27 × 10−2 2.10 × 10−2 1.31 × 10−2

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time(s)

|ṽ x
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(b) Velocity (vy).
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Figure 3.12: Vario X-Treme VD vs GPS aiding estimation errors (solid line) and estimated error

standard deviation (dashed line).
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(b) Vario X-Treme model aiding.

Figure 3.13: Trajectory estimation for the Vario X-Treme.

Table 3.12: Estimation error for the embedded VD aiding, Bv observation only (Vario X-Treme

helicopter).

RMS Error

Yaw, Pitch, Roll (◦) 1.26 × 10−2 2.17 × 10−2 1.40 × 10−2

vx, vy, vz (m/s) 2.81 × 10−2 1.47 × 10−2 3.76 × 10−3

px, py, pz (m) 0.50 0.25 0.19

nique effectively enhances the trajectory estimation to a submetric accuracy. The filter

estimated error covariance is, in general, consistent with the estimation errors.

Interestingly enough, the estimation errors using only the linear velocity information of

the helicopter model, shown in Table 3.12, are close to the results using the full information

of the helicopter dynamics. This suggests that the linear velocity information of the vehicle

model can be exploited in aerial applications, requiring only the computational resources

necessary to process a state observation.

As discussed in [70, 82], the VD aiding results must be addressed with care. Vehicle

modeling errors, model simplification assumptions or unmodeled time-varying parameters

and disturbances, such as vehicle load and wind gusts, may severely affect the navigation

system performance if not correctly accounted for in the filter. The tuning of the noise

covariance matrices, the estimation of additional states and parameters and the use of

more accurate vehicle model dynamics, among other techniques [70], are adopted to allow

for the use of VD in real navigation systems. Nonetheless, side effects such as the poor

observability of the augmented states, the over-parameterization of the vehicle model or

even the inability to obtain a vehicle model which yields information on the real vehicle

dynamics may occur.

Encouraging experimental results with the HUGIN 4500 underwater vehicle have been

recently reported in [64]. Also, exploiting simple vehicle motion constraints yields no-
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ticeable accuracy improvements in the experimental results presented in [42] for a land

vehicle. Vehicle model aiding is also suitable for indoor missions where the vehicle model

are known, and aiding information may be limited. The practical results evidence that

either full, or simplified, vehicle models can effectively enhance the estimation results of

GPS/INS architectures. The integration of the vehicle dynamics in the navigation sys-

tem is a valuable aiding technique, for applications where other external sensors are not

available or provide poor observability of the vehicle states.

3.5.3 LASER aiding

The LASER range sensor implementation is analyzed for a landing operation of an air

vehicle equipped with a standard GPS/INS unit. The vehicle hovers the landing zone,

as illustrated in Fig. 3.4, and activates the LASER at t = 20 s to acquire an accurate

distance-to-ground estimate. The terrain height is hS = 4 m, the LASER is oriented

along the z axis of the body frame, that is B
MR = I, and the sensor noise is characterized

in Table 3.2.

The estimation results depicted in Fig. 3.14 show that the LASER sensor brings about

accurate position and velocity estimates on the z-axis, whereas using solely the GPS sensor

yields high uncertainty on the position estimate, which may render landing unfeasible. The

velocity and distance-to-ground estimation errors, illustrated in Figs. 3.14(b) and 3.14(d)

respectively, are reduced almost instantly when the LASER is activated. Assuming that

the initial terrain height hS uncertainty is 0.1 m, as depicted in Fig. 3.14(c), the position

estimate is also enhanced, as shown in 3.14(a). If the uncertainty about the terrain

height is larger, then the position estimate error will converge slower to smaller values, as

illustrated in Fig. 3.15 for an initial hS uncertainty of 1 m.

This behavior is justified by noting that pz is related to hS and hV by (3.16), and

that accurate LASER range measurements bring about precise hV estimates. If little is

known about hS , then (3.16) implies that the uncertainty of hS and of pz are identical,

and the filter can reduce the uncertainty on pz only by using the model (3.15), that is a

low frequency process, and hence ĥS and p̂z will converge slowly in time. This behavior is

illustrated in Figs. 3.15(a) and 3.15(c). Conversely, if hS is known accurately, then (3.16)

implies that pz can be inferred accurately, as shown in Figs. 3.14(a) and 3.14(c).

As expected, the velocity and distance-to-ground estimate enhancements are inde-

pendent of the available terrain height information, as seen by comparing Figs. 3.14(b)

and 3.14(d) with Figs. 3.15(b) and 3.15(d), respectively. These results show that the

LASER range finder is critical for landing the robotic platform without risking the robotic

platform, by allowing for accurate distance-to-ground and vehicle velocity estimates. Po-

sition and ground height estimation is also enhanced in the medium term, by combining

LASER and GPS measurements.
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Figure 3.14: LASER aiding estimation errors (solid line) and estimated error standard deviation

(dashed line).

3.6 Conclusions

A new embedded methodology to integrate the vehicle dynamics in the navigation system

was proposed. The embedded VD system accuracy was shown to be equivalent to that

of the classical external vehicle model architecture, but with smaller computational cost

and with a flexible choice of vehicle model differential equations. The application of the

proposed technique to a highly nonlinear Vario X-Treme helicopter model validated the

approach for realistic Uninhabited Air Vehicles.

Trimming trajectory simulation results showed that the bias calibration errors were

quickly compensated and that long-term bias estimates were enhanced. The linear and

angular velocity were improved with respect to the classical GPS/INS configuration. Posi-

tion and attitude errors, although not directly observable by the VD model, were improved

due to the enhancements in velocity estimation.

The proposed methodology allows for the decoupling of the vehicle model differential

equations. In particular, the linear velocity information of the VD model was exploited
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(a) z-axis position (pz).
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(b) z-axis velocity (vz).
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Figure 3.15: LASER aiding estimation errors (solid line) and estimated error standard deviation

(dashed line).

directly in the filter in the form of a measurement residual, and the associated compu-

tational cost was only that of computing the measurement matrix and the Kalman gain.

Given the exciting accuracy enhancements obtained using solely the linear velocity model,

and the small computational cost of the implementation, this aiding information steps

forward as an exciting, software based technique, suitable for most practical applications

even with computational constraints.

Finally, the LASER range finder sensor provided high precision distance-to-ground

estimates for takeoff and landing maneuvers. It was shown that integrating the sensor

produced accurate vehicle height and the vertical velocity estimates, suitable for safe

maneuvering of the autonomous vehicle. It was shown that the estimate of the vehicle

position with respect to Earth frame is also improved, according to the uncertainty on the

terrain height.



Chapter 4

Complementary Kalman filter

based navigation system

This chapter develops a navigation system based on complementary filtering for position

and attitude estimation, with application to autonomous surface crafts. The problem of

accurate position and attitude estimation is addressed by exploiting sensor measurement

information over distinct, yet complementary frequency regions. Using strapdown inertial

measurements, vector observations, and GPS aiding, the derivation of the proposed com-

plementary filters is focused on the stability, performance, and practical implementation

of the filtering algorithms.

The complementary filter structure, shown in Fig. 4.1, consists of an attitude filter

and a position filter. Formulated in discrete-time, the attitude filter entries are the rate

gyro readings, and a snapshot attitude reconstruction based on vector observations, such

as magnetic-field and pendular readings. The attitude of the vehicle is parameterized by

Euler angles, due to its simplicity, and steady-state feedback gains are adopted in the filter

design. The position filter resorts to accelerometers readings and to GPS, and estimates

velocity in body frame and position in Earth frame.

Attitude Reconstruction
Vector ObservationsVector Observations

Rate GyroRate Gyro
!r

^̧

b̂!

Ep̂

Bv̂

AccelerometerAccelerometer

GPSGPS
pr

ar
Position

Complementary Filter

Attitude
Complementary Filter

Figure 4.1: Complementary filter block diagram.

79



80 Chapter 4. Complementary Kalman filter based navigation system

Stability and performance properties of the proposed filters are derived, and the region

of attraction is explicitly characterized. The problem of diverse sensor sampling rates is

accounted for using a multirate synthesis methodology, based on optimality results for

periodic systems. An attitude determination algorithm that computes pitch and roll from

the pendular measurements and yaw using the magnetic field observations, referred to as

Magneto-Pendular Sensor (MPS), is also presented.

The small computational requirements of the proposed navigation system make it

suitable for implementation on low-power hardware and using low-cost sensors, provid-

ing a simple yet effective multirate architecture. The implementation of the proposed

architecture is straightforward and the performance results of the navigation system are

demonstrated using experimental data obtained in tests at sea with the DELFIMx cata-

maran.

This chapter is organized as follows. Section 4.1 presents the complementary filters

for attitude and position estimation. Stability properties are derived and the conditions

that guarantee performance are discussed. Section 4.2 focuses on the implementation of

the attitude and position filters, that are combined to produce a navigation system with

the multirate architecture, and details the MPS algorithm. The navigation system perfor-

mance is shown in the experimental results of Section 4.3, for the DELFIMx catamaran

sea trials. Concluding remarks are pointed out in Section 4.4.

4.1 Attitude and position complementary filters

In this section, complementary filters for attitude and position estimation are proposed,

and their stability and performance properties are derived. The design of the filters in

the frequency domain is motivated by discussing the complementary characteristics of the

inertial and aiding sensors in the frequency domain.

4.1.1 Attitude filter

Let λ =
[

ψ θ φ
]′

denote the vector containing the yaw, pitch and roll angles, respec-

tively, of the Z-Y-X Euler angles convention [34], also known in the literature as Cardan,

Bryant or Tait-Bryant angles [104]. Without loss of generality, the considered Euler angles

sequence rotates from Earth frame {E} to body frame {B} coordinates. The Euler angle

kinematics are described by

λ̇ = Q(λ)ω, Q(λ) =







0 sinφ sec θ cosφ sec θ

0 cosφ − sinφ

1 sinφ tan θ cosφ tan θ






. (4.1)

The discrete-time equivalent of the system (4.1) considered in this work, is obtained by

the Euler method [50] with the right-hand side subject to sample-and-hold, yielding

λk+1 = λk + TQ(λk)ωk. (4.2)



4.1. Attitude and position complementary filters 81

z¡1

y¸k
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Figure 4.2: Attitude complementary filter.

where T is the sampling interval and the index k abbreviates the time instant t = kT .

In this work, the attitude is estimated by exploiting the angular velocity and attitude

measurements provided by strapdown sensors. The angular velocity is measured by a rate

gyro affected by noise and random-walk bias [22],

ωr k = ωk + bω k + wωr k, bω k+1 = bω k + wb k, (4.3)

where wωr ∼ N (0,Ξω) is zero-mean, Gaussian white noise and bω is the sensor bias driven

by the Gaussian white noise wb ∼ N (0,Ξb).

The proposed attitude filter estimates the attitude of the vehicle expressed in Euler

angles and compensates for the rate gyro bias. Rewriting the Euler angle kinematics

(4.2-4.3) in state space form gives

[

λk+1

bk+1

]

=

[

I −TQ(λk)

0 I

][

λk

bk

]

+

[

TQ(λk)

0

]

ωr k +

[

−TQ(λk) 0

0 I

][

wωr k

wb k

]

. (4.4)

Consider the following nonlinear feedback system as the proposed attitude filter

[

λ̂k+1

b̂k+1

]

=

[

I −TQ(λk)

0 I

][

λ̂k

b̂k

]

+

[

TQ(λk)

0

]

ωr k

+

[

Q(λk)(K1λ − I) + Q(λk−1)

K2λ

]

(yλ k − ŷλ k), (4.5a)

ŷλ k = Q−1(λk−1)λ̂k, yλ k = Q−1(λk−1)λk + vλ k, (4.5b)

where yλ k is the vector of observed Euler angles transformed to the space of angular rate

and corrupted by the Gaussian white observation noise vλ ∼ N (0,Θλ), and K1λ,K2λ ∈
M(3, 3) are feedback gain matrices. The block diagram of the proposed attitude filter is

depicted in Fig. 4.2.

The attitude observation yλ can be obtained from two vectors measured in body frame,

such as the Earth’s gravitic and magnetic fields, or from observations provided by other de-

vices like cameras or star trackers. As an example, pitch and roll angles can be determined
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from Earth’s gravitational field, available from two on-board inclinometers (pendula), and

the yaw angle can be computed from the Earth’s magnetic field measurements provided

by a magnetometer triad. The choice of attitude observation depends on the available

sensors and computational resources, and hence the attitude observation adopted in this

work is detailed later in the navigation system implementation section.

Consider the following auxiliary linear time invariant system
[

xλ k+1

xb k+1

]

=

[

I −T I

0 I

][

xλ k

xb k

]

+

[

−T I 0

0 I

][

wωr k

wb k

]

, (4.6a)

yx k =
[

I 0
]

[

xλ k

xb k

]

+ vλ k, (4.6b)

which will be used in the sequel as the frequency domain design setup for the time varying

attitude filter (4.5). In the proposed design technique, the feedback gains K1λ and K2λ

in (4.5) are identified with the steady-state Kalman gains for the system (4.6), where the

covariance matrices Ξω, Ξb and Θλ act as ”tuning knobs” to shape the desired frequency

response of the attitude filter.

The time-invariant system (4.6) adopted for the determination of the feedback gains

and associated frequency response is similar to the attitude kinematics (4.4) for Q(λ) =

Q(0). Although this suggests at first glance that the properties of the proposed filter

could be limited to the specific case of λk = 0, the filter is in fact asymptotically stable

for any attitude trajectory parameterized by nonsingular Euler angle configurations. The

stability properties are derived in the following theorem for the specific case of Z-Y-X

Euler angles, however the extension of the results to other Euler angle set conventions [34]

is immediate.

Theorem 4.1. Consider the discrete-time attitude kinematics (4.4). Let K1λ and K2λ be

the steady-state Kalman gains for the system (4.6) and assume that the pitch described by

the platform is bounded, |θ| ≤ θmax <
π
2 . Then the attitude complementary filter (4.5) is

uniformly asymptotically stable (UAS) .

Proof. Let λ̃k = λk − λ̂k, b̃ω k = bω k − b̂ω k denote the estimation errors. The associated

estimation error dynamics are given by
[

λ̃k+1

b̃k+1

]

=

[

Q(λk)(I −K1λ)Q−1(λk−1) −TQ(λk)

−K2λQ
−1(λk−1) I

][

λ̃k

b̃k

]

+

[

−TQ(λk) 0

0 I

][

wωr k

wb k

]

+

[

Q(λk)(I −K1λ) − Q(λk−1)

−K2λ

]

vλ k. (4.7)

By definition, the filter is said to be UAS if the origin of the system (4.7) is UAS in the

absence of state and measurement noises [69]. However, the state and measurement noises

are denoted in the proof for the sake of convenience. The system (4.6) can be written in

the compact state space formulation

xk+1 = Fxk + Gwk, yk = Hxk + vk,



4.1. Attitude and position complementary filters 83

where xk =
[

x′
λ k x′

b k

]′
, wk =

[

w′
ωr k w′

b k

]′
, yk = yx k, vk = vλ k, F =

[

I −T I
0 I

]

,

G =
[−T I 0

0 I

]

, and H =
[

I 0
]

. It is straightforward to show that [F,H′] is detectable

and [F,G] is completely stabilizable, hence the closed-loop system

x̃k+1 = (F − KH)x̃k + Gwk − Kvk, (4.8)

where K =
[

K ′
1λ K ′

2λ

]′
, is UAS [4]. Define the Lyapunov transformation of variables

[

λ̃x k

b̃x k

]

= Tk

[

x̃λ k

x̃b k

]

, Tk =

[

Q(λk−1) 0

0 I

]

, (4.9)

that is well defined [122] because θ is bounded by assumption. Applying the transformation

of variables Tk to (4.8) yields

[

λ̃x k+1

b̃x k+1

]

= Tk+1(F − KH)T−1
k

[

λ̃x k

b̃x k

]

+ Tk+1Gwk − Tk+1Kvk

=

[

Q(λk)(I −K1λ)Q−1(λk−1) −TQ(λk)

−K2λQ
−1(λk−1) I

][

λ̃x k

b̃x k

]

+

[

−TQ(λk)wωr k

wb k

]

−
[

Q(λk)K1λ

K2λ

]

vλ k. (4.10)

The origin of (4.8) is UAS and, by the properties of Lyapunov transformations, the origin

of (4.10) is UAS. Hence, the origin of (4.7) is uniform asymptotic stability, as desired.

The stability properties derived in Theorem 4.1 are valid for nonsingular configurations,

where the pitch satisfies θ < π
2 . This is a weak condition for most terrestrial and oceanic

applications, namely those based on autonomous surface crafts, that are studied in this

chapter to illustrate the proposed navigation system.

The stability results can be extended for time-varying Kalman gains, however the

proposed complementary filter is designed in the frequency domain by means of the time-

invariant formulation (4.6), to obtain a desired transfer function that merges the low-

frequency contents of the attitude observations with the high-frequency information from

the angular rate readings. Steady-state Kalman filter gains are adopted to yield an asymp-

totically stable filter that can be easily implemented and tested in low-cost hardware.

Interestingly enough, under operating conditions found in some terrestrial and oceanic

applications, the gains adopted in the proposed filter (4.5) are identified with the steady-

state gains of the Kalman filter for the system (4.4). This implies that, for ASC trimming

maneuvers found in surveillance operations, the performance of the proposed attitude filter

is identical to that of a Kalman filter designed for the time-varying system (4.4).

Theorem 4.2. Let the state and observation disturbances in the attitude kinematics (4.4)

be characterized by the Gaussian white noises wωr ∼ N (0,Ξω), wb ∼ N (0,Ξb) and vλ ∼
N (0,Θλ), respectively, and assume that the pitch and roll angles are constant. Then the
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complementary attitude filter (4.5) is the “steady-state” Kalman filter for the system (4.4)

in the sense that the Kalman feedback gain Kopt k converges asymptotically as follows

lim
k→∞

∥

∥

∥

∥

∥

Kopt k −
[

Q(λk)(K1λ − I) + Q(λk−1)

K2λ

]
∥

∥

∥

∥

∥

= 0. (4.11)

Proof. The estimation error covariance matrix of the Kalman filter for the system (4.6)

satisfies

Pxλ k+1|k = FPxλ k|k−1F
′ + GΞG′ − FPxλ k|k−1H

′S−1
Pλ kHPxλ k|k−1F

′, (4.12)

where SPλ k = HPxλ k|k−1H
′ + Θλ, Ξ =

[

Ξω 0
0 Ξb

]

, see references [4, 69] for a derivation

of (4.12). Given the transformation of variables (4.9), the covariance matrix Σxλ k+1|k =

E
([

λ̃x k+1

b̃x k+1

]

[ λ̃
′
x k+1 b̃′

x k+1 ]
)

is given by Σxλ k+1|k = Tk+1Pxλ k+1|kT
′
k+1 and, using (4.12),

satisfies

T−1
k+1Σxλ k+1|kT

′−1
k+1 = FT−1

k Σxλ k|k−1T
′−1
k F′ + GΞG′

− FT−1
k Σxλ k|k−1T

′−1
k H′S−1

P kHT−1
k Σxλ k|k−1T

′−1
k F′

⇓
Σxλ k+1|k = Tk+1FT−1

k Σxλ k|k−1T
′−1
k F′T′

k+1 + Tk+1GΞG′T′
k+1

− Tk+1FT−1
k Σxλ k|k−1T

′−1
k H′S−1

Σλ kHT−1
k Σxλ k|k−1T

′−1
k F′T′

k+1,

where SΣλ k = HT−1
k Σxλ k|k−1T

′−1
k H′ + Θλ.

With a slight abuse of notation, let K1λ k and K2λ k denote the time-varying Kalman

gains for the system (4.6) and formulate the attitude filter (4.5) with time-varying gains
[

λ̂k+1

b̂k+1

]

=

[

I −TQ(λk)

0 I

][

λ̂k

b̂k

]

+

[

TQ(λk)

0

]

ωr k

+

[

Q(λk)(K1λ k − I) + Q(λk−1)

K2λ k

]

(yλ k − ŷλ k). (4.13)

To identify the attitude filter (4.5) as the steady-state Kalman filter for the system (4.4),

it is shown that the attitude filter (4.13) is the Kalman filter for the system (4.4). This

condition is satisfied if i) Σxλ k+1|k is the error covariance of the attitude filter (4.13) and

that ii) Σxλ k+1|k is the error covariance of the optimal (i.e. Kalman) filter for the attitude

kinematics (4.4), for a discussion on the optimality of the Kalman filter and uniqueness of

the optimal gains, the reader is referred to [4, 69].

The condition of constant pitch and roll implies that Q(λk+1) = Q(λk), hence the

kinematics (4.7) and (4.10) are identical, [λ̃
′
x k b̃′

x k
]′ = [λ̃

′
k b̃′

k
]′ and Σxλ k+1|k is the

error covariance matrix of the attitude filter (4.13).

The matrix Σxλ k+1|k is the covariance error of the Kalman filter for the system

zk+1 = Tk+1FT−1
k zk + Tk+1Gwz k, (4.14a)

yz k = HT−1
k zk + vz k, (4.14b)
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where zk ∈ R
6, wz ∼ N (0,Ξ), vz ∼ N (0,Θλ). Using Q(λk+1) = Q(λk), the matrices of

the system (4.14) are given by

Tk+1FT−1
k =

[

I −TQ(λk)

0 I

]

, Tk+1G =

[

−TQ(λk) 0

0 I

]

,

HT−1
k =

[

Q−1(λk−1) 0
]

,

which are identical to the state matrices of the attitude kinematics (4.4) with attitude

observation given by (4.5b). Consequently, the attitude filter (4.13) produces the optimal

estimation error covariance matrix Σxλ k+1|k for the system (4.4) and, by uniqueness, the

attitude filter (4.13) is a Kalman filter. Using K1λ k → K1λ and K2λ k → K2λ as k → ∞
yields (4.11), that completes the proof.

The performance results presented in Theorem 4.2 hold for applications where the

pitch and roll angles are constant or can be considered approximately constant. It should

be emphasized that it is of interest for terrestrial and oceanic platforms considered in this

work, subject to repetitive monitoring trajectories. For the case of time-varying pitch

and roll angles, and for aggressive maneuvers, the performance of the complementary

and of the Kalman filters can be compared offline by computing the estimation error

covariances of the filters, as detailed in Appendix D. Later in this work, the performance

of the complementary filter is analyzed for the experimental data obtained on-board the

DELFIMx catamaran.

Although performance results for the complementary filter are presented in Theo-

rem 4.2, the design of the feedback gains is performed in the frequency domain due to

the characteristics of the attitude aiding sensor at hand, and to unmodeled sensor dis-

turbances often found in experimental setups. This approach exploits the low-frequency

region where the attitude observations are typically more accurate, and the high-frequency

region where the integration of the rate gyro yields better attitude measurements.

4.1.2 Position filter

The continuous-time position kinematics are given by

ṗ = v, v̇ = RBa,

where p and v are the position and velocity in Earth frame coordinates, R is the shorthand

notation for the rotation matrix from body frame {B} to Earth frame {E} coordinates,

and Ba is the acceleration in body frame coordinates. The discrete-time equivalent is

obtained by sample-and-hold of the inputs [50] and is given by

pk+1 = pk + Tvk +
T 2

2
Rkak, vk+1 = vk + TRk

Bak. (4.15)

The accelerometer measures the specific force, which is the difference between the inertial

and the gravitic accelerations of the rigid body [20], Bak and Bgk respectively, expressed
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in body frame coordinates,

ar k = Bak − Bgk + war ,

where war ∼ N (0,Ξa) is zero-mean, Gaussian white noise. The position kinematics (4.15)

using the accelerometer measurements are described by

[

pk+1

Bvk+1

]

=

[

I TRk

0 R′
k+1Rk

][

pk

Bvk

]

+

[

T 2

2 Rk

TR′
k+1Rk

]

(ar + R′
k
Eg)

+

[

I −T 2

2 Rk

0 −TR′
k+1Rk

][

wp k

war k

]

, (4.16)

where Bvk = R′
kvk+1 is the velocity expressed in body coordinates, Eg is the gravitic

acceleration expressed in Earth coordinates, and wp ∼ N (0,Ξp) is zero-mean, Gaussian

white noise that accounts for small disturbances in the position. The position observer

kinematics, depicted in Fig. 4.3, are given by

[

p̂k+1

Bv̂k+1

]

=

[

I TRk

0 R′
k+1Rk

][

p̂k

Bv̂k

]

+

[

T 2

2 Rk

TR′
k+1Rk

]

(ar + R′
k
Eg)

+

[

K1 p

R′
k+1K2 p

]

(yp k − ŷp k), (4.17a)

ŷp k = p̂k, yp k = pk + vp k, (4.17b)

where yp k is the position computed using the readings of the GPS receiver, and vp ∼
N (0,Θp) is zero-mean, Gaussian observation noise. The propulsion force of a vehicle is,

in general, physically oriented along a body fixed axis, producing a predominant body

fixed direction of motion, e.g. when thrusters are mounted and act along the x-axis of

the body, the main velocity variations are naturally expressed along that axis. Also,

high angular rates due to aggressive maneuvering introduce high-frequency shifts in Earth

frame velocity, while the velocity in the body frame remains aligned with the vehicle’s

predominant direction of motion, e.g. the body velocity of a ship remains constant while

describing uniform circular motion but the components of the velocity vector in Earth

coordinates are sinusoidal. Consequently, the velocity estimate of the position filter is

expressed in body frame coordinates, as opposed to being expressed in Earth frame, to

reduce bandwidth requirements under attitude changes and vehicle actuation.

The feedback terms K1 p and K2 p are identified with the Kalman filter gains for the

system

[

xp k+1

xv k+1

]

=

[

I T I

0 I

][

xp k

xv k

]

+

[

I −T 2

2

0 −T

][

wp k

wv k

]

, (4.18a)

yx k =
[

I 0
]

[

xp k

xv k

]

+ vp k, (4.18b)
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Figure 4.3: Position complementary filter.

where wv ∼ N (0,Ξa) is zero-mean, Gaussian white noise with the covariance of the

accelerometer noise war . In the design of the position filter, the covariance matrices Ξp,

Ξa, and Θp are used as tuning knobs to shape the frequency response of the filter. The

stability and performance of the position complementary filter (4.17) are addressed in the

following propositions.

Theorem 4.3. Consider the discrete-time position kinematics (4.16), and let K1 p and

K2 p be the steady-state Kalman filter gains for the system (4.18). Then the position

complementary filter (4.17) is UAS.

Proof. The structure of the proof is similar to that of Theorem 4.1. Define the estimation

errors p̃k = pk − p̂k and Bṽk = Bvk − Bv̂k. The associated kinematics are described by
[

p̃k+1

Bṽk+1

]

=

[

I −K1p TRk

−K2p R′
k+1Rk

][

p̃k

Bṽk

]

+

[

I −T 2

2 Rk

0 −TR′
k+1Rk

][

wp k

war k

]

−
[

K1p

R′
k+1K2p

]

vp k. (4.19)

The compact state space formulation for the system (4.18) is given by

xk+1 = Fxk + Gwk, yk = Hxk + vk, (4.20)

where xk =
[

x′
p k x′

v k

]′
, wk =

[

w′
p k w′

v k

]′
, yk = yx k, vk = vp k, F =

[

I T I
0 I

]

, G =
[

I −T2

2
0 −T

]

, and H =
[

I 0
]

. The pairs [F,H′] and [F,G] are detectable and completely

stabilizable, respectively and the closed-loop system

x̃k+1 = (F − KH)x̃k + Gwk − Kvk, (4.21)
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where K =
[

K ′
1p K ′

2p

]′
, is UAS [4]. Define the Lyapunov transformation of variables,

adopted in previous work by the authors [11], given by

[

p̃k

ṽk

]

= Tk

[

x̃p k

x̃v k

]

, Tk =

[

I 0

0 Rk

]

, (4.22)

and consider wv k = Rkwar k. Applying the Lyapunov transformation to (4.21) yields

(4.19), and hence the origin of (4.19) is uniformly asymptotically stable by the properties

of Lyapunov transformations [122].

In the following theorem it is shown that the proposed position filter is identified

with the steady-state Kalman filter for the position kinematics (4.17), under the mild

assumption that the Gaussian white noises of the accelerometer triad are stochastically

independent and characterized by the same variance. The stochastic independence is

verified in realistic setups where the acceleration measurements are provided by three

sensors from the same model, mounted orthogonally.

Theorem 4.4. Let the state and observation disturbances in the position kinematics (4.16)

be characterized by Gaussian white noises wp ∼ N (0,Ξp), war ∼ N (0, ξaI), and vp ∼
N (0,Θp). Then the position complementary filter (4.17) is the “steady-state” Kalman

filter for the system (4.16) in the sense that the Kalman feedback gain Kopt k converges

asymptotically as follows

lim
k→∞

∥

∥

∥

∥

∥

Kopt k −
[

K1 p

R′
k+1K2 p

]∥

∥

∥

∥

∥

= 0. (4.23)

Proof. The estimation error covariance matrix of the Kalman filter for the system (4.20)

satisfies

Pxp k+1|k = FPxp k|k−1F
′ + GΞG′ − FPxp k|k−1H

′S−1
PpHPxp k|k−1F

′,

where SPp = HPxp k|k−1H
′ + Θ, Ξ =

[

Ξp 0

0 Ξa

]

. With a slight abuse of notation, let K1p k

and K2p k denote the time-varying Kalman gains for the system (4.18) and formulate the

attitude filter (4.17) with time-varying gains

[

p̂k+1

Bv̂k+1

]

=

[

I TRk

0 R′
k+1Rk

][

p̂k

Bv̂k

]

+

[

T 2

2 Rk

TR′
k+1Rk

]

(ar + R′
k
Eg)

+

[

K1p k

R′
k+1K2p k

]

(yp k − ŷp k).

Applying the Lyapunov transformation (4.22), the covariance matrix Σpk+1|k = E
([

p̃k+1

ṽk+1

]

[ p̃′
k+1 ṽ′

k+1 ]
)

is given by Σpk+1|k = Tk+1Px k+1|kT
′
k+1 and satisfies

Σpk+1|k = Tk+1FT−1
k Σpk|k−1T

′−1
k F′T′

k+1 + Tk+1GΞG′T′
k+1

− Tk+1FT−1
k Σp k|k−1T

′−1
k H′S−1

Σp kHT−1
k Σpk|k−1T

′−1
k F′T′

k+1, (4.24)
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Figure 4.4: Navigation system architecture.

where SΣp k = HT−1
k Σpk|k−1T

′−1
k H′ + Θ. Assuming that the accelerometer noise covari-

ance matrix is diagonal, Ξa = ξaI, the matrices in (4.24) are given by

Tk+1FT−1
k =

[

I TRk

0 R′
k+1Rk

]

, HT−1
k =

[

I 0
]

,

Tk+1GΞG′T′
k+1 = Tk+1G

[

Ξp 0

0 Ξa

]

G′T′
k+1 = Tk+1G

[

Ξp 0

0 RkΞaR′
k

]

G′T′
k+1

=

[

I −T 2

2 Rk

0 −TR′
k+1Rk

][

Ξp 0

0 Ξa

][

I −T 2

2 Rk

0 −TR′
k+1Rk

]′

,

which shows that Σpk+1|k is the optimal error covariance matrix for the position kinematics

(4.16). Using K1p k → K1p and K2p k → K2p as k → ∞ produces (4.23) and completes the

proof.

Although some performance results are presented for the position filter, the closed-loop

system is obtained by design in the frequency domain, and the feedback gains K1 p and

K2 p are the steady-state Kalman gains for the design system (4.18). In this framework,

the high-frequency contents of the accelerometer measurements are exploited, filtering out

gravity and bias compensation errors, and merged with the low-frequency information

available from the GPS position observations.

4.2 Navigation system implementation

This section presents the overall navigation system architecture that builds on the attitude

and position complementary filters derived separately in the previous section, and discusses

the problem of implementing the filter with different sampling rates.
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4.2.1 Magneto-pendular sensor

The attitude observation yλ k in Euler angles coordinates is determined using the body

and Earth frame representations of two vectors, namely the Earth’s magnetic and gravitic

fields. The problem of determining attitude using vector measurements is known in the

literature as the orthogonal Procrustes problem [61] or as Wahba’s problem [139] and

several solutions have been proposed along time-spread articles [37]. The solution proposed

in this work computes the Euler angles observation using a deterministic approach, similar

to that of a TRIAD algorithm [8, 25]. Note that yλ k can be obtained using other attitude

reconstruction algorithms and sensors, for more details see [37] and references therein.

The magnetic field vector is measured in the body frame by the magnetometer

mr = R′
X(φ)R′

Y (θ)R′
Z(ψ)Em + nm, (4.25)

where the magnetic field in Earth frame coordinates, denoted by Em, is known, nm is

the magnetometer measurement noise and RX(φ), RY (θ) and RZ(ψ) represent the roll,

pitch, and yaw elementary rotation matrices, respectively. Denoting the projection of

the magnetometer reading on the x-y plane by Pm = RY (θ)RX(φ)mr, the yaw angle is

obtained by algebraic manipulation of (4.25), producing

ψ = arctan 2
(

Emy
Pmx − Emx

Pmy,
Emx

Pmx + Emy
Pmy

)

, (4.26)

where the four quadrant arctan, denoted as arctan 2, was adopted. The pitch and roll

angles are obtained from the accelerometer, which is regarded as a pendular sensor

ap ≈ −Bg = −R′
X(φ)R′

Y (θ)Eg =







g sin θ

−g cos θ sinφ

−g cos θ cosφ






, (4.27)

where ap denotes the accelerometer reading assuming that external accelerations are neg-

ligible, Eg =
[

0 0 g
]′

is the gravity vector in Earth frame coordinates, and g is the

local gravitic acceleration. The pitch and roll angles are given by algebraic manipulation

of (4.27), producing

φ = arctan 2 (−ay,−az) , (4.28a)

θ =







arctan
(

−ax sin φ
ay

)

, sinφ 6= 0

arctan
(

−ax cos φ
az

)

, cosφ 6= 0
. (4.28b)

The computation of pitch and roll angles using directly the accelerometer reading

in (4.28) is distorted in the presence of external linear and angular accelerations. The

accelerometer measurement model is given by [20]

ar =
d Bv

dt
+ ω × Bv − Bg,
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where d Bv
dt is the linear acceleration and ω × Bv is the centripetal acceleration. Typical

maneuvers of autonomous vehicles involve mostly short term linear accelerations, which

hence are high-frequency and the resulting distortion in pitch and roll can be smoothed

out by the complementary lowpass filter. On the other hand, centripetal accelerations

occur even in trimming maneuvers, e.g. a helicoidal path, and must be compensated for.

As depicted in Fig. 4.4, the pendular reading estimate âp used in (4.28) is obtained by

compensating the centripetal acceleration

âp = ar − ω̂ ×B v̂, (4.29)

where ω̂ = ωr − b̂ω is the angular rate drawn from the rate gyro measurement with

bias compensation and Bv̂ is the velocity estimate provided by the complementary po-

sition filter or by a Doppler sensor if available. The effect of linear acceleration in âp is

compensated in the frequency domain by appropriate design of the complementary filter.

The yaw, pitch, and roll observations (4.26, 4.28, 4.29) define a virtual attitude sensor

measurement that is referred to as Magneto-Pendular Sensor (MPS). The MPS observation

noise vλ is a nonlinear function of the magnetometer and accelerometer noises, the attitude

of the vehicle and the (linear and angular) acceleration compensation errors, and is mostly

high-frequency due to the influence of linear accelerations. If modeled stochastically, the

noise covariance Θλ can be inflated to account for the time-varying covariance of vλ,

however this technique leads to undesirable performance degradation, for a discussion

on the subject see [4] and references therein. In the frequency domain design approach,

adopted in this work, the observation noise weight matrix is tuned to yield good steady-

state high-frequency rejection of the MPS noise.

4.2.2 Complementary filter coupling

The proposed navigation system integrates the attitude and position complementary filters

to produce an estimate of the vehicle attitude and position. The blocks of the diagram

depicted in Fig. 4.4 have been introduced previously in this work: the attitude and position

complementary filters are detailed in Section 4.1 and illustrated in Fig. 4.2 and Fig. 4.3,

respectively, and the Magneto-Pendular Sensor and the Centripetal Acceleration Removal

blocks are detailed in Section 4.2.1. The attitude terms in the position filter kinematics and

the use of pendular readings to obtain the MPS measurement produce a coupling between

the attitude and the position filters, illustrated by the block connections of Fig. 4.4, which

are described as follows.

The attitude rotation matrix Rk and the attitude update term R′
k+1Rk are adopted in

the kinematics of the position filter (4.17), as illustrated in the block diagram of Fig. 4.3.

The attitude term Rk is obtained from the attitude filter, which is the best attitude esti-

mate available in the practical implementation of the navigation system, and the update

term described by R′
k+1Rk ≈ e

−T(ωr k−b̂ω k)× is obtained using the rate gyro measurement

and the bias estimate, where (a)× is the skew symmetric matrix defined by the vector
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a ∈ R
3 such that (a)× b = a × b, b ∈ R

3. Likewise, the transformation matrix Q(λk) is

constructed using the best attitude estimate at each time k, which is given by the attitude

filter.

The gravitic measurements used in the computation of the attitude measurement yλ

are distorted by linear and angular accelerations. As a way to robustify the attitude

measurement yλ, the angular accelerations are compensated for by using the angular rate

and linear velocity estimates as shown in (4.27), allowing for valid MPS measurements in

the presence of centripetal accelerations, that occur even in trimming conditions such as

helicoidal trajectories.

The theoretical stability and performance properties of the attitude and position filters

derived in Section 4.1 cannot be directly inferred for the overall navigation system due

to the filter coupling and to the use of pendular measurements in the attitude aiding

observation. This limitation is a consequence of the adopted attitude aiding sensors,

and stability and performance can be guaranteed in other experimental setups, e.g. by

using non-pendular, vision-based attitude aiding sensors and by decoupling the attitude

and position filters using external attitude reference units. For the proposed navigation

system implementation, extensive Monte Carlo simulations showed that the architecture

is stable in practice.

4.2.3 Multirate filtering

In general, the GPS output rate is slower than the sampling rate of the inertial sensors. In

this case, the position feedback gains are obtained by considering the multirate position

filter as a periodic estimator, and adopting the optimality results for periodic systems

derived in [15], which are briefly described in the ensuing for the position filter for the

sake of clarity. Let the GPS and inertial sensors’ sampling periods be denoted by TGPS

and TINS, respectively, and define the ratio nT = TGPS
TINS

, nT ∈ N. The design system (4.6)

is periodic with period nT and is written in the compact form

xk+1 = Fxk + Gwk, yk = Hkxk + vk, (4.30)

where xk =
[

x′
λ k x′

b k

]′
, wk =

[

w′
ω k w′

b k

]′
, yk = yx k, vk = vλ k , F =

[

I −T I
0 I

]

,

G =
[−T I 0

0 I

]

, and the observation matrix of the system is given by

Hk =







[I 0] if k
nT

∈ N0,

[0 0] otherwise.
(4.31)

The system (4.30) can be associated with the time-invariant system that models the dy-

namics of the state at time k = inT , i ∈ N0, described by

xk+1 = Fxk + Gwk, y
k

= Hxk + Dwk + vk, (4.32)
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where xk = xknT
, xk ∈ R

6,

wk =
[

w′
knT

w′
knT +1 ... w′

(k+1)nt−1

]′
, wk ∈ R

6nT ,

vk =
[

v′
knT

v′
knT +1 ... v′

(k+1)nt−1

]′
, vk ∈ R

3nT ,

y
k

=
[

y′
knT

y′
knT +1 ... y′

(k+1)nt−1

]′
, y

k
∈ R

3nT ,

are the augmented noise and measurement vectors, respectively, and

F = FnT ,F ∈ M(6, 6),

G =
[

FnT−1G FnT−2G ... G
]

,G ∈ M(6, 6nT ),

H =
[

H′
0 F′H′

1 ... FnT−1′H′
nT−1

]′
,H ∈ M(3nT , 6),

D =













0 0 ··· ··· 0

H1G 0
...

H2FG H2G 0
...

...
. . .

. . .
...

HnT −1F
nT −1G ··· ··· HnT −1G 0













,D ∈ M(3nT , 6nT ),

which defines a time-invariant system, with correlated measurement and the state noises

[15]. The optimal feedback gain for the time-invariant system (4.32) is given by

K =
[

FPH′ + GΞD′] [Θ + DΞD′ + HPH′]−1
, (4.33)

where K ∈ M(6, 3nT ), Ξ = E(wkw
′
k), Θ = E(vkv

′
k), and P is the steady-state optimal

estimation error covariance matrix, given by the solution of the Riccati equation

P = F∗ PF′
∗ + G∗ G′

∗ − F∗ PH′S−1HPF′
∗,

where S = Θ + DΞD′ + HPH′, G∗ G′
∗ = GΞG′ − GΞD′ [Θ + DΞD′]−1

DΞG′ and

F∗ = F − GΞD′ [Θ + DΞD′]−1
H. Considering the partition of the feedback gain (4.33)

given by K =
[

K0 K1 ... KnT−1

]

, Ki ∈ M(6, 3), i ∈ N0, for the system (4.30-4.31),

it can be easily shown that D = 0, Ki = 0, i 6= 0, and hence that the feedback gain

Kp =
[

K ′
1 p K ′

2 p

]′
is simply given by selecting the gain sub-matrix K0 and propagating

back to the time instant of the GPS measurement, i.e. Kp = F1−nTK0.

For further details on the synthesis of optimal estimator for discrete-time linear periodic

systems, the reader is referred to [15] and references therein. A multirate filter channel to

channel frequency analysis methodology can be found in [113] and references therein.

4.3 Experimental results

The proposed navigation system is validated in this section using a low-power hardware

architecture enclosing low-cost sensors and mounted on-board the DELFIMx catamaran.

The properties of the complementary filters in the frequency domain are discussed and

the resulting performance of the filters is analyzed. The attitude and position estimation
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Table 4.1: Complementary filter parameters.

State Weights Observation Weight Filter Gain

Attitude

Filter

Ξω = 3I

Ξb = 10−10I
Θλ = 0.8 × 10−2I

K1 λ = 2.97 × 10−1I

K2 λ = 9.41 × 10−5I

Position

Filter

Ξp = 5 × 10−2I

Ξa = 10I
Θp = I

K1 p = 0.59I

K2 p = 0.14I
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Figure 4.5: Complementary filter transfer functions.

results using the experimental data collected in the catamaran sea tests are presented, and

the usual cases of GPS signal outage and of initial calibration error of the rate gyro bias

are addressed. A detailed description of the DELFIMx craft and the adopted hardware is

found in Appendix B. Due to the distinct sampling rates of the magnetometer and inertial

sensors, a multirate formulation similar to that described in Section 4.2.3 is adopted for

the yaw estimation.

4.3.1 Filter parameter design

The attitude and position filters derived in Section 4.1 are designed to produce a closed-

loop frequency response which blends the complementary frequency contents of the inertial

and the aiding sensor measurements. In this frequency domain framework, the state and

measurement weight matrices are used as tuning parameters and the filter gains are iden-

tified with the steady-state Kalman filter gains. The adopted weights and corresponding

gains are detailed in Table 4.1.

The complementary frequency response of the closed-loop filters is depicted in Fig. 4.5

and was obtained by considering Q(λ) = Q(0) and Rk = I, i.e. the frequency response

of the time invariant systems (4.6) and (4.18) used in the filter design. As shown in

Fig. 4.5, the low-frequency region of the MPS and GPS are blended with the high-frequency
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Figure 4.6: Attitude filter performance (T = 1

56
s).

contents of the open-loop integration of the inertial measurements, which is given by

λω k+1 = λω k + TQ(0)ωr k,

pa k+1 = pa k + Tva k +
T 2

2
ar k, va k+1 = va k + Tar k.

The sum of the transfer functions of the filters, depicted in Fig. 4.5, is unitary, which shows

that the adopted steady-state Kalman gains bear complementary filters, as expected. The

obtained complementary transfer functions are validated in practice with the experimental

data obtained on-board the DELFIMx catamaran.

As discussed in Section 4.1.1, the proposed attitude filter is identified with the steady-

state Kalman filter for constant pitch and roll angles and, in case of time-varying pitch

and roll angles, the performance degradation can be analyzed using the covariance propa-

gation equations detailed in Appendix D. A numerical comparison of the Kalman and the

obtained estimation error covariances is shown in Fig. 4.6, considering the design weights

presented in Table 4.1. As shown in Fig. 4.6(b), the estimation error covariance of the

proposed attitude complementary filter is less than 1% above the optimal estimation error

covariance for the aggressive pitch and roll trajectory depicted in Fig. 4.6(a).

4.3.2 Experimental results analysis

This section presents the navigation system estimation results obtained with the exper-

imental data collected on-board the DELFIMx catamaran during tests at sea using the

hardware architecture detailed previously. The trajectory described by the DELFIMx ve-

hicle is mainly characterized by straight line and circular paths, as depicted in Fig. 4.7(a),

to assess the performance of the navigation system in realistic operational scenarios.

The attitude estimation results presented in Fig. 4.8, are according to the maneuvers

described by the robotic platform, whose forward velocity is mainly along the body frame

x-axis, and hence describes mostly yaw turns. The yaw estimate depicted in Fig. 4.8(a)
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Figure 4.7: DELFIMx trajectory estimation results.
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Figure 4.8: Attitude estimation results.

is consistent with the turning maneuvers and the heading directions of the straight paths

performed by the platform, illustrated in Fig. 4.7(a), and with the yaw measurement

given by the GPS unit. Clearly, the filter estimate is more accurate than the GPS yaw

measurement, that is used only for the sake of validation of the estimation results and

is not fed to the filter. The yaw measurement of the GPS unit is degraded for small

velocities, as shown in Fig. 4.8(a) for the time interval t ∈ [50 300] s where the platform

maneuver is characterized by small forward velocity, as presented in Fig. 4.9(b).

The pitch and roll angles, presented in Fig. 4.8(b), oscillate around the mean values of

3.08 ◦ and −2.20 ◦ respectively, that correspond approximately to the installation angles

of the hardware architecture. Pitch and roll fluctuations occur due to platform turning,

interference of waves, and vibration of the hull due to the propellers. Larger oscillations are

verified when the vehicle turns, for example the slalom trajectory at [760 880] s, detailed

in Fig. 4.10, bears larger peak to peak values of the pitch and roll angles, depicted in
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Figure 4.9: Linear and angular velocity estimation results.

Fig. 4.10(a), due to the oscillation of the catamaran while performing the maneuver, and

to the vibration induced by the propellers. The pitch values satisfy the conditions under

which the stability propositions derived in Sections 4.1 hold. Interestingly enough, the

standard deviations of the pitch and roll estimates are 0.95 ◦ and 1.42 ◦ respectively, which

suggests that the performance degradation of the attitude filter due to time-varying pitch

and roll is small for the present application.

The velocity estimation results are shown in Fig. 4.9. The proposed filter is based on

the attitude kinematics and hence does not estimate explicitly the angular velocity, in spite

of compensating for the rate gyro noise and bias to estimate attitude. The angular velocity

estimate, presented in Fig. 4.9(a), is given by the rate gyro measurements, compensated

with the bias estimate, and is presented to verify the consistency of the attitude estimates.

The z-axis angular velocity is synchronous with the yaw changes in Fig. 4.8(a), namely

in the initial turn, and in turning maneuvers at the time intervals where a variations

in the angular velocity are verified, such as [305 315] s, [370 380] s, [435 450] s, [465 470] s,

[560 600] s, and [760 880] s. These turning maneuvers can be easily identified in Fig. 4.7(a)

by analyzing the time tags. The x- and y-axes angular velocities are consistent with

the pitch and roll estimates, i.e. are approximately zero mean and the most noticeable

fluctuation occurs at the slalom maneuver at [760 880] s, see Fig. 4.10(b).

The estimate of the linear velocity, expressed in body coordinates, is shown in Fig. 4.9(b).

The x-axis body velocity is positive and approximately stepwise constant at the straight

paths trajectories at the time intervals [320 365] s, [385 430] s, [480 550] s, [615 750] s and

[880 980] s. The y-axis body velocity is approximately zero-mean during straight path tra-

jectories, and centrifugal during turning maneuvers due to sideslip of the catamaran, as

evidenced for the slalom maneuver results, see Fig. 4.9(b) and detail in Fig. 4.10(c). Also,

the mean of the y-axis body velocity is nonzero when the vehicle is subject to external,

Earth fixed forces such as waves induced by nearby vessels and oceanic currents, such as
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Figure 4.10: Slalom maneuver at [760 880] s.

in the time interval [760 980] s illustrated in Fig. 4.9(b) and Fig. 4.10(c). The z-axis body

velocity is approximately zero-mean, as expected for an oceanic platform, and oscillates

due to the influence of waves.

The rate gyro bias estimation results are presented in Fig. 4.11(a). The results show

that the attitude complementary filter compensates for slowly time-varying bias, by means

of the small design weight Ξb in the computation of the feedback gain, see Table 4.1 for

details. However, the Kalman gains are stationary and the initial bias uncertainty should

be close to the steady-state bias covariance, i.e. the bias calibration error should be

small. As shown in Fig. 4.11(b), using a larger design weight Ξb enables the filter to

compensate for the bias calibration error at the cost of larger steady state covariance. The

trade-off between compensating for calibration errors and the long-term accuracy of the

bias estimate should be accounted for in the design process, and a simple gain switching

technique, using a large design weight Ξb for initialization of the filter and a smaller design

weight Ξb in the long term, should be considered for the case where online calibration is

required.
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(a) Compensation of slowly time-varying bias, Ξb = 10−10.

−0.2

0

0.2

b
ω

 x
 (

o
/s

)

0.8

1

b
ω

 y
 (

o
/s

)

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

b
ω

 z
 (

o
/s

)

Time (s)

(b) Calibration error compensation, Ξb = 10−7.

Figure 4.11: Rate gyro bias estimation.
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Figure 4.12: DELFIMx trajectory estimation results (GPS signal jamming).

The position estimation results are coherent with the GPS measurements, as evidenced

in Figs. 4.7(a) and 4.7(b). To analyze the weight of GPS aiding in the filter estimation

results, the case of GPS outage is considered by canceling the GPS measurement feed-

back at selected time intervals when the vehicle turns or enters long straight paths. The

GPS outage time instants are detailed in Table 4.2, and the corresponding trajectories

are illustrated in Fig. 4.12(a). The position estimation results for the trajectory paths

subject to GPS outage are shown in detail in Fig. 4.13. The navigation system results

presented in Table 4.2 show that the position drift rate is small during GPS signal outage.

Consequently, the position filter operates without relying too much on the GPS position

observations, by exploiting the inertial measurements information. The navigation system

follows closely the straight path trajectories, as depicted in Figs. 4.13(b) and 4.13(c), and

successfully exploits the angular information during the turning maneuvers detailed in

Figs. 4.13(a) and 4.13(d). The position estimates are bounded for the GPS outage time
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(c) GPS outage at [615 750] s.
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Figure 4.13: Details of the estimated trajectory with GPS outage.

intervals, as shown in Fig. 4.12(b), however position error buildup occurs due to the open-

loop integration of the accelerometers, combined with pitch and roll estimation errors that

induce position estimate drift, as expected.

The frequency domain validation of the complementary transfer functions is performed

using the Matlab spectrogram function to compute the short-time Fourier transform

of the position and attitude estimates, aiding sensor measurements, and inertial sensor

measurements integration. The short-time Fourier transform computes a time-dependent

Fourier transform of the signal multiplied by a sliding window function, and allows for a

characterization of the time-varying frequency contents of a signal at each time instant

[109]. The choice of the window function size is a trade-off between good resolution in the

time domain (short window), and good resolution in the frequency domain (large window).

Using a Hamming window of length 512 and 500 overlapping segments, the frequency

contents of the attitude and position signals are analyzed, and the blending of the low

frequency contents of the aiding sensors with the high frequency contents of the inertial

sensor integration is studied. Namely, Figs. 4.14 and 4.15 illustrate the fusion in the

frequency domain of the pendular measurements with the inertial readings, i.e. the yaw
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Table 4.2: GPS outage results.

Time Interval Final Position Drift (m) Average Position Drift (m/s)

[370 380] s 2.38 0.238

[480 550] s 1.91 0.027

[615 750] s 15.37 0.114

[800 820] s 7.14 0.357

and pitch angles given by the MPS attitude computation and by the rate gyro integration,

and the resulting attitude filter estimate. Also, the position filtering in the frequency

domain is demonstrated in Fig. 4.16, where the frequency contents of the x-axis position

px given by the GPS observation and by the accelerometer integration are presented, and

the position filter estimate is depicted. Although a rigorous analysis in the frequency

domain using the spectrogram is precluded by the multirate formulation of the navigation

system, it is possible to verify qualitatively that the sensor measurements are blended using

complementary transfer functions. The low-frequency contents of the aiding observations

presented in Figs. 4.14(a), 4.15(a) and 4.16(a) are blended with the high-frequency contents

of the open-loop integration of the inertial measurements, shown in Figs. 4.14(b), 4.15(b),

and 4.16(b), producing the attitude and position estimates with the frequency contents

depicted in Figs. 4.14(c), 4.15(c) and 4.16(c), respectively. Qualitatively, it is verified

that the filter estimates are similar to the aiding sensor measurements, smoothed by the

inertial measurement integration. This blending in the frequency domain of the aiding

and inertial sensors data is according to the complementary transfer functions depicted in

Fig. 4.5 and derived in Section 4.3.1.

The experimental results obtained on-board the DELFIMx catamaran validate the

proposed navigation system architecture. The adopted design parameters yield the desired

sensor fusion in the frequency domain, and produce good attitude and position estimation

and rate gyro bias compensation results in the time domain. The attitude and position

estimates were consistent with the trajectory profile, and the navigation system endured

GPS outage, which shows that the proposed complementary filter based architecture is

suitable for the oceanic application under study.

4.4 Conclusions

Complementary filters for attitude and position estimation were proposed, and their stabil-

ity and performance properties were derived theoretically. Using the Euler angles param-

eterization, the attitude filter compensates for rate gyro bias and is stable for trajectories

described by nonsingular configurations. The position filter estimates velocity in body

coordinates and position in Earth frame, and is asymptotically stable. The attitude and

position complementary filters were integrated to produce a complete navigation system,

whose structure can be represented in a simple block diagram and, using steady-state feed-
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(a) Aiding measurement (MPS). (b) Rate Gyro Integration.

(c) Filter Estimate.

Figure 4.14: Spectrograms of the yaw measurements and filter estimate.

back gains, was easily implemented on a low-cost, low-power consumption hardware. The

filter gains are computed using frequency domain design to shape a frequency response

that exploits the low-frequency contents of the aiding sensors and the high-frequency con-

tents of the inertial sensors. Implementation aspects were detailed, namely an attitude

aiding observation based on magnetic and pendular measurements was derived, and the

problem of multiple sampling rates was tackled using optimal results for periodic systems.

The navigation system was validated using experimental data, in tests at sea with the

DELFIMx catamaran. Rate gyro bias was compensated for, and the complementary fre-

quency contents of the aiding and the inertial sensors produced good attitude and position

estimates. Also, the navigation system was shown to yield accurate results and small drift

in the case of GPS outage.
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(a) Aiding measurement (MPS). (b) Rate gyro integration.

(c) Filter estimate.

Figure 4.15: Spectrograms of the pitch measurements and filter estimate.
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(a) Aiding Observation (GPS). (b) Accelerometer Integration.

(c) Filter Estimate.

Figure 4.16: Spectrograms of the px measurements and filter estimate.



Chapter 5

Landmark based nonlinear

navigation system

This chapter addresses the problem of nonlinear observer design, for position and attitude

estimation based on landmark readings and velocity measurements. A nonlinear observer

formulated on SE(3) is derived constructively, using a Lyapunov function conveniently

defined by the landmark measurement error. The derived observer yields almost global

asymptotic stability (GAS) of the desired equilibrium point on SE(3), and exponential

convergence of the attitude and position estimates.

The proposed feedback laws are explicit functions of the landmark measurements and

velocity readings, exploiting the sensor information directly in the observer, and providing

for a geometric insight on the properties of the observer. Namely, the necessary and

sufficient landmark configuration for attitude and position determination is discussed, and

the asymptotic convergence of the observer estimates is characterized given the landmark

geometry and the observer design parameters, that can be thus modified to shape the

directionality of the system.

The problem of non-ideal velocity readings is also addressed, and the observer is aug-

mented to compensate for bias in the angular and linear velocity readings. The resulting

position, attitude, and bias estimation errors are shown to converge exponentially fast to

the desired equilibrium points, for bounded initial estimation errors. Simulation results for

trajectories described by time-varying linear and angular velocities, and for distinct initial

conditions on SE(3), are presented to illustrate the stability and convergence properties

of the observer.

The chapter is organized as follows. In Section 5.1, the position and attitude estima-

tion problem is introduced and the available sensor information is detailed. The attitude

and position observer is derived in Section 5.2. A convenient landmark-based coordi-

nate transformation and Lyapunov function are defined, and the necessary and sufficient

landmark configuration for attitude determination is discussed. The proposed Lyapunov

function is decoupled into independent position and attitude components that are ad-

dressed separately, and almost global stabilizing feedback laws are obtained for attitude

105
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Figure 5.1: Landmark based navigation.

and position estimation. The resulting observer dynamics are expressed as a function of

the sensor readings, and it is shown that the asymptotic convergence of the system tra-

jectories is determined by the landmark geometry, and by the design parameters. The

problem of unknown velocity sensor bias is studied in Section 5.3. The observer dynamics

are extended to dynamically compensate for the bias in the linear and angular velocity

measurements, and stability results are derived. In Section 5.4, simulation results illus-

trate the observer properties for time-varying linear and angular velocities. Concluding

remarks are presented in Section 5.5.

5.1 Problem formulation

Landmark based navigation, illustrated in Fig. 5.1, can be summarized as the problem

of determining attitude and position of a rigid body using landmark observations and

velocity measurements, given by sensors installed onboard the autonomous platform. The

rigid body kinematics are described by

Ṙ = R (ω)× ,
Bṗ = Bv − (ω)×

Bp, (5.1)

where R is the shorthand notation for the rotation matrix L
BR from body frame {B}

to local frame {L} coordinates, ω and Bv are the body angular and linear velocities,

respectively, expressed in {B}, Bp is the position of the rigid body with respect to {L}
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expressed in {B}, and Bṗ denotes the time derivative of Bp, that is d Bp
dt .

The body angular and linear velocities are measured by a rate gyro sensor triad and a

Doppler sensor, respectively

ωr = ω, vr = Bv. (5.2)

The landmark measurements, denoted as qi and illustrated in Fig. 5.1, are obtained by

on-board sensors that are able to track terrain characteristics, such as CCD cameras or

ladars,

qi = R′Lxi − Bp, (5.3)

where Lxi represent the coordinates of landmark i in the local frame {L}. The concate-

nation of (5.3) is expressed in matrix form as

Q = R′X − Bp1′
n,

where Q =
[

q1 . . . qn

]

, X =
[

Lx1 . . . Lxn

]

, Q,X ∈ M(3, n). Without loss of

generality, the origin of the local frame is defined at the landmarks centroid, as depicted

in Fig. 5.1, bearing

n
∑

i=1

Lxi = X1n = 0. (5.4)

The proposed observer reproduces the rigid body kinematics (5.1), taking the form

˙̂R = R̂ (ω̂)× ,
B ˙̂p = Bv̂ − (ω̂)×

Bp̂, (5.5)

where ω̂ and Bv̂ are the feedback terms constructed to compensate for the attitude and

position estimation errors.

The position and attitude errors are defined as Bp̃ := Bp̂ − Bp and R̃ := R̂R′,

respectively. The Euler angle-axis parameterization of the rotation error matrix R̃ is

described by the rotation vector φ ∈ S(2) and by the rotation angle ϕ ∈
[

0 π
]

, yielding

the DCM formulation [107]

R̃ = rot(ϕ,φ) := cos(ϕ)I + sin(ϕ) (φ)× + (1 − cos(ϕ))φφ′. (5.6)

While the observer results are formulated directly in the SE(3) manifold, the rotation

angle ϕ is adopted to characterize some of the convergence properties of the observer.

The attitude and position error dynamics are a function of the linear and angular

velocity estimates and given by

˙̃R = R̃ (R(ω̂ − ω))× , (5.7a)

B ˙̃p = (Bv̂ − Bv) − (ω)×
Bp̃ +

(

Bp̂
)

× (ω̂ − ω). (5.7b)

The attitude and position feedback laws are obtained by defining ω̂ and Bv̂ as a function of

the velocity readings (5.2) and landmark observations (5.3), so that the closed loop position
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and attitude estimation errors converge asymptotically to the origin, i.e. R̃ → I,Bp̃ → 0

as t→ ∞.

The observer for the case of unbiased velocity measurements is presented first to mo-

tivate the derivation of the attitude and position feedback laws, and expose topological

limitations to global stabilization. The cases of biased linear and angular velocity mea-

surements are considered in the ensuing.

5.2 Observer synthesis with ideal velocity measurements

In this section, the attitude and position feedback laws are derived for the case of ideal

angular and linear velocity measurements, expressed in (5.2). It is shown that the pro-

posed Lyapunov function is a linear combination of two independent position and attitude

Lyapunov functions, which allows for the separate derivation of the position and attitude

feedback laws. The closed loop system is demonstrated to have an almost GAS equilib-

rium point at R̃ = I, Bp̃ = 0, and the trajectories are shown to converge exponentially

fast to the origin.

Some relevant characteristics of the observer are pointed out. It is shown that the

position and attitude feedback laws can be expressed as an explicit function of the sen-

sor readings, allowing for the observer implementation in practice. Also, the asymptotic

behavior of the attitude observer trajectories are studied in the Euler angle-axis represen-

tation, characterizing the directionality of the observer estimates given the directionality

of the design feedback law.

5.2.1 Synthesis Lyapunov function properties

The observer is derived resorting to Lyapunov’s stability theory. To exploit the landmark

readings information, vector and position measurements are constructed from a linear

combination of (5.3), producing respectively

Buj =
n−1
∑

i=1

aij(qi+1 − qi),
Bun = − 1

n

n
∑

i=1

qi, (5.8)

where j = 1, . . . , n− 1. The transformation (5.8) can be expressed in matrix form as

BUX = QDXAX = R′UX ,
Bun = Qdp = Bp, (5.9)

where the matrices AX ∈ M(n− 1), BUX ,UX ∈ M(3, n− 1), DX ∈ M(n, n− 1) are given

by

BUX =
[

Bu1 . . . Bun−1

]

, DX =
[

01×n−1

In−1

]

−
[

In−1

01×n−1

]

,

AX = [aij ], UX = XDXAX , dp = − 1

n
1n,

and the fact that p1′
nDX = 0 ⇒ QDX = R′XDX and that (5.4) implies that Xdp =

0 ⇒ Qdp = Bp, were used. The linear transformation AX is considered invertible by

construction.
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An estimate of the landmarks coordinates in body frame can be obtained using the

observer estimates R̂ and Bp̂, yielding

q̂i = R̂′Lxi − Bp̂,

where q̂i denotes the coordinate estimate of landmark i, and the coordinates of the land-

marks in the local frame Lxi are known. The estimates of the transformed landmarks

(5.9) are described by

BÛX = R̂′UX ,
Bûn = Bp̂, (5.10)

where the columns of BÛX and UX are denoted as Bûi and Lui, respectively, i.e. BÛX =
[

Bû1 . . . Bûn−1

]

, and UX =
[

Lu1 . . . Lun−1

]

.

The candidate Lyapunov function is defined by the estimation error of the transformed

vectors

V =
1

2

n
∑

i=1

‖Bûi − Bui‖2, (5.11)

that can be described as a linear combination of distinct position and attitude components,

as presented next.

Proposition 5.1. The Lyapunov function (5.11) is characterized by distinct attitude and

position components V = VR + Vp. The attitude component is given by

VR =
1

2

n−1
∑

i=1

‖Bûi − Bui‖2 = tr
[

(I − R̃)UXU′
X

]

=
1

4
‖I − R̃‖2φ′Pφ = (1 − cos(ϕ)) φ′Pφ, (5.12)

where

P = tr(UXU′
X)I − UXU′

X , (5.13)

and the position component is given by

Vp =
1

2
‖Bûn − Bun‖2 =

1

2
Bp̃′Bp̃. (5.14)

Proof. The decoupling is obtained by straightforward algebraic manipulation of (5.11),

V =
1

2

n−1
∑

i=1

‖Bûi − Bui‖2 +
1

2
‖Bûn − Bun‖2 = VR + Vp.

The alternative formulations for the attitude component of the Lyapunov function, ex-

pressed in (5.12), are obtained using the properties of the trace, presented Appendix A,

producing

VR =
1

2

n−1
∑

i=1

‖Bûi − Bui‖2 =
1

2

n−1
∑

i=1

‖(R̂′ −R′)Lui‖2

=
1

2

n−1
∑

i=1

‖(I − R̃)Lui‖2 =
1

2
tr
[

(I − R̃)(I − R̃)′UXU′
X

]

.
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Applying the properties of the rotation matrix and the DCM expansion (5.6) yields

VR = tr
[

(I − R̃)UXU′
X

]

= tr
[

(1 − cos(ϕ))(I − φφ′)UXU′
X

]

= (1 − cos(ϕ))φ′(tr(UXU′
X)I − UXU′

X)φ = (1 − cos(ϕ))φ′Pφ.

The derivation of the Lyapunov function along the system trajectories is characterized

in the following statement.

Lemma 5.2. The time derivatives of proposed Lyapunov functions (5.12) and (5.14) are

respectively given by

V̇R =
(

UXU′
XR̃ − R̃′UXU′

X

)′

⊗
R(ω̂ − ω) = φ′PQ(ϕ,φ)R(ω̂ − ω), (5.15a)

V̇p = Bp̃′(
(

Bp̂
)

× (ω̂ − ω) + (Bv̂ − Bv)), (5.15b)

where Q(ϕ,φ) = sin(ϕ)I + (1 − cos(ϕ)) (φ)×.

Proof. Deriving the Lyapunov function (5.14) with respect to time and using (5.7b) yields

V̇p = Bp̃′B ˙̃p = Bp̃′(Bv̂ − Bv) − Bp̃′ (ω)×
Bp̃ + Bp̃′ (Bp̂

)

× (ω̂ − ω)

= Bp̃′
(

(

Bp̂
)

× (ω̂ − ω) + (Bv̂ − Bv)
)

.

Deriving the Lyapunov function (5.12) with respect to time and using (5.7a) yields

V̇R = − tr( ˙̃RUXU′
X) = − tr((R(ω̂ − ω))× UXU′

XR̃). (5.16)

Using the properties of the trace, presented in Appendix A, produces

V̇R = −1

2
tr((R(ω̂ − ω))× (UXU′

XR̃ − R̃′UXU′
X))

=
(

UXU′
XR̃ − R̃′UXU′

X

)′

⊗
R(ω̂ − ω),

which yields the first formulation expressed in (5.15a). Define the auxiliary quantities

a = R(ω̂ − ω) and W = UXU′
X . Using R̃ = I + Q(ϕ,φ) (φ)×, Q(ϕ,φ)φ = φ sin(ϕ) and

the properties of the trace in (5.16), bears

V̇R = − tr((a)× W(I + Q(ϕ,φ) (φ)×)) = − tr((φ)× (a)× WQ(ϕ,φ))

= − tr((aφ′ − a′φI)WQ(ϕ,φ)) = −φ′WQ(ϕ,φ)a + tr(W)a′φ sin(ϕ)

= −φ′WQ(ϕ,φ)a + tr(W)a′Q(ϕ,φ)φ = φ′(tr(W) − W)Q(ϕ,φ)a

= φ′PQ(ϕ,φ)a = φ′PQ(ϕ,φ)R(ω̂ − ω),

which concludes the proof.

The Lyapunov function (5.11), based on the estimation error of the transformed land-

mark measurements, is adopted to derive a feedback law ω̂ and Bv̂ that stabilizes the

attitude and position errors. The decoupling property of the Lyapunov function allows for

the attitude and position estimation problems to be addressed separately. The feedback

law for the attitude kinematics (5.7a) is derived using the Lyapunov function VR, while

the feedback law for the position kinematics (5.7b) relies on Vp.
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5.2.2 Attitude feedback law

The attitude feedback law, derived in this section, exploits angular velocity sensors and

landmark measurements. While velocity sensors allow for the propagation of attitude

in time, attitude with respect to a reference frame is observed only by means of the

landmark measurements. The geometric placement of the landmarks is required to satisfy

the following assumption.

Assumption 5.1 (Landmark Configuration). The landmarks are not all collinear, that

is, rank(X) ≥ 2.

Assumption 5.1 formulates the necessary and sufficient landmark configuration under

which zero observation error is equivalent to correct attitude estimation, i.e. ∀i=1..n−1‖Bûi−
Bui‖ = 0 ⇔ R̃ = I. This is shown in the following proposition, using the fact that the

Lyapunov function VR expresses the landmark measurement error.

Lemma 5.3. The Lyapunov function VR, expressed in (5.12), has a unique global mini-

mum (at R̃ = I) if and only if Assumption 5.1 is verified.

Proof. From (5.12), the zeros of VR are ϕ = 0 or φ ∈ N (P). To show that P > 0 if

and only if rank(X) ≥ 2, denote the singular value decomposition of UX as UX = USV′,

where U ∈ O(3), V ∈ O(n), the off-diagonal elements of S ∈ M(3, n) are zero (∀i6=jsij = 0)

and the diagonal elements are the singular values of UX , i.e. sii = σi(UX), i ∈ {1, 2, 3}.
Then

P = tr(UXU′
X)I − UXU′

X = tr(S2)I − US2U′

= Udiag (s222 + s233, s
2
11 + s233, s

2
11 + s222)U

′

and hence P > 0 if and only if s22, s33 6= 0, i.e. rank(UX) ≥ 2. Given that AX and
[

DX 1n

]

are nonsingular, the equality

rank(UX) = rank
([

UX 03

])

= rank

(

X
[

DX 1n

]

[

AX 0n−1

0′
n−1 1

])

= rank(X),

completes the proof.

It is instructive to analyze why a landmark configuration given by rank(X) = 1 is not

sufficient to determine the attitude of the rigid body. If all Lxi are collinear, then all
Lui are collinear and any R̃ = rot(ϕ, Lui/‖Lui‖) satisfies Bûi = Bui, i.e. the estimated

and observed landmarks are identical for some R̂ 6= R. This is related to the well known

fact that a single vector observation (such as the Earth’s magnetic field) yields attitude

information except for the rotation about the vector itself [88, 140].

Given the Lyapunov function derivatives along the system trajectories (5.15a), consider

the following feedback law,

ω̂ = ωr − kωsω, (5.17)
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where the feedback term is given by

sω =R′
(

UXU′
XR̃ − R̃′UXU′

X

)

⊗
= R′Q′(ϕ,φ)Pφ, (5.18)

and kω is a positive scalar. The attitude feedback yields the autonomous attitude error

dynamics

˙̃R = − kωR̃(UXU′
XR̃ − R̃′UXU′

X), (5.19)

and a negative semidefinite derivative for VR given by

V̇R = −kωs′ωsω ≤ 0.

It is immediate that the attitude feedback law produces a Lyapunov function that decreases

along the system trajectories and, by LaSalle’s invariance principle, guarantees global

convergence to the largest invariant set contained in the set defined by V̇R = 0.

Lemma 5.4. Under Assumption 5.1, the set of points where V̇R = 0 is given by

CVR
= {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,φ ∈ eigvec(P))}
= {(ϕ,φ) ∈ Dφ : ϕ = 0 ∨ (ϕ = π,φ ∈ eigvec(P))},

where Dφ =
[

0 π
]

× S(2).

Proof. The points where V̇R = 0 are given by sω = 0 ⇔ Q′(ϕ,φ)Pφ = 0 and, therefore,

satisfy Pφ ∈ N (Q′(ϕ,φ)), which is equivalent to

Q′(ϕ,φ)Pφ = 0 ⇔ sin(ϕ)Pφ − (1 − cos(ϕ)) (φ)× Pφ = 0.

Since, for any x ∈ R
3, x and (φ)× x are noncollinear, Q′(ϕ,φ)Pφ = 0 if and only if ϕ = 0

or ϕ = π. For the ϕ = π case, the cross product of two vectors is null if and only if they

are collinear, (φ)× Pφ = 0 ⇔ ∃αPφ = αφ, so V̇R = 0 if and only if ϕ = 0 ∨ (ϕ = π ∧ φ ∈
eigvec(P)).

The open loop dynamics of the Euler angle-axis representation [17] are given by

ϕ̇ = φ′R(ω̂ − ω), φ̇ =
1

2

(

I − sin(ϕ)

1 − cos(ϕ)
(φ)×

)

(φ)×R(ω̂ − ω).

The closed loop dynamics are straightforward from (5.17)

ϕ̇ = −kω sin(ϕ)φ′Pφ, (5.20a)

φ̇ = kω (φ)× (φ)× Pφ, (5.20b)

where the dynamics of φ are autonomous.

The closed loop dynamics (5.20) show that CVR
is invariant and, from LaSalle’s invari-

ance principle, the attitude error converges to the set CVR
. The equilibrium points ϕ = π

illustrate the topological obstacles to global stabilization of the system (5.7a), arising from
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the limitations of continuous state feedback on manifolds. As discussed in [13, 81, 97], the

region of attraction of a stable equilibrium point is homeomorphic to some Euclidean vec-

tor space, which precludes global stabilization in SO(3) given that it is not diffeomorphic

to an Euclidean vector space.

However, convergence for almost all initial conditions can be obtained, bearing that

any trajectory emanating from outside a set of zero measure is attracted to the origin. In

the present case, the set ϕ = π has zero measure, and the convergence of the trajectories

emanating outside this set, i.e. ϕ(t0) < π can be studied. To show that the trajectories

of the closed loop converge to the origin R̃ = I for any initial condition outside a zero

measure set, the notion of global stability is relaxed by introducing the definitions of region

of attraction and almost global stability [5, 78, 125].

Definition 5.1 (Region of Attraction [78]). Consider the autonomous system ẋ = f(x)

evolving on a smooth manifold M, where x ∈ M and f : M → TM is a locally Lipschitz

manifold map. Suppose that x = x∗ is an asymptotically stable equilibrium point of the

system. The region of attraction of x∗ is defined as

RA = {x0 ∈ M : φ(t,x0) → x∗as t→ ∞},

where φ(t,x0) denotes the solution of the system with initial condition x = x0.

Definition 5.2 (Almost GAS [5, 78]). Consider the autonomous system ẋ = f(x) evolving

on a smooth manifold M, where x ∈ M and f : M → TM is a locally Lipschitz manifold

map. The equilibrium point x = x∗ is said to be almost globally asymptotically stable if

it stable and M\RA is a set of zero measure.

Defining the distance on SO(3) as that inherited by the Euclidean norm [104], d(R1,R2) =

‖R1 −R2‖, the following theorem shows that the origin is almost globally asymptotically

stable and that the trajectories converge exponentially fast to the desired equilibrium

point.

Theorem 5.5. The attitude error R̃ = I of the closed-loop system (5.19) is an exponen-

tially stable and almost globally asymptotically stable equilibrium point, with the region of

attraction given by

RA = SO(3) \ {R̃ ∈ SO(3) : ‖I − R̃‖2 = 8}
= {(ϕ,φ) ∈ Dφ : ϕ < π}.

For any R̃(t0) ∈ RA, the solution of the system (5.19) satisfies

‖R̃(t) − I‖ ≤ ‖R̃(t0) − I‖e− 1
2
γR(t−t0), (5.21)

where γR = kω

4 (8 − ‖R̃(t0) − I‖2)σ3(P) = kω(1 + cos(ϕ(t0)))σ3(P).
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Proof. Define the Lyapunov function

WR =
‖I − R̃‖2

8
=

1 − cos(ϕ)

2
, ẆR = −kω

2
sin2(ϕ)φ′Pφ. (5.22)

The set of points where ẆR = 0 is given by

CW = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,φ)}.

Since ẆR ≤ 0, the set contained in a Lyapunov function surface

Ωρ = {R̃ ∈ SO(3) : WR ≤ ρ}

is positively invariant [78], that is any trajectory starting at t0 in Ωρ satisfies R̃(t) ∈ Ωρ

for all t > t0, where the dependence on time t is explicitly denoted for the sake of clarity.

Given that WR < 1 ⇒ ϕ < π, the Lyapunov function is strictly decreasing in Ωρ for

any ρ < 1, which implies that − [1 + cos(ϕ(t))] < − [1 + cos(ϕ(t0))] < 0. Rewriting the

Lyapunov function time derivative yields

Ẇ (R̃(t)) = −kω(1 + cos(ϕ))φ′PφW (R̃(t)) ⇒
Ẇ (R̃(t)) ≤ −kω [1 + cos(ϕ(t0))]σ3(P)W (R̃(t)) = −γRW (R̃(t))

Applying the comparison lemma [78] and WR = 1
8‖R̃ − I‖2 produces (5.21), which char-

acterizes the trajectories for ϕ(t0) < π.

Given the closed loop dynamics (5.20b), it is straightforward to show that ϕ(t0) =

π ⇒ ϕ̇ = 0 so the set CW \ {I}, which corresponds to the boundary of RA, is positively

invariant, and hence RA is the region of attraction of R̃ = I.

5.2.3 Position feedback law

The position feedback law is obtained using the methodology adopted for the attitude

feedback law derivation. It is immediate that Vp, expressed in (5.14), is positive definite,

and that Vp = 0 if and only if Bp̃ = 0. Given the time derivative of the Lyapunov function

(5.15b), the position feedback law for the system (5.7b) is defined as

Bv̂ = vr + ((ωr)× − kvI)
Bp̃ −

(

Bp̂
)

× (ω̂ − ωr) (5.23a)

= Bv + ((ω)× − kvI)sv + kω

(

Bp̂
)

× sω, (5.23b)

where the feedback term is

sv =Bp̃, (5.24)

and kv is a positive scalar. The position feedback law produces a closed loop linear time-

invariant system

B ˙̃p = − kv
Bp̃, (5.25)

where the origin is clearly stable.
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Theorem 5.6. The equilibrium point Bp̃ = 0 of the position error dynamics (5.25) is

globally exponentially stable in R
3.

Proof. Exponential convergence to the origin is immediate from the solution of the linear

time invariant system (5.25), given by Bp̃(t) = e−kv(t−t0)Bp̃(t0).

In some applications, it is necessary to estimate the position with respect to the origin

of a specific coordinate frame {E}, described by

Bp̂E = Bp̂ + E
BR̂′EtL, (5.26)

where EtL represents the coordinates of the origin of {L} with respect to {E}, expressed

in {E}, as illustrated in Fig. 5.1. In other applications, it is of interest to estimate Bp̂E

expressed in Earth frame coordinates

Ep̂E = E
BR̂Bp̂ + EtL.

The position estimation error of Bp̂E and Ep̂E are respectively given by

Bp̃E = Bp̃ + E
BR′(I − R̃′)EtL,

Ep̃E = (R̃ − I)E
BRBp + E

BR̂Bp̃. (5.27)

As presented in the following propositions, the estimation errors Bp̃E and Ep̃E converge

exponentially fast to the origin. Without loss of generality, it is considered that the

orientations of {E} and {L} are identical (R = E
BR = L

BR).

Proposition 5.7. The position estimation error Bp̃E converges exponentially fast to the

origin, with the bound

‖Bp̃E(t)‖ ≤ e−
1
2
γBE(t−t0)cBE , (5.28)

where γBE = min{2kv, γR} and cBE = ‖Bp̃(t0)‖ + ‖R̃(t0) − I‖‖EtL‖.

Proof. Using elementary properties of the Euclidean norm yields

‖Bp̃E‖ = ‖Bp̃ + E
BR′(I − R̃′)EtL‖ ≤ ‖Bp̃‖ + ‖R̃ − I‖‖EtL‖

≤ e−kv(t−t0)‖Bp̃(t0)‖ + e−
1
2
γR(t−t0)‖R̃(t0) − I‖‖EtL‖

≤ e−
1
2
γBE(t−t0)(‖Bp̃(t0)‖ + ‖R̃(t0) − I‖‖EtL‖).

Proposition 5.8. Assume that there exist positive scalars p0 and γv such that the position

of the body satisfies

‖Bp(t)‖ ≤ e
1
2
γB(t−t0)p0, (5.29)

for some γB < γR. Then, the position estimation error Ep̃E converges exponentially fast

to the origin, with the bound

‖Ep̃E(t)‖ ≤ e−
1
2
γEE(t−t0)cEE ,

where γEE = min{γR − γB, 2kv} and cEE = ‖R̃(t0) − I)‖p0 + ‖Bp̃(t0)‖.
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Proof. If ‖Bp‖ satisfies (5.29), using (5.27) and the properties of the Euclidean norm

produces

‖Ep̃E‖ = ‖(R̃ − I)E
BRBp + E

BR̂Bp̃‖ ≤ ‖R̃ − I‖‖Bp‖ + ‖Bp̃‖
≤ e−

1
2
(γR−γB)(t−t0)‖R̃(t0) − I‖p0 + e−kv(t−t0)‖Bp̃(t0)‖

≤ e−γEE(t−t0)(‖R̃(t0) − I‖p0 + ‖Bp̃(t0)‖).

In many applications, the condition (5.29) is easily satisfied by choosing a sufficiently

large p0 and a sufficiently small γB. In particular, if ‖Bp(t)‖ is bounded, define p0 =

maxt≥0 ‖Bp(t)‖ and small γB ≈ 0. Although Ep̃E = 0 and Bp̃E = 0 are not exponentially

stable according to the classical definition [78, 125], these quantities are bounded by

an exponential decaying function. Interestingly enough, the observer formulation can

be modified to produce exponential convergence of Bp̃E . The alternative derivation of

the observer is presented in Appendix E.1, and, at the cost of a slightly more complex

formulation, yields exponential stability results for the position estimate with respect to

the Earth frame.

5.2.4 Output feedback configuration

The feedback terms formulated in (5.18) and (5.24) are functions of the nominal attitude

R and position p, which are not available directly from the landmark readings. In this

section, it is shown that the position and attitude feedback laws, (5.17) and (5.23b) re-

spectively, can be expressed as an explicit function of the velocity measurements (5.2),

landmark readings (5.3), and observer estimates.

Theorem 5.9. The dynamics of the attitude and position observer are explicit functions

of the sensor readings and state estimates. The position and attitude dynamics are given

by

˙̂R = R̂ (ω̂)× ,
B ˙̂p = Bv̂ − (ω̂)×

Bp̂,

where the feedback terms are given by

ω̂ = ωr − kωsω,
Bv̂ = vr + ((ωr)× − kvI)sv + kω

(

Bp̂
)

× sω,

and

sω =
n
∑

i=1

(R̂′XDXAXei) × (QDXAXei), sv = Bp̂ +
1

n

n
∑

i=1

qi. (5.30)

Proof. The formulation for the observer and the feedback terms ω̂ and v̂ are presented in

(5.5), (5.17) and (5.23a) respectively. Using the landmark measurement formulation (5.3)

produces

sv = Bp̂ +
1

n

n
∑

i=1

qi = Bp̂ +
1

n

n
∑

i=1

Lxi −
1

n

n
∑

i=1

Bp = Bp̂ − Bp − 1

n

n
∑

i=1

Lxi.
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Using the property (5.4) bears sv = Bp̃, as desired.

Using the properties of the skew and unskew operator, presented in Appendix A, and

the rotation error definition in the formulation of sω expressed in (5.18), yields

sω = R′
(

UXU′
XR̃ − R̃′UXU′

X

)

⊗
=
(

R′UXU′
XR̂ − R̂′UXU′

XR
)

⊗

=
(

BUX
BÛ′

X − BÛX
BU′

X

)

⊗
=

(

n
∑

i=1

(

Bui
Bû′

i − Bûi
Bu′

i

)

)

⊗

=

(

n
∑

i=1

(

Bûi × Bui

)

×

)

⊗
=

n
∑

i=1

(

Bûi × Bui

)

.

Expanding Bui and Bûi using (5.9) and (5.10), respectively, produces

Bui = BUXei = QDXAXei,
Bûi = BÛXei = R̂′UXei = R̂′XDXAXei,

which concludes the proof.

5.2.5 Directionality of the observer estimates

The closed loop trajectories of the observer are analyzed in the Euler angle-axis parame-

terization, allowing for the characterization of asymptotic behavior of the solutions of the

system (5.19) given the adopted landmark transformation and the associated matrix P.

Theorem 5.10. The origin of the system (5.20) is asymptotically stable, with region of

attraction described by

RA = {(ϕ,φ) ∈ Dλ : ϕ < π}.

The attitude error angle ϕ decreases monotonically.

Let the singular values of P satisfy σ1(P) > σ2(P) > σ3(P), the asymptotic conver-

gence of the Euler axis is described by







limt→∞ φ(t) = sign(n′
3φ(t0))n3, if n′

3φ(t0) 6= 0

limt→∞ φ(t) ∈ {n1,n2}, if n′
3φ(t0) = 0

,

where ni is the unit eigenvector of P associated with σi(P).

Proof. The region of attraction of ϕ = 0 is immediate from Theorem 5.5. The Lyapunov

function (5.22) is strictly decreasing in RA, and

∀t2,t1 W (R̃(t2)) < W (R̃(t1)) ⇒ ϕ(t2) < ϕ(t1),

so ϕ(t) converges monotonically to the origin.

The rotation vector dynamics (5.20b) are autonomous. Define the Lyapunov functions

Vs = 1 + sn′
3φ, V̇s = sn′

3φ
(

φ′Pφ − σ3(P)
)

, (5.31)
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in the domain S(2), where s ∈ {−1,+1}. From the Schwartz inequality, the Lyapunov

function is positive definite and Vs = 0 ⇔ φ = −sn3. Assuming that the eigenvalue has

multiplicity 1, the set of point where V̇s = 0 is given by

CVs = {φ ∈ S(2) : φ = ±n3 ∨ n′
3φ = 0}.

The Lyapunov time derivatives V̇s are indefinite in the domain S(2). For each initial

condition φ(t0) choose s and 0 < β < 1 such that sn′
3φ(t0) ≤ β−1 < 0, i.e. Vs(φ(t0)) ≤ β.

The level sets

Ωs
β = {φ ∈ S(2) : Vs(φ) ≤ β},

are positively invariant. The unique points where V̇s = 0 in Ωs
β , given by φ = −sn3, are

asymptotically stable.

To analyze the case n′
3φ(t0) = 0, the property n′

3φ = 0 ⇒ n′
3φ̇ = 0 shows that the set

defined by n′
3φ = 0 is positively invariant, and hence φ(t) ∈ span(n1,n2) for all t. Using

Lemma 5.4 implies that φ(t) → {n1,n2} as t→ ∞.

The asymptotic convergence for the specific case ∃i6=jσi(P) = σj(P) can be obtained

by following the same steps of the proof of Theorem 5.10. In particular, if ∃σP = σI, then

the solution of (5.20b) is given by φ(t) = φ(t0), i.e. every point φ(t) ∈ S(2) is stable.

Proposition 5.11. If ∃i6=jσi(P) = σj(P), the solution to the attitude error vector dy-

namics satisfies

{

σ1(P) = σ2(P)

σ2(P) > σ3(P)
⇒







limt→∞ φ(t) = sign(n′
3φ(t0))n3, if n′

3φ(t0) 6= 0

φ(t) = φ(t0) if n′
3φ(t0) = 0

, (5.32a)

{

σ1(P) > σ2(P)

σ2(P) = σ3(P)
⇒







limt→∞ φ(t) = span(n2,n3), if φ(t0) 6= ±n1

φ(t) = φ(t0), if φ(t0) = ±n1

, (5.32b)

σ3(P) = σ2(P) = σ1(P) ⇒ φ(t) = φ(t0). (5.32c)

Proof. The asymptotic convergence (5.32a) is obtained by using the same steps of proof

of Theorem 5.10 and, from the system dynamics (5.20b) ,

n′
3φ(t0) = 0 ⇒ φ(t0) ∈ span(n1,n2) ⇒ φ(t0) ∈ eigvec(P) ⇒ φ̇(t0) = 0.

The asymptotic convergence (5.32b) is obtained by defining the same Lyapunov functions

(5.31). The set of points where V̇s = 0 is given by

CVs = {φ ∈ S(2) : φ ∈ span(n2,n3) ∨ n′
3φ = 0},

and, defining the positively invariant sets Ωs
β and using LaSalle’s principle, yields φ →

span(n2,n3) as t → ∞ if sn′
3φ(t0) < 0, i.e. n′

3φ(t0) 6= 0. Using a similar Lyapunov

functions based on n2,

Vs(φ) = 1 + sn′
2φ,
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and the using the positively invariant sets Ωs
β and LaSalle’s principle, shows that φ →

span(n2,n3) as t → ∞ if n′
2φ(t0) 6= 0. Using the kinematics (5.20b), if φ ∈ span(n2,n3)

then φ̇ = 0 so span(n2,n3) is a positively invariant set. Finally, the initial condition

n′
2φ(t0) = n′

3φ(t0) = 0 is equivalent to φ(t0) = ±n1, which satisfies φ̇ = 0 and hence

φ(t0) = ±n1 ⇒ φ(t) = φ(t0).

The results of Theorem 5.10 and Proposition 5.11 show that, for almost all initial

conditions, φ converges to the direction of the smallest singular value of P. This char-

acterization of the attitude error is of interest in navigation system design, allowing the

system designer to shape the fastest and slowest directions of estimation using the land-

mark coordinate transformation (5.8).

5.3 Observer synthesis with biased velocity readings

In this section, the attitude and position observer is derived for velocity readings corrupted

by unknown sensor bias. The observer architecture is obtained by extending the feedback

laws and the observer kinematics to compensate for the bias in the linear and angular

velocity readings, tackling the effect of sensor bias in the propagation of attitude and

position, and thus allowing for the estimation errors to converge to the origin.

The case of bias in the linear velocity measurements is addressed first, to illustrate

how the position feedback law proposed in Section 5.2 is extended to compensate for the

bias non-ideality. The problem of bias in the linear and angular velocity measurements

is addressed in the ensuing. In this case, the derived attitude and position feedback

laws bear coupled, non-autonomous position and attitude error kinematics. Consequently,

the stability of the resulting attitude and position observer is analyzed using an unique

Lyapunov function, and exponential stability of the origin is obtained using advanced

techniques, based on stability results for parameterized LTVs.

5.3.1 Biased linear velocity readings

In this section, the observer presented in Section 5.2 is extended for the case where the

linear velocity sensor measurement is corrupted by a bias term, that is

vr = Bv + bv,

where the nominal bias is considered constant, ḃv = 0. The proposed Lyapunov function

(5.11) is augmented to account for the effect of the velocity bias

Vbv
=

1

2

n
∑

i=1

‖Bûi − Bui‖ +
1

2
b̃′

vWbv
b̃v,

where b̃v = b̂v −bv is the bias compensation error, b̂v is the estimated bias and Wbv
is a

positive definite matrix. The Lyapunov function Vbv
can be decoupled as Vbv

= VR + Vp,
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where VR and V̇R are described as before in (5.12) and (5.15a), and

Vp =
n

2
Bp̃′Bp̃ +

1

2
b̃′

vWbv
b̃v, V̇p = Bp̃′(

(

Bp̂
)

× (ω̂ − ω) + (Bv̂ − Bv)) + b̃′
vWbv

˙̃
b′

v.

Clearly, Vp has an unique global minimum at (Bp̃, b̃v) = (0, 0).

The feedback law for the linear velocity is given by compensating the bias of the

velocity reading in (5.23a) and using the feedback term ω̂ defined in (5.17), producing

Bv̂ = vr − b̂v + ((ωr)× − kvI)
Bp̃ −

(

Bp̂
)

× (ω̂ − ωr)

= Bv − b̃v + ((ω)× − kvI)sv + kω

(

Bp̂
)

× sω. (5.33)

Using the linear and angular velocity feedback laws (5.33) and (5.17) respectively, the

augmented Lyapunov function dynamics are

V̇p = −kv
Bp̃′Bp̃ + (

˙̃
b′

vWbv
− Bp̃′)b̃v.

Noting that
˙̂
bv =

˙̃
bv, the bias feedback law is defined as

˙̂
bv = kbv

Bp̃ = kbv
sv,

and Wbv
= 1

kbv
I where kbv

is a positive scalar. The resulting closed loop dynamics are

autonomous and given by

B ˙̃p = −b̃v − kv
Bp̃,

˙̃
bv = kbv

Bp̃, (5.34)

and the Lyapunov function dynamics are described by V̇p = −kv
Bp̃′Bp̃ < 0.

Theorem 5.12. The equilibrium point (Bp̃, b̃v) = (0, 0) of the system (5.34) is globally

exponentially stable.

Proof. The set of points where V̇p = 0 is given by

CVp = {(Bp̃, b̃v) ∈ R
3 × R

3 : Bp̃ = 0}.

To show asymptotic stability, we apply LaSalle’s invariance principle [78]. The closed loop

system (5.34) satisfies Bp̃ ∈ CVp ⇒ B ˙̃p = 0 ⇒ b̃v = 0, so the largest invariant set in CVp

is {(0, 0)}. Exponential stability of the origin is a direct consequence of the solution of

stable linear time-invariant systems [122].

The decoupling property of Vbv
holds in the presence of bv. Consequently, the attitude

observer is identical to that derived in Section 5.2, producing the convergence properties

of Theorem 5.5.
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5.3.2 Biased linear and angular velocity readings

This section presents the derivation of an exponentially stabilizing observer for attitude

and position estimation in the presence of bias in the angular and linear velocity readings,

given by

ωr = ω + bω, vr = Bv + bv, (5.35)

where the nominal biases are considered constant, i.e. ḃω = 0, ḃv = 0.

The proposed Lyapunov function (5.11) is augmented to account for the effect of the

angular and linear velocity bias

Vb =
γϕ

2

n−1
∑

i=1

‖Bûi − Bui‖2 +
γp

2
‖Bûn − Bun‖2 +

γbω

2
b̃′

ωb̃ω +
γbv

2
b̃′

vb̃v

=
γϕ

4
‖I − R̃‖2φ′Pφ +

γp

2
‖Bp̃‖2 +

γbω

2
‖b̃ω‖2 +

γbv

2
‖b̃v‖2, (5.36)

where b̃ω = b̂ω − bω, b̃v = b̂v − bv are the bias compensation errors, b̂ω, b̂v are the

estimated biases, and γϕ, γp, γbω
and γbv

are positive scalars.

Under Assumption 5.1 and given the result of Lemma 5.3, the Lyapunov function Vb

has an unique global minimum at (Bp̃, R̃, b̃ω, b̃v) = (0, I,0,0). The stability analysis of

the closed-loop system is based on studying the level sets described by Vb ≤ β, which

are positively invariant. For β large enough, the level sets of Vb contain multiple critical

points due to the directionality of P, as evidenced in the results of Lemma 5.4. In this

section, the observer using biased velocity readings is designed by shaping P with uniform

directionality, using the transformation AX .

Proposition 5.13. Let H := XDX be full rank, there is a nonsingular AX ∈ M(n) such

that UXU′
X = I.

Proof. Take the singular value decomposition of H = USV′ where U ∈ O(3), V ∈ O(n),

S =
[

diag(s1, s2, s3) 03×(n−3)

]

∈ M(3, n), and s1 > s2 > s3 > 0 are the singular values

of H. Any AX given by

AX = V

[

diag(s−1
1 , s−1

2 , s−1
3 ) 03×(n−3)

0(n−3)×3 B

]

V′
A,

where B ∈ M(n − 3) is nonsingular and VA ∈ O(n), produces UXU′
X = HAXA′

XH =

UV′
AVAU′ = I.

Remark 5.1. Given that rank(H) = rank(X), the condition rank(X) = 2 of Assump-

tion 5.1 does not satisfy directly the conditions of Proposition 5.13. In that case, the

observer equations can be rewritten, by taking two linearly independent columns of H,
Lhi and Lhj , an constructing a full rank matrix, Ha =

[

H Lhi × Lhj

]

. The cross prod-

uct is commutable with rotation transformations, (R′Lhi) × (R′Lhj) = R′(Lhi × Lhj),

hence a modified observer can be derived, without loss of generality, by replacing H with

Ha. This procedure is discussed in detail in Appendix E.2.
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Using the transformation AX defined in Proposition 5.13, the Lyapunov function ex-

pressed in (5.36) is given by

Vb =
γϕ

2
‖I − R̃‖2 +

γp

2
‖Bp̃‖2 +

γbω

2
‖b̃ω‖2 +

γbv

2
‖b̃v‖2. (5.37)

The Lyapunov time derivative is given by

V̇b = γps
′
v

(

(

Bp̂
)

× (ω̂ − ω) + (Bv̂ − Bv) − (ω)×
Bp̃
)

+ γϕs′ω(ω̂ − ω) + γbω
b̃′

ω
˙̃
bω + γbv

b̃′
v
˙̃
bv, (5.38)

where sω and sv are given by (5.18) and (5.24), and by considering the transformation

AX formulated in Proposition 5.13, that is

sω = R′
(

R̃ − R̃′
)

⊗
, sv = Bp̃. (5.39)

The feedback laws for the angular and linear velocities are given by rewriting (5.17)

and (5.23a) respectively, with compensation of the velocity sensors bias, producing

ω̂ = (ωr − b̂ω) − kωsω = (ω − b̃ω) − kωsω, (5.40a)

Bv̂ = vr − b̂v +

(

(

ωr − b̂ω

)

×
− kvI

)

sv −
(

Bp̂
)

× (ω̂ − (ωr − b̂ω)) (5.40b)

= Bv − b̃v +

(

(

ω − b̃ω

)

×
− kvI

)

sv + kω

(

Bp̂
)

× sω. (5.40c)

Using the feedback terms ω̂ and v̂ in (5.38) yields

V̇b = −γpkv‖sv‖2 − γϕkω‖sω‖2

+ (γp

(

Bp̂
)

×
Bp̃ − γϕsω + γbω

˙̃
bω)′b̃ω + (γbv

˙̃
bv − γpsv)

′b̃v.

The bias estimates satisfy
˙̂
bω =

˙̃
bω,

˙̂
bv =

˙̃
bv, and the bias feedback laws are defined as

˙̂
bω =

1

γbω

(

γϕsω − γp

(

Bp̂
)

×
Bp̃
)

,
˙̂
bv =

γp

γbv

sv, (5.41)

producing the Lyapunov function time derivative

V̇b = −γpkvs
′
vsv − γϕkωs′ωsω,

that is negative semi-definite.

The dynamics of the closed-loop estimation errors are described by

B ˙̃p = −
(

Bp
)

× b̃ω − kv
Bp̃ − b̃v, (5.42a)

˙̃R = −kωR̃(R̃ − R̃′) − R̃
(

Rb̃ω

)

×
, (5.42b)

˙̃
bω =

γϕ

γbω

R
(

R̃ − R̃′
)

⊗
− γp

γbω

(

Bp
)

×
Bp̃, (5.42c)

˙̃
bv =

γp

γbv

Bp̃. (5.42d)
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If b̃ω = 0, the system (5.42) reduces to the error dynamics (5.34) with kbv
=

γp

γbv
, as

expected. For the general case b̃ω 6= 0, the system (5.42) becomes nonautonomous, and

the compensation of rate gyro bias couples the attitude and position dynamics.

To analyze the stability of (5.42), define the state xb = (Bp̃, R̃, b̃ω, b̃p) and the domain

Db = R
3 × SO(3) × R

3 × R
3, the set of points where V̇b = 0 is given by

CVb
= {xb ∈ Db : (Bp̃, b̃ω, b̃p) = (0,0,0), R̃ ∈ CR},

CR = {R̃ ∈ SO(3) : R̃ = I ∨ R̃ = rot(π,φ ∈ S(2))}.

As discussed in Section 5.2, global asymptotic stability of the origin is precluded by topo-

logical limitations associated with the estimation error R̃ = rot(π,φ). In the next propo-

sition, the boundedness of the estimation errors is shown and used to provide sufficient

conditions for excluding convergence to the equilibrium points satisfying R̃ = rot(π,φ).

Lemma 5.14. The estimation errors (Bp̃, R̃, b̃ω, b̃p) are bounded. For any initial condi-

tion such that

γbv
‖b̃v(t0)‖2 + γp‖Bp̃(t0)‖2 + γbω

‖b̃ω(t0)‖2

γϕ(8 − ‖I − R̃(t0)‖2)
< 1, (5.43)

the attitude error is bounded by ‖I − R̃(t)‖2 ≤ cmax < 8 for all t ≥ t0 .

Proof. Define the set Ωρ = {xb ∈ Db : Vb ≤ ρ}. The Lyapunov function (5.37) is the

weighted distance of the state to the origin, so ∃α‖xb‖2 ≤ αVb and the set Ωρ is compact.

The Lyapunov function decreases along the system trajectories, V̇b ≤ 0, so any trajec-

tory starting in Ωρ will remain in Ωρ and satisfy Vb(xb(t)) ≤ Vb(xb(t0)). Consequently,

∀t≥t0‖xb(t)‖2 ≤ αVb(x(t0)) and the state is bounded.

The gain condition (5.43) is equivalent to Vb(xb(t0)) ≤ γϕ(4− ε) for some ε sufficiently

small. Using Vb(xb(t)) ≤ Vb(xb(t0)) implies that γϕ‖I−R̃(t)‖2 ≤ 2Vb(xb(t0)) for all t ≥ t0,

hence choosing cmax = 8 − 2ε concludes the proof.

Remark 5.2. The formulation of Lemma 5.14 can be expressed as a function of the

rotation error ϕ, which is a scalar quantity and hence provide for a more intuitive repre-

sentation of the bounds. The inequality (5.43) can be rewritten as

γbv
‖b̃v(t0)‖2 + γp‖Bp̃(t0)‖2 + γbω

‖b̃ω(t0)‖2

4γϕ(1 + cos(ϕ(t0)))
< 1,

and the bound ‖I − R̃(t)‖2 ≤ cmax < 8 is equivalent to ϕ(t) ≤ ϕmax < π, where ϕmax =

arccos(1 − cmax
4 ).

Adopting the analysis tools for parameterized LTV systems [93], the system (5.42),

in the form ẋb = f(t,xb)xb, is rewritten as ẋ⋆ = A(λ, t)x⋆. In this formulation, the

parameter λ ∈ Db×R is associated with the initial conditions of the nonlinear system and

the solutions of both systems are identical whenever the initial conditions of both systems

coincide, x⋆(t0) = x(t0), and the parameter satisfies λ = (t0,x(t0)).
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The results derived in [93] establish sufficient conditions for exponential stability of

the parameterized LTV system, uniformly in the parameter λ (λ-UGES). As discussed in

[93], λ-UGES of the parameterized LTV system implies that the origin of the associated

nonlinear system is exponentially stable, see Appendix F for more details. Using these

results, exponential convergence of the estimation errors in the presence of biased velocity

measurements is shown.

Theorem 5.15. Let γbv
= γbω

and assume that Bp, Bv and ω are bounded. For any initial

condition that satisfies (5.43), the position, attitude and bias estimation errors converge

exponentially fast to the stable equilibrium point (Bp̃, R̃, b̃ω, b̃v) = (0, I, 0, 0).

Proof. The stability of (5.42) is obtained by a change of coordinates, using an attitude

representation similar to that proposed in [135]. Let the attitude error vector be given by

q̃q =
(R̃−R̃′)

⊗

‖(R̃−R̃′)
⊗
‖
‖I−R̃‖
2
√

2
, the closed loop kinematics are described by

B ˙̃p = −
(

Bp
)

× b̃ω − kv
Bp̃ − b̃v, (5.44a)

˙̃qq =
1

2
Q(q̃)(−Rb̃ω − 4kωq̃q q̃s), (5.44b)

˙̃
bω = 4

γϕ

γbω

R′Q′(q̃)q̃q −
γp

γbω

(

Bp
)

×
Bp̃, (5.44c)

˙̃
bv =

γp

γbv

Bp̃, (5.44d)

where Q(q̃) := q̃sI + (q̃q)×, q̃ =
[

q̃′
q q̃s

]′
, q̃s = 1

2

√

1 + tr(R̃) and ˙̃qs = 2kωq̃′
qq̃q q̃s −

1
2q

′
qb̃ω. The vector q̃ is the well known Euler quaternion representation [107]. Using

‖q̃q‖2 = 1
8‖R̃ − I‖2, the Lyapunov function in quaternion coordinates is described by

Vb = 4γϕ‖q̃q‖2 +
γp

2 ‖Bp̃‖2 +
γbω

2 ‖b̃ω‖2 +
γbv

2 ‖b̃v‖2.

Let xq := (Bp̃, q̃q, b̃ω, b̃v), xq ∈ Dq, and Dq := R
3 ×B(3)×R

3 ×R
3, define the system

(5.44) in the domain Dq = {x ∈ Dq : Vb ≤ γϕ(4 − εq)}, 0 < εq < 4. The set Dq is given

by the interior of the Lyapunov surface, so it is positively invariant and well defined. The

condition (5.43) implies that the initial condition is contained in the set Dq for εq small

enough and, by Lemma 5.14, the components of the attitude error quaternion are bounded

by ‖q̃q‖2 ≤ cmax
8 and ‖q̃s‖2 ≥ 1 − cmax

8 , with cmax = 8 − 2εq.

Let x⋆ := (Bp̃⋆, q̃q⋆, b̃ω⋆, b̃v⋆), Dq := R
3 × R

3 × R
3 × R

3, γb := γbω
= γbv

, and define

the parameterized LTV system

ẋ⋆ =

[

A(t, λ) B′(t, λ)

−C(t, λ) 03×3

]

x⋆, (5.45)

where λ ∈ R≥0 ×Dq, the submatrices are described by

A(t, λ) =

[

−kvI 03×3

03×3 −2kω q̃s(t, λ)Q(q̃(t, λ))

]

,

B(t, λ) =

[

(

Bp
)

× −R′Q′(q̃(t,λ))
2

−I 03×3

]

, C(t, λ) =
B(t, λ)

γb

[

γpI 0

0 8γϕI

]

,
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and the quaternion q̃(t, λ) represents the solution of (5.44) with initial condition λ =

(t0,
Bp̃(t0), q̃q(t0), b̃ω(t0), b̃v(t0)). By the boundedness of Bp, the matrices A(t, λ), B(t, λ)

and C(t, λ) are bounded, and the system is well defined [77, p. 626]. If the parameterized

LTV (5.45) is λ-UGES, then the nonlinear system (5.44) is uniformly exponentially stable

in the domain Dq, see Appendix F for details. The parameterized LTV system verifies the

assumptions of [93, Theorem 1]:

1) Given the boundedness of Bp, Bv and ω, Bṗ is bounded, and the elements of B(t, λ)

and

∂B(t, λ)

∂t
=

[

(

Bṗ
)

× −1
2Ṙ′Q′(q̃(t, λ)) + R′Q′( ˙̃q(t, λ))

03×3 03×3

]

,

as well as the corresponding induced Euclidean norm, are bounded for all λ ∈ R≥0 ×Dq,

t ≥ t0.

2) The positive definite matrices

P(t, λ) =
1

γb

[

γpI 0

0 8γϕI

]

, Q(t, λ) =
1

γb

[

2kvγpI 0

0 32q̃2s(t, λ)kωγϕI

]

,

satisfy

P(t, λ)B′(t, λ) = C′(t, λ), −Q(t, λ) = A′(t, λ)P(t, λ) + P(t, λ)A(t, λ) + Ṗ(t, λ),

min(CP )I ≤ P(t, λ) ≤ max(CP )I, min(CQ)I ≤ Q(t, λ) ≤ max(CQ)I,

with CP = 1
γb
{γp, 8γϕ} and CQ = 1

γb
{32kωγϕ, 32kωγϕ(1 − cmax

8 ), 2kvγp}.
The system (5.45) is λ-UGES if and only if B(t, λ) is λ-uniformly persistently exciting

[93]. Algebraic manipulation produces

B(τ, λ)B′(τ, λ) =

[

1
4R′Q′(q̃)Q(q̃)R−

(

Bp
)2

× −
(

Bp
)

×
(

Bp
)

× I

]

,

and for any y ∈ R
3,

1

4
y′R′Q′(q̃)Q(q̃)Ry =

1

4

(

‖y‖2 − (y′R′q̃q)
2
)

≥ ‖y‖2

4

(

1 − ‖q̃q‖2
)

≥ ‖y‖2cB,

where cB := 1
4

(

1 − cmax
8

)

. Therefore

B(τ, λ)B′(τ, λ) ≥ B(τ), where B(τ) :=

[

cBI −
(

Bp
)2

× −
(

Bp
)

×
(

Bp
)

× I

]

,

Simple but long algebraic manipulations show that the eigenvalues of B(τ) are given

by α(B(τ)) ∈ {1
2(1 + cB + ‖Bp‖ ±

√

(1 + cB + ‖Bp‖)2 − 4cB), 1, cB}, which are positive

and lower bounded by a positive constant cB, independent of τ , if Bp is bounded, i.e.

∀ταmin(B(τ)) ≥ cB where αmin(B(τ)) denotes the smallest eigenvalue of B(τ). Using

the property B(τ) ≥ αmin(B(τ))I produces B(τ, λ)B′(τ, λ) ≥ αmin(B(τ))I ≥ cBI and

persistency of excitation condition is satisfied. Consequently, the parameterized LTV

(5.45) is λ-UGES, and the nonlinear system (5.44) is exponentially stable in the domain

Dq.
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Given γp, γϕ, γbω
, and γbv

, any initial estimation error xb(t0) satisfying (5.43) converges

exponentially fast to the origin. The following corollary establishes that the origin is

uniform exponential stable, i.e. the convergence rate bounds are independent of xb(t0), for

a bounded initial estimation error, which is a reasonable assumption for most applications.

Corollary 5.16. Assume that the initial estimation errors are bounded

‖Bp̃(t0)‖ ≤ p̃0, ‖I − R̃(t0)‖2 ≤ c0 < 8, (5.46a)

‖b̃ω(t0)‖ ≤ b̃ω0, ‖b̃v(t0)‖ ≤ b̃v0, (5.46b)

for some p̃0, c0, b̃ω0, b̃v0, and let (γp, γϕ, γbω
, γbv

) be such that

γbv
b̃2v0 + γp

B p̃2
0 + γbω

b̃2ω0 < γϕ(8 − c0), (5.47)

and γbω
= γbv

are satisfied. Then the equilibrium point xb = (0, I, 0, 0) is exponentially

stable, uniformly in the set defined by (5.46).

Remark 5.3. The formulation of Corollary 5.16 can be expressed as a function of the

rotation error ϕ, yielding an intuitive representation of the bounds. The attitude inequality

in (5.46a) can be rewritten as ϕ(t0) ≤ ϕ0 < π and the condition (5.47) is given by

γbv
b̃2v0 + γp

B p̃2
0 + γbω

b̃2ω0 < 4γϕ(1 + cos(ϕ0)). The formulation in ϕ evidences that the

exponential stability property derived in Corollary 5.16 is independent of the rotation

error axis φ. This enables the observer to operate on conditions where an upper bound

ϕ0 < π for the initial estimation error is known, irrespective of the directionality of the

attitude error.

Convergence rate bounds can be obtained by applying [92, Theorem 1 and Remark

2], however the obtained values were conservative. The conservativeness of the obtained

bounds can be justified by the sufficiency of the adopted stability analysis tools based on

parameterized LTVs, and, most important, by the fact that the computation of bounds

for the matrix exponential is non-trivial in general [73].

5.3.3 Output feedback configuration

This section shows that the feedback laws can be expressed in terms of the landmark and

velocity readings, (5.3) and (5.35) respectively.

Theorem 5.17. The dynamics of the attitude and position observer are explicit functions

of the sensor readings and state estimates, described by

˙̂R = R̂ (ω̂)× , (5.48a)

B ˙̂p = Bv̂ − (ω̂)×
Bp̂, (5.48b)

˙̂
bω =

1

γb
(γϕsω − γp

(

Bp̂
)

× sv), (5.48c)

˙̂
bv =

γp

γb
sv, (5.48d)
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where γb = γbω
= γbv

, the feedback terms are given by

ω̂ = ωr − b̂ω − kωsω, (5.49a)

Bv̂ = vr − b̂v +

(

(

ωr − b̂ω

)

×
− kvI

)

sv + kω

(

Bp̂
)

× sω, (5.49b)

and

sω =
n
∑

i=1

(R̂′XDXAXei) × (QDXAXei), sv = Bp̂ +
1

n

n
∑

i=1

qi.

Proof. The expressions (5.48c), (5.48d) and (5.49) are directly obtained from (5.40) and

(5.41). The feedback term sω expressed in (5.39) is produced by taking (5.18) with the

transformation AX defined in Proposition 5.13. Consequently, sω can be written in the

form sω = R′
(

UXU′
XR̃ − R̃′UXU′

X

)

⊗
, and following the proof of Theorem 5.9 produces

sω =
∑n

i=1(R̂′XDXAXei) × (QDXAXei), where AX is defined such that UXU′
X = I.

The feedback term sv is obtained by Theorem 5.9.

5.4 Simulations

In this section, the proposed attitude and position observer properties are illustrated

in simulation. A rigid body oscillating trajectory is considered, to analyze the almost

global stabilization of the position and attitude errors, the exponential convergence of

the estimates, and the directionality brought about by the landmark configuration. The

simulation results are presented for the cases of ideal and of biased velocity readings,

studied in Sections 5.2 and 5.3, respectively.

5.4.1 Ideal velocity readings

As illustrated in Fig. 5.2 , the landmarks are placed on the xy plane

Lx1 =
1

5







−4

−3

0






m, Lx2 =

1

5







2

−3

0






m, Lx3 =

1

5







2

6

0






m, (5.50)

which satisfies the non-collinearity condition expressed in Assumption 5.1. The landmark

coordinate transformation (5.9) is defined by AX = I, and the matrix P defined in (5.13)

and its singular values and eigenvectors are given by

P =







3.24 0 0

0 1.44 0

0 0 4.68






,

σ1(P) = 4.68, n1 =
[

0 0 1
]

,

σ2(P) = 3.24, n2 =
[

1 0 0
]

,

σ3(P) = 1.44, n3 =
[

0 1 0
]

.

The feedback gains are given by kv = kω = 1, and the rigid body trajectory is computed

using oscillatory angular and linear rates of 1 Hz, and ideal velocity measurements.
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Figure 5.2: Landmark placement.

The attitude error, shown in Fig. 5.3 for two different initial conditions, converges

exponentially fast to the equilibrium point R̃ = I, and is below the exponential bound

(5.21). The convergence rate of the exponential bound is defined by the smallest singular

value of P, and provides for a worst-case convergence bound that is more conservative

when σ1(P) ≫ σ3(P), and tighter when the directionality of P is more uniform. This

is evidenced in Fig. 5.3(b), where the convergence of the attitude error for a landmark

transformation such that P = I is shown. The actual convergence rate to the origin

is slower for larger initial estimation error ϕ(t0), due to the stickiness effect [5] in the

proximity of the anti-stable manifold defined by ϕ = π. A convincing discussion and

illustration of the influence of anti-stable manifolds in the trajectories of the nonlinear

system can be found in [89].

The Euler axis trajectories in the hemisphere n′
3φ ≥ 0, depicted in Fig. 5.4, illus-

trate the directionality of the attitude error discussed in Section 5.2.5. As derived in

Theorem 5.10, the trajectories of the Euler axis converge to the direction of the smallest

singular value of P, that is φ(t) → n3 as t → ∞ for n′
3φ > 0. Fig. 5.4 also shows that

the boundary n′
3φ = 0 is an invariant, zero-measure set, and that the trajectories near

n′
3φ = 0 converge slower to n1, due to the stickiness effect of the set defined by n′

3φ = 0.

The position estimation error Bp̃ decreases exponentially, as illustrated in Fig. 5.5.

Using Bp̂ and R̂ to compute the position with respect to Earth frame BpE , with EtL = 13,

produces the estimation error Bp̃E shown in Fig. 5.5, that is bounded by an exponentially

decaying term, as expected. Nonetheless, the bound can be inflated by large attitude

errors, as evidenced in (5.28). In that case, the observer can be modified to estimate

directly BpE , as discussed in Appendix E.1, producing a tight converge bound.
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Figure 5.3: Attitude estimation error and exponential convergence bounds for diverse landmark

coordinate transformations (ideal velocity readings, φ(t0) = 1√
3
1′).

Figure 5.4: Euler axis trajectories on S(2).
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Figure 5.5: Error of the position estimate with respect to local and to Earth frames (ideal velocity

readings, ϕ(t0) = 1

3
π rad, φ(t0) = 1√

3
13).

5.4.2 Biased velocity readings

The attitude and position observer with biased velocity readings is analyzed using the

landmark configuration (5.50), that satisfies the non-collinearity conditions expressed in

Assumption 5.1 and corresponds to the case of planar landmarks discussed in Remark 5.1

and Appendix E.2. The landmark coordinate transformation AX is designed so that

UXU′
X = I, using the constructive method presented in the proof of Proposition 5.13.

The feedback gains are given by kω = kv = 1, and the values of γp, γϕ and γb are com-

puted to satisfy the condition of Corollary 5.16 for large bounds on the initial estimation

errors, given by

p̃0 = 2
√

3 m, ϕ0 =
π

2
rad, b̃ω0 = 5

√
3π

180
rad/s, b̃v0 =

√
3 × 10−1 m/s. (5.51)

The adopted values are given by γϕ = 1, γp = 1
4 , and multiple values of γb are used to

study the convergence of the observer, namely γb ∈ {0.19, 1.89} that bear (
γϕ

γb
,

γp

γb
) ∈

{(0.53, 0.13), (5.29, 1.32)}.
The initial attitude and position of the rigid body are R = I, Bp =

[

1 1 1
]′

m, and

the initial estimation errors are given by

Bp̃(t0) =







−2

2

2






m, ϕ(t0) =

72π

180
rad, φ(t0) =

1√
3







1

1

1






,

b̃ω(t0) =
5π

180







1

−1

1






rad/s, b̃v(t0) = 10−1







1

1

−1






m/s,
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(c) Linear velocity bias.

Figure 5.6: Estimation errors (b̃v 6= 0,b̃ω = 0).

that are within the bounds (5.51). The rigid body trajectory is computed using oscillatory

angular and linear velocities of 1 Hz.

The estimation error trajectories are depicted in Fig 5.6 for the case where only the lin-

ear velocity measurements are corrupted by bias (b̃v 6= 0, b̃ω = 0), studied in Section 5.3.1.

The position and bias estimates converge faster for larger feedback gain kv =
γp

γb
, as shown

in Figs. 5.6(a) and 5.6(c). The convergence of the attitude error is independent of the

position and bias errors, as shown in Fig. 5.6(b), due to the decoupling of the position and

attitude error dynamics, that is verified for the case of biased linear velocity readings, as

described in Section 5.3.1.

The results for the case where both angular and linear velocity readings are biased,

are presented in Fig. 5.7. The convergence of the estimation error to the origin is faster

for larger feedback gains. The estimation of bω influences the convergence of the attitude

and position estimates, which is slower than that with b̃ω = 0, as evidenced by comparing

Fig. 5.6 and Fig. 5.7. In other words, the stability of the observer in the presence of biased
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Figure 5.7: Estimation errors (b̃v 6= 0,b̃ω 6= 0).

velocity readings is obtained at the cost of convergence rate, as expected.

Larger gains introduce faster convergence, yet higher peaks in the bias estimates are

also obtained. These can be justified by analyzing the level sets of the Lyapunov function

Vb ≤ c, that are positively invariant and contain points with small attitude and position

error ‖I − R̃‖ ≈ 0, ‖p̃‖ ≈ 0, but with large bias error ‖b̃ω‖2 + ‖b̃v‖2 ≈ 2c
γb

.

The Lyapunov function convergence is shown in Fig. 5.8, where the logarithmic scale

is adopted to demonstrate exponentially fast convergence to the origin. Given that Vb

provides for an upper bound for the estimation error (Bp̃, R̃, b̃ω, b̃v), Fig. 5.8 shows that,

in spite of the peak values attained for (b̃ω, b̃v), the norm of the estimation error converges

exponentially fast to (0, I,0,0).
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Figure 5.8: Exponential convergence of Vb (biased linear and angular velocity measurements).

5.5 Conclusions

A nonlinear observer for position and attitude estimation on SE(3) was proposed, using

landmark measurements and non-ideal velocity readings. A Lyapunov function, conve-

niently defined by the landmark measurement error, was adopted to derive the position

and attitude feedback laws. This approach provided for an insight on the necessary and

sufficient landmark configuration for position and attitude estimation, and produced an

output feedback architecture, expressed as a function of the sensor readings and state

estimates.

The case of ideal velocity readings allowed for the decoupling of the position and at-

titude systems, and almost global stability of the origin, with exponential convergence of

the trajectories, was obtained. The asymptotic behavior of the trajectories was also char-

acterized, showing that the attitude error converges to the axis of the smallest eigenvalue

of a matrix defined by the landmark geometry. The stability results were extended for

the case of biased linear velocity readings, where the position and attitude systems where

coupled by the presence of rate gyro bias. Using recently results for parameterized LTVs,

exponential stabilization of the origin for bounded initial estimation errors was shown.

Simulation results illustrated the convergence properties of the observer for diverse

feedback gains and initial conditions. The theoretical exponential convergence bounds

were shown to be close to the real estimation error. Trajectories emanating from initial

conditions near the anti-stable manifolds showed smaller convergence rate, as expected

from the continuity of the solutions of dynamical systems. In the case of biased linear

and angular velocity readings, exponential convergence to the origin was evidenced. The

effects of time-varying velocities in the solutions of the nonautonomous error dynamics was

negligible. The trade-off between convergence rate and the peak values of the estimates

was justified using the level sets of the Lyapunov function.





Chapter 6

Nonlinear attitude observer using

vector observations

This chapter presents a nonlinear observer for attitude estimation on SO(3), based on

vector observations and biased angular rate measurements. The observer is obtained using

the technique proposed in Chapter 5, that derives the feedback law constructively, using

a Lyapunov function conveniently defined by the measurement error of the aiding sensor.

The resulting attitude feedback law is an explicit function of the vector measurements

and observer estimates, and the stability properties of the attitude observer are similar

to those of the landmark based observer presented in Chapter 5. Namely, almost global

stability with exponential convergence is obtained for ideal velocity measurements, and

exponential stability is shown for biased velocity readings, and initial estimation errors

within a desired region.

The derivation of the attitude observer evidences how the design technique of Chapter 5

can be used to address the classical problem of attitude estimation using inertial measure-

ments and attitude aiding sensors, such as magnetometers, star trackers and pendulums

[37]. Also, the attitude observer is used to motivate and illustrate the stability analysis

tools presented in Chapter 7, that yield input-to-state stability with respect to noise in

the angular velocity reading, and almost global stability of a reduced order observer in

the presence of bias.

The chapter is organized as follows. Section 6.1 introduces the vector measurements,

proposes the synthesis Lyapunov function, and the necessary sensor setup for attitude

determination is discussed. In Section 6.2, the attitude observer is derived for the cases of

unbiased and biased angular velocity readings. The feedback law is written as an explicit

function of the sensor readings, exponential convergence of the attitude and bias estima-

tion errors to the origin is demonstrated, and exponential convergence bounds are obtained

using the recent results for parameterized LTVs. The stability results are obtained by con-

sidering convenient design parameters, however a formulation of the attitude observer with

generic design parameters is presented in Appendix G. In Section 6.3, the convergence of

the estimation errors is illustrated in simulation for distinct initial conditions and feedback

135
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gain values. Section 6.4 presents concluding remarks.

6.1 Synthesis Lyapunov function

The attitude feedback law is derived resorting to the Lyapunov’s stability theory and to

a conveniently defined transformation of the vector observations. This section proposes a

Lyapunov function based on the measurement error of the vector observations, and derives

the necessary and sufficient sensor setup for attitude estimation.

6.1.1 Vector measurements model

The vector observations are a function of the rigid body’s orientation. While vector

observations yield a snapshot attitude estimate for each time instant, inertial sensors

allow for the propagation of the attitude in time. The attitude estimator combines the

inertial measurements with the vector observations, hence exploiting both information

sources. On-board sensors such as magnetometers, star trackers and pendulums, among

others, provide vector observations expressed in body frame coordinates

hr i = Bhi := R′Lhi, (6.1)

where i = 1..n is the vector index, n is the number of vector measuring sensors and the

vector representation in the local coordinate frame {L}, denoted by Lhi, is known.

Define the linear combination of the sensed vector Lhi expressed in the local coordinate

frame, given by

Luj :=
n
∑

i=1

aij
Lhi, j = 1..n. (6.2)

The vector transformation (6.2) is represented in matrix form by

UH = HAH ,

where UH :=
[

Lu1 . . . Lun

]

, H :=
[

Lh1 . . . Lhn

]

, UH ,H ∈ M(3, n) and AH :=

[aij ] ∈ M(n) is invertible.

The estimated and the nominal representation of Luj in Body frame coordinates, are

respectively denoted by

Bui := R′Lui,
Bûi := R̂′Lui,

which are represented in matrix form as

BUH = R′UH ,
BÛH = R̂′UH ,

where BÛH :=
[

Bû1 . . . Bûn

]

and BUH :=
[

Bu1 . . . Bun

]

, BÛH ,
BUH ∈ M(3, n).
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6.1.2 Lyapunov function

The proposed observer estimates the orientation of the rigid body by computing the kine-

matics

˙̂R = R̂ (ω̂)× ,

where R̂ is the estimated attitude and ω̂ is the feedback term constructed to compensate

for the attitude estimation error.

In this chapter, the attitude error is defined as R̃ := R̂′R, which is an alternate error

definition to that proposed in Chapter 5. An interesting insight on the error functions for

invariant systems on Lie-groups can be found in [84]. The attitude error kinematics are a

function of the angular velocity estimates and given by

˙̃R = −R̃
(

R̃′ω̂ − ω
)

×
.

The attitude feedback law ω̂ is defined as function of the angular velocity readings and

vector observations (6.1), so that the closed loop attitude estimation errors converge to

the origin, i.e., R̃ → I, as t→ ∞.

The candidate Lyapunov function is defined by the estimation error of the transformed

vectors

V =
1

2

n
∑

i=1

‖Bûi − Bui‖2 =
1

2
‖BÛH − BUH‖2. (6.3)

Algebraic manipulation produces the equivalent Lyapunov formulation and time derivative

V = tr
[

(I − R̃)UHU′
H

]

, (6.4a)

V̇ =
(

R̃′UHU′
H − UHU′

HR̃
)′

⊗
(R̃′ω̂ − ω). (6.4b)

where P = tr(UHU′
H)I − UHU′

H , P ∈ M(3).

The proposed Lyapunov function measures the error of the vector observations. To

guarantee that V = 0 if and only if the attitude is correctly estimated, i.e. R̃ = I,

the geometric configuration of the measured vectors is required to satisfy the following

assumption.

Assumption 6.1. There are at least two noncollinear vectors Lhi, that is, rank(H) ≥ 2.

Lemma 6.1. The Lyapunov function V has a unique global minimum at R̃ = I if and

only if Assumption 6.1 is verified

∀R̃6=I
V > 0 if and only if ∃i6=j∀α∈R : Lhi 6= αLhj .

Proof. The result can be obtained by following the proof of Lemma 5.3, where the prop-

erties of a similar Lyapunov function are derived.
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To illustrate the necessity of Assumption 6.1, assume that rank(H) = 1, i.e. all Lhi

(and Lui) are collinear. Any attitude error R̃ represented by an arbitrary rotation ϕ about

the vector φ = Lui/‖Lui‖ satisfies V = 0. A detailed insight on the limitations of attitude

estimation using single direction measurements can be found in [88] and references therein.

In the present chapter, the transformation AH is designed to shape uniformly the

directionality of the transformed vector observations, and is similar to that adopted for

the landmark observer with biased velocity readings, described in Section 5.3.

Proposition 6.2. Assume that H is full rank, then there is a nonsingular AH ∈ M(n)

such that UHU′
H = I.

Proof. See proof of Proposition 5.13.

Using the transformation AH defined in Proposition 6.2, the Lyapunov function (6.4a)

is expressed by

V =
1

2
‖I − R̃‖2, V̇ =

(

R̃′ − R̃
)′

⊗
(R̃′ω̂ − ω). (6.5)

Note that the conditions of Proposition 6.2 are not satisfied directly by Assumption 6.1.

As discussed in Appendix E.2 for the landmark based observer, in case rank(H) = 2,

the direction orthogonal to the columns of H can be generated from the columns of H,

producing a full rank matrix Ha that is used in the observer equations. Taking two

linearly independent columns of H, Lhi and Lhj , the augmented matrices are given by

Ha :=
[

H Lhi × Lhj

]

, UHa = HaAHa, where Ha,UHa ∈ M(3, n+ 1), AHa ∈ M(n+ 1)

is a nonsingular matrix such that UHaU
′
Ha = I. Using the fact that the cross product

is commutable with coordinate transformations, (R′Lhi) × (R′Lhj) = R′(Lhi × Lhj), the

representation of the vector measurements in body coordinates is given by BUHa = R′UHa

and BÛHa = R̂′UHa. The modified observer is obtained by replacing the matrices UH

and H by UHa and Ha, respectively.

6.2 Observer synthesis

In this section, the feedback law for attitude estimation in the presence of rate gyro bias

is derived using the proposed Lyapunov function.

6.2.1 Unbiased angular velocity measurements

The case of ideal body angular velocity measurements is considered first. The body angular

velocity is measured by a rate gyro sensor triad

ωr = ω.

Under Assumption 6.1 and given the Lyapunov function time derivative (6.5), a feedback

law is proposed to drive the attitude error to zero,

ω̂ = R̃ω − kωsω, (6.6)
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where the feedback term is given by

sω =
(

R̃′ − R̃
)

⊗
, (6.7)

and kω > 0 is a positive scalar. The feedback law ω̂ is slightly diverse from that defined

in (5.17), due to reasons that will be more clear in the case of biased velocity readings.

The attitude feedback yields the autonomous closed loop attitude kinematics

˙̃R = − kωR̃(R̃ − R̃′), (6.8)

and the closed loop Lyapunov function time derivative is given by

V̇ = −kωs′ωsω = −kω

2
‖R̃ − R̃′‖2 ≤ 0,

so it is immediate that the attitude feedback law produces a Lyapunov function that

decreases along the system trajectories.

The system (6.8) is identical to the error dynamics of the landmark based observer,

presented in (5.19), and hence the stability properties can be derived directly using the

results of Section 5.2. Using ‖R̃−R̃′‖2 = 1
2(8−‖I−R̃‖2)‖I−R̃‖2, the set of points where

V̇ = 0 is characterized by

CR = {R̃ ∈ SO(3) : R̃ = I ∨ ‖I − R̃‖2 = 8}.

By direct substitution in the closed loop system (6.8), it is easy to see that R̃ = R̃′ ⇒
˙̃R = 0, i.e. CR is invariant, and hence convergence to the origin by LaSalle’s invariance

principle is inconclusive. However, the set R̃ = R̃′ is described by the rotations such that

the angle is ϕ = π, i.e. ‖R̃ − I‖2 = 8, and has zero measure. The observer stability

results, obtained by adaptation of the results presented in Section 5.2, establish that the

trajectories emanating from almost everywhere in SO(3) converge exponentially fast to

the origin.

Theorem 6.3. The closed-loop system (6.8) has an exponentially stable point at R̃ = I.

For any initial condition in the region of attraction

R̃(t0) ∈ {R̃ ∈ SO(3) : ‖I − R̃‖2 < 8}

the trajectory satisfies

‖R̃(t) − I‖ ≤ kR‖R̃(t0) − I‖e− 1
2
γR(t−t0), (6.9)

where γR = kω

2 (8 − ‖R̃(t0) − I‖2).

Proof. The proof can be obtained from that of Theorem 5.5. In alternative, algebraic

manipulation of the time derivative of the Lyapunov function produces

V̇ = −kω

2
‖R̃ − R̃′‖2 = −kω

4
(8 − ‖I − R̃‖2)‖I − R̃‖2 = −kω

2
(8 − ‖I − R̃‖2)V.

The Lyapunov function is decreasing with time, and hence ‖I − R̃(t)‖2 ≤ ‖I − R̃(t0)‖2,

yielding V̇ ≤ −kω

2 (8−‖I−R̃(t0)‖2)V . Applying (6.5) and the comparison lemma produces

the desired result.
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The results of Theorem 6.3 are valid for ideal velocity measurements. In the next

section, the observer is extended to compensate for bias in the velocity measurements.

Also, stability of the observer with unmodeled disturbances in the velocity readings is

shown in Chapter 7, which illustrates the combination of Lyapunov and density functions

proposed later in this thesis.

The directionality introduced by the landmarks is made uniform by the adopted trans-

formation AH . To see that, denote the Euler angle-axis parameterization of the attitude

error as R̃ = rot(ϕ,φ). The kinematics of the parameterization are given by

ϕ̇ = −2kω sin(ϕ), φ̇ = 0,

which shows that the directionality of the attitude error is invariant, i.e. φ(t) = φ(t0).

As discussed in Appendix G, a generic AH can be considered to endow the observer with

faster and slower directions of estimation.

6.2.2 Biased angular velocity measurements

In this section, asymptotic stabilization of the attitude error in the presence of angular

velocity bias is derived and exponential convergence to the origin is obtained. The rate

gyro readings are corrupted by a bias term

ωr = ω + bω,

where the nominal bias is considered constant, ḃω = 0. The proposed Lyapunov function

(6.5) is augmented to account for the effect of the rate gyro bias

Vb =
1

2
‖R̃ − I‖2 +

1

2kbω

‖b̃ω‖2,

where b̃ω = b̂ω − bω is the bias compensation error, b̂ω is the estimated bias and kbω
is a

positive scalar. Under Assumption 6.1 and by Lemma 6.1, the Lyapunov function Vb has

an unique global minimum at (R̃, b̃ω) = (I, 0).

The feedback law for the angular velocity is obtained by compensating the bias of the

angular velocity reading in (6.6), producing

ω̂ = R̃(ω + bω − b̂ω) − kωsω = R̃(ω − b̃ω) − kωsω.

The time derivative of the augmented Lyapunov function is described by

V̇b = −kωs′ωsω + b̃′
ω(

1

kbω

˙̃
bω − sω),

that motivates the bias feedback law defined by

˙̂
bω = kbω

sω.

Using
˙̂
bω =

˙̃
bω, the time derivative of the Lyapunov function is described by

V̇b = −kωs′ωsω = −kω

2
‖R̃ − R̃′‖2 ≤ 0,
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and the closed loop kinematics are given by

˙̃R = −kωR̃(R̃ − R̃′) + R̃
(

b̃ω

)

×
,

˙̃
bω = kbω

(

R̃′ − R̃
)

⊗
. (6.10)

The set of points where V̇b = 0 is characterized by

Cb = {(R̃, b̃ω) ∈ SO(3) × R
3 : R̃ = I ∨ ‖I − R̃‖2 = 8}.

The positively invariant subsets of Cb where ‖I − R̃‖2 = 8 are a consequence of the

topological limitation to global stabilization on SO(3) discussed in Chapter 5. By analyzing

the level sets of Vb, the next lemma shows that the attitude and bias estimation errors

are bounded, providing sufficient conditions that exclude convergence to the attitude error

‖I − R̃‖2 = 8.

Lemma 6.4. The attitude and bias estimation errors, R̃ and b̃ω respectively, are bounded.

For any initial condition such that

kbω
>

‖b̃ω(t0)‖2

8 − ‖I − R̃(t0)‖2
, (6.11)

the attitude error is bounded by ‖I − R̃(t)‖2 ≤ cmax < 8 for all t ≥ t0.

Proof. The proof is obtained by reproducing the steps adopted in the demonstration of

Lemma 5.14. Let x := (R̃, b̃ω), the Lyapunov function Vb is given by the weighted distance

of the state to the origin, and V̇b ≤ 0, so ∀t≥t0
1
2(‖I − R̃(t)‖2 + 1

kbω
‖b̃ω(t)‖2) ≤ Vb(x(t0)),

and hence the state is bounded. The gain condition (6.11) is equivalent to Vb(x(t0)) < 4.

Given that Vb(x(t)) ≤ Vb(x(t0)), then 1
2‖I − R̃(t)‖2 ≤ Vb(x(t0)) < 4 which concludes the

proof.

The feedback law ω̂ is diverse from that adopted in the landmark based observer, and

produces autonomous error kinematics (6.10). The time-invariance of the dynamics yields

trajectories that are uniform with respect to time, and can be analyzed using stronger

stability results, such as LaSalle’s invariance principle [78, 125], to attain asymptotic

stability of the origin. Analysis tools based on density functions can be also adopted, to

address almost global stability, and stabilization in the presence of inertial sensor noise,

as shown in Chapter 7.

The time-invariance of the attitude observer error kinematics is obtained at the cost

of an output feedback formulation of ω̂ that is slightly more complex than that of the

landmark observer, presented in Theorem 5.17. Consequently, the feedback laws ω̂ of

the landmark and vector based observers are both of interest, since the stability of the

observers may be diverse in the practical implementation of the algorithms, while further

theoretical developments may lead to distinct and enriching results.

The stability of the observer is presented in the following result. Asymptotic stability

of the origin is obtained by LaSalle’s invariance principle and Lemma 6.4, and asymp-

totic stability with exponential convergence is shown by using the stability results for

parameterized LTV systems adopted in Section 5.3.
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Theorem 6.5. For any initial condition that satisfies (6.11), the attitude and bias esti-

mation errors converge exponentially fast to the stable equilibrium point (R̃, b̃ω) = (I, 0).

Proof. The proof is identical to that of Theorem 5.15, and presented for the sake of clarity.

Using the quaternion form to describe the attitude error, the closed loop attitude and bias

compensation errors kinematics are described by

˙̃qq =
1

2
Q(q̃)(b̃ω − 4kωq̃q q̃s),

˙̃
bω = −4kbω

Q′(q̃)q̃q, (6.12)

where Q(q̃) := q̃sI + (q̃q)×, ˙̃qs = 2kωq̃′
qq̃q q̃s − 1

2q
′
qb̃ω, and q̃ =

[

q̃′
q q̃s

]′
is the Euler

quaternion representation of matrix R̃. Using ‖q̃q‖2 = 1
8‖R̃− I‖2, the Lyapunov function

in quaternion coordinates is described by Vb = 4‖q̃q‖2 + 1
2kbω

‖b̃ω‖2.

Define the system (6.12) in the domain Dq = {(q̃q, b̃ω) ∈ B(3) × R
3 : Vb ≤ 4 − εq},

0 < εq < 4. The set Dq is given by the interior of the Lyapunov surface, so it is positively

invariant and well defined. The condition (6.11) implies that the initial condition is in

the set Dq for εq small enough, and by Lemma 6.4, the components of the attitude error

quaternion are bounded by ‖q̃q‖2 ≤ cmax
8 and ‖q̃s‖2 ≥ 1 − cmax

8 , with cmax = 8 − 2εq.

Define the parameterized LTV system

[

˙̃qq⋆

˙̃
bω⋆

]

=

[

A(t, λ) B′(t, λ)

−C(t, λ) 03×3

][

q̃q⋆

b̃ω⋆

]

, (6.13)

where (q̃q⋆, b̃ω⋆) ∈ R
3 × R

3, λ ∈ R≥0 ×Dq, and the matrices

A(t, λ) = −2kω q̃s(t, λ)Q(q̃(t, λ)), B(t, λ) =
1

2
Q′(q̃(t, λ)), C(t, λ) = 8kbω

B(t, λ),

are bounded, so the system is well defined. The quaternion q̃(t, λ) represents the solution

of (6.12) with initial condition λ = (t0, q̃q(t0), b̃ω(t0)). If the parameterized LTV system

(6.13) is λ-UGES, then the nonlinear system (6.12) is uniformly exponentially stable in

the domain Dq. The parameterized LTV system verifies the assumptions of [93, Theorem

1]:

1) The elements of B(t, λ) and ∂B(t,λ)
∂t

= 1
2Q

′( ˙̃q(t, λ)) are bounded, so there exits bM

such that

max
λ∈R≥0×Dq , t≥0

{

‖B(t, λ)‖,
∥

∥

∥

∥

∂B(t, λ)

∂t

∥

∥

∥

∥

}

≤ bM .

2) The positive definite matrices

P(t, λ) = 8kbω
I, Q(t, λ) = 32kbω

kω q̃
2
s(t, λ),

satisfy

P(t, λ)B′(t, λ) = C′(t, λ), −Q(t, λ) = A′(t, λ)P(t, λ) + P(t, λ)A(t, λ) + Ṗ(t, λ),

pmI ≤ P(t, λ) ≤ pMI, qmI ≤ Q(t, λ) ≤ qMI,
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with pm = pM = 8kbω
, qm = qM (1 − cmax

8 ) and qM = 32kωkbω
.

The system (6.13) is λ-UGES if and only if B(t, λ) is λ-uniformly persistently exciting

(λ-uPE) [93]. For any unit norm vector y

‖B′(τ, λ)y‖2 =
1 − (y′q̃q)

2

4
≥ 1 − ‖q̃q‖2

4
≥ cB,

where cB = 1
4(1− cmax

8 ). The persistency of excitation condition is satisfied, y′ ∫ t+T

t
B(τ, λ)B′(τ, λ)dτy ≥

TcB, the parameterized LTV (6.13) is λ-UGES, and the nonlinear system (6.12) is expo-

nentially stable in the domain Dq.

Theorem 5.15 guarantees that the trajectories emanating from the initial conditions in

the set {(R̃, b̃ω) ∈ SO(3) × R
3 : 1

2‖I − R̃‖2 + 1
2kbω

‖b̃ω‖2 < 4} converge exponentially fast

to the origin if kbω
satisfies (6.11). The following corollary establishes sufficient conditions

in kbω
for uniform exponential stability, i.e. the exponential convergence rate bounds are

independent of the initial condition x(t0).

Corollary 6.6. Assume that the initial estimation errors are bounded

‖I − R̃(t0)‖2 ≤ c0 < 8, ‖b̃ω(t0)‖ ≤ b̃0, (6.14)

for some c0 and b̃0, and let kbω
be such that

b̃20
8−c0

< kbω
. Then the origin (R̃, b̃ω) = (I, 0)

is exponentially stable, uniformly in the set defined by (6.14).

The tools for stability analysis of parameterized LTVs provide for convergence rate

bounds. The computation of bounds for exponential convergence is a non-trivial problem

[73], and the bounds obtained for the attitude observer, presented in the following, were

found conservative in practice, but are presented for completeness.

Corollary 6.7. Under the conditions described in Corollary 6.6, the trajectories of the

system (6.10) satisfy

‖x(t)‖ ≤ kbω
‖x(t0)‖e−

1
2
γbω (t−t0),∀t ≥ t0,

where

x(t) :=

(

R̃(t) − I√
8

, b̃ω(t)

)

, kbω
= tM t

inv
M e

1
2γ

− 1
2

bω
, γbω

=
ρ

πc
,

tM =

(

5

4
+

2

1 +
√

17

)
1
2

, tinv
M =

(

5

4
+

2

1 −
√

17

)− 1
2

,
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and

aM = 2kω, bM = max

{

1

2
,
1

2

(

16K2
ω + b̃2max

)
1
2

}

, pm = pM = 8kbω
,

qm = qM

(

1 − cmax

8

)

, qM = 32kωkbω
, kM := bM (1 + pM + aM + b2M (1 + 2pM )),

c∗ :=

√

pM + 1

qm
, 0 < ρ ≤ min

{

pm,
1

2b2M

}

, γx =
8 − cmax

32(1 + b2MT )
, T > 0,

c32 := max

{

pM ,
1

2γx

}

, πc := c32 + (c∗t
inv
M )2

[

(c32kM )2

4(1 − ρ)

]

, kbω
= ρω

b̃20
8 − c0

,

ρω > 1, b̃max = b̃0

(

ρω
c0

1 − c0
+ 1

)
1
2

, cmax =
1

ρω
(8 + (ρω − 1)c0).

Proof. The convergence rate bounds are given by [92, Theorem 1 and Remark 2], and the

analytical derivation of the constants for the case of the attitude observer is lengthy, but

straightforward.

6.2.3 Output feedback configuration

In Chapter 5, the landmark based observer was expressed as a function of the sensor

readings and landmark estimates. The attitude observer proposed in this chapter was

derived using the same methodology, and thus it can also be formulated explicitly as a

function of the vector measurements, the non-ideal angular velocity readings, and the

attitude and bias estimates.

Theorem 6.8. The dynamics of the attitude observer are explicit functions of the sensor

readings and state estimates, described by

˙̂R = R̂ (ω̂)× ,

˙̂
bω = kbω

sω,

where the feedback terms are given by

ω̂ = R̂′HAHA′
HH′

r

(

ωr − b̂ω

)

− kωsω, (6.15)

sω =
n
∑

i=1

(R̂′HAHei) × (HrAHei),

where Hr :=
[

hr 1 · · · hr n

]

is the concatenation of the vector readings.

Proof. Using BÛH
BU′

H = R̂′UHU′
HR = R̃ in (6.7) yields sω =

(

BUH
BÛ′

H − BÛH
BU′

H

)

⊗
.

Using BUH
BÛ′

H =
∑n

i=1
Bui

Bû′
i and Bui

Bû′
i − BûB

i u′
i =

(

(Bûi × Bui)
)

×, bears sω =
∑n

i=1

(

Bûi × Bui

)

=
∑n

i=1(
BÛHei) × (BUHei). Applying BUH = R′HAH and Hr =

R′H produces the desired results.
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The formulation of ω̂ expressed in (6.15) is diverse from that adopted in Theorem 5.17,

for the landmark observer. The error dynamics of the attitude observer are autonomous

and can be analyzed using stronger stability results, such as LaSalle’s invariance principle

and density functions, however the formulated landmark based observer is simpler and

may exhibit nice practical properties, such as good sensitivity to noise in the discrete-time

implementation of the algorithm. This illustrates that the same observer can be designed

using distinct feedback laws, and that the choice of a canonical formulation is still an open

question. Recent work in methods to design controllers in Riemannian manifolds can be

found in [28], and the design of observers for invariant systems on Lie-groups is addressed

in [16, 84], yet much is to be studied with respect to stability and performance of observers

in manifolds, as evidenced in [87].

6.3 Simulations

In this section, simulation results for the proposed attitude observer are presented. The

directions of the sensed vectors are given by

Lh1 =







1

0

0






, Lh2 =







0

0

1






,

which are a simple representation of the vectors that are measured in the body coordinates

by a magnetic compass and a pendulum, respectively. Under strong accelerations or

magnetic distortions, other vector measurements such as star trackers or image based

feature detection can be adopted. The matrix H satisfies the non-collinearity condition

of Assumption 6.1, and corresponds to the case discussed in Appendix E.2. The attitude

feedback gain is given by kω = 2 and the rigid body trajectory is computed using oscillatory

angular rates of 1 Hz.

For the case of biased velocity readings, the feedback gain is kbω
= 1. The bounds of

Proposition 6.6 are defined by

c0 = 4

(

1 − cos

(

3

4
π

))

, b̃0 =
5
√

3π

180
rad/s,

that correspond to the maximum rotation error of ϕ(t0) = 3
4π rad, and to the minimum

gain kbω min = 1.95 × 10−2. The initial estimation errors are

b̃ω(t0) =
5π

180







1

−1

1






rad/s, φ(t0) =

1√
3







1

1

1






.

The attitude estimation error, depicted in Fig. 6.1(a) for the case of unbiased angular

rate readings, converges exponentially fast to the origin. As expected, the convergence

bound (6.9) is more conservative as ϕ(t0) is closer to the anti-stable manifold defined by

ϕ = π, for a discussion of the behavior of trajectories near saddle points see [89].
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(c) Bias estimation error.

Figure 6.1: Attitude and bias estimation errors.

The attitude and bias errors converge to the origin, as shown in Figs. 6.1(b) and 6.1(c).

The convergence of the attitude error is slower than the convergence obtained for b̃ = 0,

because the observer has to compensate dynamically the large bias errors before esti-

mating attitude accurately. Interestingly enough, the attitude error dynamics (6.10) are

autonomous and, consequently, the estimation results are independent of the trajectory

described by the rigid body.

The peak of the bias estimation error is justified by the level set Vb ≤ c containing

points with small attitude error 1
2‖I − R̃‖2 ≈ 0, but with large bias error ‖b̃ω‖2 ≈ 2kbω

c.

This can be verified by noting that the peak of the bias estimation error in Fig. 6.1(b)

occurs for a minimum of the attitude estimation error in Fig. 6.1(c). The convergence

bounds of Corollary 6.7 are very conservative, γbω
= 6.50 × 10−18 and kbω

= 7.50 × 108

with optimized ρ, and should be subject to further study. However, the estimation error

convergence rate obtained in simulation are encouraging, and suggest that the algorithm

can be implemented in practice.

In Fig. 6.2, the exponential convergence of the Lyapunov function (and of the estima-
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Figure 6.2: Exponential convergence of Vb (ϕ(t0) = 3π
4

, b̃ω 6= 0).

tion error) is illustrated using a logarithmic scale. Large feedback gains kbω
are beneficial

for tackling the estimation errors, and the peak values of b̃ω do not degrade the exponential

convergence of the state (R̃, b̃ω).

6.4 Conclusions

A nonlinear observer for attitude estimation on SO(3) exploiting vector measurements and

biased angular velocity readings was derived. The observer was obtained by the technique

proposed in Chapter 5, that derives the feedback law based on a Lyapunov function,

defined by the measurement error of the aiding sensor. The properties derived for the

landmark based observer were inherited by the vector based observer, namely exponential

convergence of the attitude and bias estimation errors, an output feedback formulation,

and insight on the necessary and sufficient conditions for state estimation.

Interestingly enough, the feedback law is diverse from that obtained with the landmark

observer, which shows that distinct observers can be derived from the same technique. The

criteria for deciding which is the “best” nonlinear observer is still an open question, and

caveats for performance of estimators in manifolds have been identified in the literature

[87].

Simulation results depicted the exponential convergence of the estimation errors, and

the effect of the anti-stable manifold in the rate of convergence of the trajectories. The

theoretical convergence rate bounds were tight for the case of ideal velocity measurements,

but conservative for the case of biased velocity sensors. The trajectories of the estimation

error were independent of the rigid body trajectory due to the autonomous estimation

error dynamics.

For the purpose of implementation of the algorithms, it is of interest to study the

stability observer when the sensor measurements are corrupted by noise. In the next
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chapter, the stability of the observer in the presence of inertial sensor noise is studied,

using stability analysis based on the combination of Lyapunov and density functions.



Chapter 7

Combination of Lyapunov and

density functions for stability

analysis with application to a

nonlinear attitude observer

Lyapunov methods and density functions provide dual characterizations of the solutions

of a nonlinear dynamic system. This work exploits the idea of combining both techniques,

to yield stability results that are valid for almost all the solutions of the system. Based

on the combination of Lyapunov and density functions, analysis methods are proposed

for the derivation of almost input-to-state stability, and of almost global stability in non-

linear systems. The techniques are illustrated for the attitude observer based on vector

measurements proposed in the previous chapter, with angular velocity readings corrupted

by non-idealities.

This work is organized as follows. Section 7.1 summarizes the attitude observer, based

on that derived in Chapter 6, and adopted to illustrate the combination of Lyapunov and

density function methods. The derivation of almost ISS for nonlinear systems, using the

combination of Lyapunov and density functions, is discussed in Section 7.2. The approach

is applied to demonstrate the stability of the attitude observer in the presence of inertial

sensor noise. A new result for almost global stability of nonlinear systems is presented in

Section 7.3, and is illustrated for a nonlinear system, that is motivated by the attitude

observer dynamics subject to inertial sensor bias. Concluding remarks are discussed in

Section 7.4.

7.1 Attitude observer

This section briefly describes the attitude observer, adopted to illustrate the analysis

techniques proposed in this chapter. The observer closely resembles to that derived in

149
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Chapter 6, where details on the observer derivation and properties can be found, and is

briefly reviewed in this chapter for the sake of clarity.

The observer estimates the attitude of a rigid body with respect to a fixed inertial

frame, by merging angular velocity measurements, with vectors observations obtained in

body coordinates. The rigid body kinematics are described by

Ṙ = R (ω)× ,

where R is the rotation matrix from body frame to the inertial frame coordinates, and ω

is the body angular velocity expressed in body coordinates. The body angular velocity is

measured by a rate gyro sensor triad, and the measurement model is

ωr = ω + dω, (7.1)

where dω is a measurement disturbance.

The vector observations are a function of the rigid body’s attitude. The vectors coor-

dinates are known and time-invariant in inertial frame, e.g. Earth’s magnetic and gravitic

fields, and measured in body coordinates by on-board sensors such as magnetometers and

pendulums, among others. The vector measurement is expressed by

hr i = Bhi,

where Bhi = R′Lhi, the leading superscripts B and I denote that the vector is expressed

respectively in body and inertial coordinates, i = 1..n is the vector index, and n is the

number of vector measuring sensors.

The vector measurements hr i are introduced in the observer by means of a conveniently

defined linear coordinate transformation, which is briefly described, for further details see

Section 6.1. The transformed vectors expressed in inertial and body frames are respectively

given by

Luj :=

n
∑

i=1

aij
Lhi ⇔ UH := HAH ,

Buj :=
n
∑

i=1

aij hr i ⇔ BUH := HrAH (7.2)

where matrix AH := [aij ] ∈ M(n) is invertible by construction, and UH :=
[

Lu1 . . . Lun

]

,

BUH :=
[

Bu1 . . . Bun

]

, H :=
[

Lh1 . . . Lhn

]

, Hr :=
[

hr 1 . . . hr n

]

, UH ,
BUH ,H,Hr ∈

M(3, n). In this chapter, the transformation AH is defined such that UH U′
H = I, to shape

uniformly the directionality introduced by the vector readings. Also, it is assumed that

there are at least two noncollinear vectors Lhi, so that all rotational degrees of freedom

are observable. For more details on the adopted transformation and sensor configuration,

see Section 6.1.2 for a discussion on the present observer characteristics.

The proposed observer estimates the attitude of the rigid body by computing the

kinematics

˙̂R = R̂ (ω̂)× , (7.3)
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where R̂ is the estimated attitude and ω̂ is the feedback term constructed to compensate

for the attitude estimation error.

The attitude observer estimates the rotation matrix by exploiting the non-ideal angu-

lar velocity measurements (7.1) and the vector observations (7.2) in the feedback term ω̂.

The combination of Lyapunov and density functions is illustrated, by showing the stabil-

ity of the attitude observer for the cases where dω is i) an unmodeled, bounded sensor

disturbance, and ii) an unknown but constant sensor bias.

7.2 Stability in the presence of unmodeled inputs

This section discusses and formulates the combination of Lyapunov and density function

techniques for the analysis of input-to-state stability, in the presence of unknown inputs.

The proposed method is illustrated by analyzing the stability of the attitude observer, in

the case where the inertial sensor reading is corrupted by a bounded disturbance.

7.2.1 Almost ISS using Lyapunov and density functions

The analysis of input-to-state stability, using the combination of Lyapunov and density

function techniques, is considered for systems in the form

ẋ = f(x, u), (7.4)

where x ∈ M is the state, M is a smooth manifold, and f : M × U → TM , is a locally

Lipschitz manifold map which satisfies f(x, u) ∈ TxM , for all x ∈M and all u ∈ U ⊂ R
m.

The notion of ISS is classically defined using comparison functions [131]. However, the

limitations to global stability on non-Euclidean spaces motivate the relaxation proposed

in [5], formulated as follows.

Definition 7.1 (Almost ISS, [5]). The system (7.4) is almost ISS with respect to the

origin, denoted as 0M , if 0M is locally asymptotically stable and

∀u ∈ U ∀a.a.x(t0) ∈M lim sup
t→∞

|x(t)| ≤ γ(‖u‖∞), (7.5)

where γ is a class K function, |·| is the distance to the origin, and “∀a.a.” abbreviates the

quantifier “for almost all”.

Expressed in words, almost ISS is verified when, for each valid input, all initial con-

ditions outside a set of zero measure converge to a neighborhood of the origin, whose

radius grows monotonically with the bound on the input. The density functions frame-

work relaxes the concept of ISS, by considering that a zero measure set of trajectories

can be effectively destabilized by the input, but that almost all trajectories converge to

a neighborhood of the origin. Note that the quantifiers in (7.5) are not commutable in

general, because the set of converging initial conditions is a function of the input u.
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In this work, a method to derive almost ISS is obtained by combining the properties

of Lyapunov and density functions. The adopted methodology has been sketched in [5],

where it is motivated by means of examples, however it seems to have been unnoticed in

subsequent literature. This section provides a contribution to the concept of combining

Lyapunov and density functions, by formulating the technique in explicit mathematical

statements, and characterizing the stability result as the combination of two ISS properties.

These two ISS concepts are introduced in the following.

Definition 7.2 (Local ISS). A system (7.4) is locally input-to-state stable with respect

to 0M , if 0M is locally asymptotically stable and there exists r > 0 such that

∀u ∈ U ∀ |x(t0)| ≤ r lim sup
t→∞

|x(t)| ≤ γ1(‖u‖∞), (7.6)

where γ1 is a class K function.

Definition 7.3 (Weakly almost ISS, [5]). A system (7.4) is weakly almost ISS with respect

to 0M , if 0M is locally asymptotically stable and

∀u ∈ U ∀a.a.x(t0) ∈M lim inf
t→∞

|x(t)| ≤ γ2(‖u‖∞), (7.7)

where γ2 is a class K function.

Provided that these ISS properties are verified, the main result of this section shows

that almost ISS is attained.

Lemma 7.1 (Almost ISS). Assume that the system (7.4) is locally ISS and weakly almost

ISS, then, for all u ∈ {u ∈ U : γ2(‖u‖∞) < r}, the system is almost ISS with γ = γ1.

Proof. Weakly almost ISS, expressed in (7.7), implies that, by the continuity of the solu-

tions of (7.4), almost every solution satisfies |x(t)| ≤ γ2(‖u‖∞) < r for some t, thus entering

the region where the trajectories eventually satisfy the lim sup condition expressed in (7.6),

yielding (7.5).

The proposed ISS analysis technique is based on Lemma 7.1, which shows that almost

ISS can be obtained by combining local ISS with weakly almost ISS, for sufficiently small

inputs. Lyapunov methods can be used to derive local ISS [78], while weakly almost ISS

is associated with density functions [5].

The stability analysis technique is illustrated in Fig. 7.1. Lyapunov techniques yield

local ISS based on ultimate boundedness and/or ISS results [78, Theorems 4.18 and 4.19].

As shown in Fig. 7.1(a), Lyapunov methods find a region {x : γ1(‖u‖∞) < |x(t)| < r}
where the Lyapunov function V decreases along the system trajectories (V̇ < 0), and

drives the solutions to set {x : |x(t)| < γ1(‖u‖∞)}, which is guaranteed to be positively

invariant by appealing to the properties of the Lyapunov function.

However, the behavior of the solutions for |x(t)| ≥ r is undetermined by the Lyapunov

function analysis, and density functions techniques are adopted to guarantee that almost
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(a) Local ISS using Lyapunov function analysis: solutions emanating be-

low the bound r converge to the region bounded by γ1(‖u‖∞).

(b) Weakly almost ISS using density function analysis: the lim inf prop-

erty of almost all solutions satisfies the bound γ2(‖u‖∞).

(c) Almost ISS using Lyapunov and density functions analysis: by the

lim inf property, almost all trajectories enter the region below the bound

r, and converge to the region bounded by γ1(‖u‖∞).

Figure 7.1: Combination of Lyapunov and density functions for almost ISS of the origin.
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all solutions enter {x : |x(t)| < r} for some time instant. This is obtained by finding a

density function ρ such that div(ρf) > 0 in the region {x : |x(t)| > γ2(‖u‖∞)}, which yields

weakly almost ISS by [5, Theorem 4], reproduced in Appendix H.1. Hence, the trajectories

of the system are endowed with the lim inf characteristic depicted in Fig. 7.1(b), and enter

the region {x : γ1(‖u‖∞) < |x(t)| < r} in finite time, as shown in Fig. 7.1(c). Consequently,

almost ISS is obtained.

7.2.2 Stability of the nonlinear observer in the presence of inertial sensor

noise

The combination of Lyapunov techniques is illustrated for the nonlinear observer described

in Section 7.1, in the presence of bounded time-varying disturbances in the angular velocity

measurements. The considered set of valid disturbances dω in (7.1) is given by U = {d ∈
R

3 : ‖d‖∞ ≤ dmax}, and the feedback law ω̂ in (7.3) is defined as

˙̂R = R̂ (ω̂)× , ω̂ = R̂′UH
BU′

Hωr − kω

n
∑

i=1

(R̂′Lui) × Bui,

where kω ∈ R
+ is the feedback gain, for more details and a motivation see Section 6.2.

The resulting stability properties of the attitude observer are formulated by defining the

attitude estimation error R̃ := R̂′R. The closed loop kinematics of the attitude error are

given by

˙̃R = −kωR̃(R̃ − R̃′) − R̃ (dω)× . (7.8)

The trajectories of the system satisfy R̃(t) ∈ SO(3) for all t, even in the presence of the

angular velocity disturbance, and hence the kinematics (7.8) are well defined.

Although the origin of the unforced system is almost globally asymptotically stable

(aGAS), as detailed in Theorem 6.3, generic exogenous disturbances may drive the trajec-

tories of system (7.8) to the unstable equilibrium points of the unforced system. A simple

example illustrates that the system (7.8) does not satisfy classical ISS, by choosing dω as

the destabilizing feedback law for a given initial condition, as follows. Let R̃(t, R̃∗) denote

the solution of the system

˙̃R = kωR̃(R̃ − R̃′), (7.9)

with an initial condition R̃(t0) = R̃∗. Given that the origin of the unforced system (7.8)

is almost GAS, with region of attraction SO(3) \A, where

A = {R̃ ∈ SO(3) : ‖I − R̃‖2 = 8},

it is straightforward to show that almost all trajectories of (7.9) converge to the set A.

Consequently, for the input dω(t) = −2kω(R̃(t, R̃∗) − R̃(t, R̃∗)′), the trajectory R̃(t, R̃∗)

converges to the set A, and the system is not ISS. However, the selected input is not
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(a) Balanced noise bound and gain.

(b) Larger noise to gain ratio reduces the region where V̇ < 0.

(c) Smaller noise to gain ratio increases the region where V̇ < 0.

Figure 7.2: Region of convergence as a function of the noise to gain ratio ‖dω‖∞

kω

.
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necessarily destabilizing for R̃(t0) 6= R̃∗, and hence the example does not preclude the

almost ISS property.

As discussed in Section 7.2.1, the combination of Lyapunov techniques is demonstrated

by using i) Lyapunov methods to attain local ISS, ii) density function techniques to yield

weakly almost ISS, and iii) Lemma 7.1 to attain almost ISS. The next proposition bears

local ISS by showing uniform ultimate boundedness [78], i.e. the trajectories emanating

from initials conditions in a known neighborhood of the origin converge to a neighborhood

of the origin in finite time, independently of t0.

Theorem 7.2. Let kω >
dmax

2 , then for any initial condition

R̃(t0) ∈ {R̃ ∈ SO(3) : ‖I − R̃‖2 < r(‖dω‖∞)}, (7.10a)

where r(d) = 4
(

1 +
√

1 − d2

4k2
ω

)

, there exists T , independent of t0, such that the trajectory

of the system (7.8) satisfies

R̃(t) ∈ {R̃ ∈ SO(3) : ‖I − R̃‖2 < γ1(‖dω‖∞)}, (7.10b)

for all t ≥ t0 + T , where γ1(d) = 4
(

1 −
√

1 − d2

4k2
ω

)

.

Proof. The proof is based on the derivation of boundedness for nonlinear systems presented

in [78, Theorem 4.18], using Lyapunov methods. The time derivative of the Lyapunov

function V = ‖I−R̃‖2

2 along the system trajectories is given by

V̇ = −kω
‖I − R̃2‖2

2
+ tr

(

R̃ − R̃′

2
(dω)×

)

.

Algebraic manipulation of V̇ produces

V̇ ≤ −kω
‖I − R̃2‖2

2
+

1

2
‖R̃ − R̃′‖‖(dω)×‖

= −kω‖I − R̃2‖
(

1

2
‖I − R̃2‖ − ‖dω‖

kω

√
2

)

,

where tr(A′B) <
√

tr(A′A) tr(B′B) and 2 tr(I−R̃2) = ‖I−R̃2‖2 = ‖R̃−R̃′‖2 were used.

It is immediate that

1

2
‖I − R̃2‖ > ‖dω‖∞

kω

√
2

⇒ V̇ < 0.

Using ‖I − R̃2‖2 = 1
2

(

8 − ‖I − R̃‖2
)

‖I − R̃‖2 produces

‖I − R̃2‖
2

>
‖dω‖∞
kω

√
2

⇔ γ1(‖dω‖∞)

2
≤ V ≤ r(‖dω‖∞)

2
.

Consider the level sets defined by the Lyapunov function

Ωt =

{

R̃ ∈ SO(3) : V (R̃) ≤ γ1(‖dω‖∞)

2

}

, Ω̄t =

{

R̃ ∈ SO(3) : V (R̃) ≤ r(‖dω‖∞)

2

}

,
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then R̃ ∈ {Ω̄t − Ωt} implies that V̇ < 0. Hence Ω̄t is a positively invariant set, the

trajectories of the system starting in Ω̄t enter Ωt in finite time, see [78, Section 4.8] for a

motivation of the level sets involved, and any solution starting in Ωt will remain in the set

since V̇ < 0 in the corresponding boundary. The initial conditions given by (7.10a) satisfy

R̃(t0) ∈ Ω̄t; any R̃ ∈ Ωt satisfies (7.10b), which concludes the proof. The gain condition

kω >
dmax

2 is required so that {Ω̄t − Ωt} 6= ∅.

The results stated in Theorem 7.2 are obtained using Lyapunov stability theory, and

guarantee that any trajectory emanating from (7.10a) converges to a bounded region, as

shown in Fig. 7.1(a). Fig. 7.2 portrays the regions (7.10a) and (7.10b) as a function of

the noise to gain ratio ‖dω‖∞
kω

. The region (7.10a) is smaller for large noise/small gain

configuration, as illustrated in Figs. 7.2(a) and 7.2(b), and, conversely, is larger for small

noise/large gain configuration, as illustrated in Figs. 7.2(a) and 7.2(c).

Following the proposed technique, a density function is adopted to show that almost

all trajectories of the system (7.8) satisfy a lim inf condition, whose bound guarantees that

the solutions enter the set (7.10a) in finite time.

Theorem 7.3. The system (7.8) is weakly almost ISS with respect to I. Namely, the

solutions verify

∀dω ∈ U ∀a.a.R̃(t0) ∈ SO(3) lim inf
t→∞

‖I − R̃(t)‖2 < γ2(‖dω‖∞), (7.11)

where γ2(d) =
8

“

d
kω

”2

1+
“

d
kω

”2 .

Proof. The result is obtained by satisfying the conditions of Theorem H.2 found in Ap-

pendix H.1, with the density function

ρ(R̃) =
1

tr2(I − R̃)
.

From the local ISS property obtained in Theorem 7.2, it is immediate that R̃ = I is a

locally stable equilibrium point for dω = 0.

The function f := vec
(

kR̃(R̃′ − R̃) − R̃ (dω)×

)

is locally Lipschitz over SO(3) and

C1 over SO(3) \ {I}. The density function ρ(R̃) is of class C1 over SO(3) \ {I} and, given

that SO(3) is compact, verifies
∫

SO(3)\U
ρ(R̃)dR̃ < +∞,

for all open neighborhoods U of 0M .

The divergence is given by

div(ρf) =
kω

tr3(I − R̃)

(

‖I − R̃‖2 +
2

kω

(

R̃ − R̃′
)′

⊗
dω

)

,

where div(ρf) = ρ div(f)+∇(ρ)′f , div(f) = −2kω tr(R̃) and ∇(ρ) = 2 tr(I−R̃)−3 vec(I),

more details on the computations of divergence and integrals in SO(3) can be found in
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Appendix H.3 and in [30]. To attain the “density propagation inequality” (H.1) expressed

in Appendix H.1, i.e.

∀dω ∈ U ∀R̃ ∈ SO(3) ‖I − R̃‖2 ≥ γ2(‖dω‖) ⇒ div(ρf) ≥ Q(R̃),

where ∀a.a.R̃ ∈ SO(3) Q(R̃) > 0, the sufficient condition

‖I − R̃‖2 +
2

kω

(

R̃ − R̃′
)′

⊗
dω ≥ ξ, ξ > 0,

is analyzed, such that (H.1) is verified withQ(R̃) = kω

tr3(I−R̃)
ξ > 0 for almost all R̃ ∈ SO(3).

The inequality is satisfied if

‖I − R̃‖2 > 4
‖dω‖
kω

∥

∥

∥

∥

∥

(

R̃ − R̃′

2

)

⊗

∥

∥

∥

∥

∥

⇔ ‖I − R̃‖2 >
√

2
‖dω‖
kω

‖I − R̃2‖

⇔ ‖I − R̃‖2 >
8‖dω

kω
‖2

1 + ‖dω

kω
‖2

= γ2(‖dω‖).

Since γ2(u) is a class K function (γ2(0) = 0 and d γ2(u)
du

> 0), the conditions of Theorem H.2

are verified with

∀dω ∈ U ∀R̃ ∈ SO(3) ‖I − R̃‖2 > γ2(‖dω‖) ⇒ div(ρf) ≥ kω

tr3(I − R̃)
ξ for some ξ > 0,

producing the desired result (7.11).

Using the result expressed in Lemma 7.1, almost ISS is obtained from the local ISS

property derived in Theorem 7.2, and the weakly almost ISS analyzed in Theorem 7.3.

Theorem 7.4. Let kω >
dmax√

3
. Then, the trajectories of the system (7.8) satisfy

∀dω ∈ U ∀a.a.R̃(t0) ∈ SO(3) lim sup
t→∞

‖I − R̃(t)‖2 < γ(‖dω‖∞), (7.12)

where γ(d) = γ1(d) = 4
(

1 −
√

1 − d2

4k2
ω

)

, i.e. the attitude observer is almost ISS with

respect to I.

Proof. The proof is immediate from Lemma 7.1. However, it is re-derived to illustrate

the combination of Lyapunov and density function techniques for the present attitude

observer. Using the lim inf condition (7.11), the trajectories of the system enter the

positively invariant set (7.10a) for some t, if

γ2(‖dω‖∞) < r(‖dω‖∞),

which is equivalent to
2

“

‖dω‖∞
kω

”2

1+
“

‖dω‖∞
kω

”2 < 1+

√

1 −
(

‖dω‖∞
2kω

)2
, that is satisfied for ‖dω‖∞

kω
<

√
3.

Consequently, almost all solutions enter the set defined in (7.10a) in finite time, and thus

verify the lim sup condition of Theorem 7.2, yielding almost ISS.
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Figure 7.3: Simulation results of the attitude observer, illustrating almost ISS. Convergence for

‖I−R̃(t0)‖2 ≤ r(dmax) is guaranteed by Lyapunov methods; convergence for ‖I−R̃(t0)‖2 > r(dmax)

is guaranteed by combining Lyapunov and density functions.

Simulation results of the observer estimation error are depicted in Fig. 7.3. Note

that the exponential convergence for γ1(dmax) < ‖I − R̃(t)‖2 < r(dmax) is justified by

the fact that V̇ < −αV in that region, for some α ∈ R
+. According to the proposed ISS

derivation technique, based on Lemma 7.1, almost ISS of the attitude observer, formulated

in (7.12), was obtained by combining the weakly almost ISS property (7.11), given by

density function techniques, with the local ISS property (7.10), derived using Lyapunov

techniques.

7.3 Local stability analysis using density functions

This section derives new results for local stability analysis of equilibrium points other

than the origin, using density functions. By combining the proposed stability results

with LaSalle’s invariance principle, a new tool for global stability analysis of the origin is

obtained. The proposed technique is illustrated for the case of a simple attitude observer

with biased inertial measurements.

7.3.1 Stability using density functions and LaSalle’s invariance principle

The proposed stability analysis results are derived for autonomous nonlinear systems of

the form

ẋ = f(x), (7.13)

where f : R
n → R

n is smooth, and the associated flow φt : R
n → R

n is defined by

φt(x0) = x(t, x0), where x(t, x0) denotes the solution of the system at time t with initial

condition x0. In the remainder of this work, it is assumed that φt is well defined [125,

Chapter 7].
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Assumption 7.1. The flow φt is unique, continuous, and exists for all t.

To formulate the stability results in the presence of multiple equilibrium points, some

concepts and results are introduced, for more details the reader is referred to [125]. The

values at time t and at the time interval t ∈ [τ0, τ ] of the trajectories starting in the set

A, are respectively denoted by

φt(A) = {x : x = φt(x0), x0 ∈ A}, φ[τ0,τ ](A) = {φt(A) : t ∈ [τ0, τ ]}.

The local inset of xw is the set of all initial conditions inside a neighborhood W of xw that

converge to xw without leaving W , i.e.

ZW (xw) = {x ∈W : ∀ǫ∃T∀t>T |φt(x) − xw| < ǫ and ∀t>0φt(x) ∈W}. (7.14)

The global inset of xw, denoted as W(xw), is defined by taking (7.14) with W = R
n.

The following theorem is a new result in density function methodologies, and provides

sufficient conditions to show that an equilibrium point is not stable, given a suitable

density function. This property is of interest to exclude the stability of equilibrium points

other than the origin.

Theorem 7.5. Let xw ∈ R
n, and suppose there exists a non-negative ρ ∈ C1(Rn \{0},R),

integrable in a neighborhood W of xw, and with div(ρf) > 0 in W . Then, the global inset

of xw has zero measure.

Proof. First, it is shown that the local inset, denoted as ZW with a slight abuse of notation,

has zero measure. By Lemma H.9 presented in Appendix H.2, the local inset ZW is

measurable. Using Lemma H.1 with D = W produces

0 ≥
∫

φt(ZW )
ρ(x)dx−

∫

ZW

ρ(z)dz =

∫ t

0

∫

φτ (ZW )
[div(ρf)] (x)dxdτ.

Since div(ρf) > 0 in W , then φt(ZW ) ⊂ ZW ⊂ W has zero measure. The flow φt is

a diffeomorphism and hence ZW has zero measure, for results on set measure see Ap-

pendix H.2.

The forward propagation of ZW is ZW itself, i.e. ZW = φ[0,∞)(ZW ). Therefore,

φ[0,∞)(ZW ) has zero measure, and by the results expressed in Appendix H.2, the global

inset, which can be expressed as W(xw) = φ(−∞,∞)(ZW ), has zero measure.

The combination of the density function results presented in Theorem 7.5 with LaSalle’s

invariance principle can be used to provide almost global stability of the origin. The tech-

nique is based on using LaSalle’s invariance principle to show that the trajectories approach

a candidate set M in the sense discussed in [78]; and then using the div(ρf) > 0 property

for M \ {0}, to show that the set of trajectories converging to M \ {0} is of zero measure,

and hence that the origin is almost globally asymptotically stable.



7.3. Local stability analysis using density functions 161

Lemma 7.6. Consider the system (7.13). Let V : R
n → R be a continuously differentiable

function such that the level sets {x : V (x) ≤ c} are bounded and V̇ (x) ≤ 0. Let M be the

largest invariant set in {x : V̇ (x) = 0}. Suppose that M is a countable union of isolated

points, and that there is a density function that satisfies the conditions of Theorem 7.5 for

all xw ∈M \ {0}. Then the origin of (7.13) is almost GAS.

Proof. The conditions on V (x) satisfy LaSalle’s invariance principle [78, 125], and hence

guarantee that the trajectories approach M as t→ ∞, i.e.

∀x0∀ε∃T>0∀t>T inf
y∈M

‖φt(x0) − y‖ < ε.

By the continuity of φt(x), choosing ε < minx,y∈M‖x − y‖ shows that each solution of

(7.13) must converge to an isolated point xw ∈ M . By Theorem 7.5, the condition

div(ρf) > 0 for a neighborhood W of every xw ∈ M \ {0} guarantees that the global

inset of xw has zero measure. The set of initial conditions that converge to M \ {0},
given by ∪xw∈M\{0}W(xw), is a countable union of zero measured sets and hence has zero

measure. Consequently, almost all solutions converge to the origin, and hence the origin

is almost globally asymptotically stable.

7.3.2 Stability of the nonlinear observer in the presence of biased inertial

readings

In this section, the proposed stability analysis is illustrated for the attitude observer, in

a case where the disturbance in (7.1) is a constant bias, i.e. ḋω = 0. Although the ISS

results of Section 7.2 can be applied by considering the bias as an unmodeled disturbance,

the bias dynamics are known. Therefore, the observer dynamics can be augmented to

compensate for this non-ideality, yielding stronger stability properties.

The observer is augmented to estimate the bias, and the feedback laws are defined as

follows

˙̂R = R̂ (ω̂)× , ω̂ = R̂′UH
BU′

H

(

ωr − b̂ω

)

− kωsω,

˙̂
bω = kbω

sω, sω =
n
∑

i=1

(R̂′Lui) × Bui,

where kω, kbω
∈ R

+ are feedback gains, and b̂ω is the rate gyro bias estimate, for more

details on the adopted observer see Section 6.2. The closed loop error kinematics are given

by

˙̃R = R̃
[

kω(R̃′ − R̃) +
(

b̃ω

)

×

]

,
˙̃
bω = kbω

(

R̃′ − R̃
)

⊗
, (7.15)

where b̃ω = b̂ω −dω is the bias estimation error. The stability analysis technique is illus-

trated for the case where initial bias and attitude estimation errors exist along the z-axis,

i.e. b(t0) =
[

0 0 b0

]′
, b0 ∈ R, and R̃(t0) = exp(ϕ0 (φ0)×), ϕ0 ∈ R, φ0 =

[

0 0 1
]′

.
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Figure 7.4: Phase portrait of the reduced order attitude observer. Using the density function

property div(ρf) > 0 in a neighborhood of the equilibrium points (ϕ, b) = (π + 2πk, 0), k ∈ Z,

shows that these are unstable.

In this case, the trajectories of (7.15) are characterized by R̃(t) = exp(ϕ(t) (φ0)×),

b(t) =
[

0 0 b(t)
]′

, and the dynamics can be reduced to

ϕ̇ = − sin(ϕ) + b, ḃ = − sin(ϕ), (7.16)

with initial conditions ϕ(t0) = ϕ0, b(t0) = b0.

The stability of the second order system (7.16) is analyzed by following the proof

of Lemma 7.6. Namely, using a Lyapunov function and LaSalle’s invariance principle,

an invariant set M is derived. Then, a density function and the results expressed in

Theorem 7.5 are used to show that almost all solutions approach a subset of M as t→ ∞.

Proposition 7.7. The trajectories of the system (7.16) approach M = {(ϕ, b) : ϕ =

πk, k ∈ Z, b = 0} as t→ ∞.

Proof. The result is obtained by considering the Lyapunov function V = 2(1−cos(ϕ))+b2.

The time derivative is given by V̇ = −2 sin2(ϕ) and hence the result is immediate from

LaSalle’s invariance principle.

The phase portrait of the system, depicted in Fig. 7.4, suggests that the equilibrium

points in the set E = {(ϕ, b) : ϕ = 2πk + π, k ∈ Z, b = 0} ⊂ M are unstable, and that

almost all trajectories approach M \ E = {(ϕ, b) : ϕ = 2πk, k ∈ Z, b = 0} as t→ ∞. This

is demonstrated by combining Proposition 7.7 with the results based on density functions.

Proposition 7.8. Almost all trajectories of the system (7.16) approach the set {(ϕ, b) :

ϕ = 2πk, k ∈ Z, b = 0} as t→ ∞.



7.4. Conclusions 163

Proof. To exclude the points in the set E, we use the density function ρ = 1
2(1−cos(ϕ))+b2

.

The divergence is

div(ρf) =
2(1 − cos(ϕ)) − cos(ϕ)b2

(2(1 − cos(ϕ)) + b2)2
.

There is a neighborhood of every point in E where ρ is integrable, and div(ρf) > 0.

By Theorem 7.5, the set of initial conditions converging to each point in E has zero

measure. The set E is a countable union of points, and hence the set of initial conditions

that approach E has zero measure. Consequently, almost all the trajectories approach

M \ E.

7.4 Conclusions

This work addressed the combination of Lyapunov and density functions, for stability

analysis of nonlinear systems. Almost ISS of the origin was formulated as the combination

of local ISS and weakly almost ISS, that can be derived using the properties of Lyapunov

and density functions, respectively. For the case of autonomous systems, it was shown that

global stability of the origin can be obtained by combining LaSalle’s invariance principle,

with a density function that excludes the stability of undesirable equilibrium points. The

proposed techniques were illustrated for the stability analysis of an attitude observer with

non-ideal angular velocity readings.





Chapter 8

GPS/IMU based nonlinear

navigation system

This chapter proposes a position and attitude nonlinear observer based on an inertial

measurement unit (IMU) and GPS pseudorange readings. The GPS/IMU based nonlin-

ear navigation system is characterized by a cascade composition of attitude and position

observers, where the attitude subsystem is aided by vector measurements, or by multiple

GPS units, which allows for a navigation solution based solely on GPS and IMU data.

Exploiting the sensor measurements directly, the navigation system is formulated on SE(3)

and yields exponential convergence of the position and attitude estimation errors to the

origin. The proposed observer compensates for the bias in the angular velocity sensor

and the clock offset in GPS pseudorange measurements. Nonmodeled disturbances in the

inertial sensors are also considered, and the observer is shown to stabilize the position

and attitude errors with explicit ultimate bounds, in the presence of bounded noise in the

accelerometer and rate gyro measurements. The properties of the navigation system are

illustrated in simulation for a rigid body equipped with low quality inertial sensors, and

describing a challenging trajectory.

The chapter is organized as follows. In Section 8.1, the sensor suite adopted in the

estimation problem is described and Section 8.2 proposes attitude and position observers

based on the GPS, IMU, and vector readings. The stability and convergence properties

of the estimation errors are derived and the observer equations are expressed as explicit

functions of the sensor measurements. The stability and convergence of the observer

estimates are illustrated in simulation in Section 8.3. Concluding remarks are presented

in Section 8.4.
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8.1 Sensor description

In this section, the sensor suite used in the attitude and position observer is introduced.

The rigid body kinematics are described by

Ṙ = R (ω)× ,
Eṗ = Ev, Ev̇ = Ea,

where R is the shorthand notation for the rotation matrix E
BR from body frame {B} to

Earth frame {E} coordinates, ω is the body angular velocity expressed in {B}, Ep, Ev

and Ea are the position, velocity and acceleration of the rigid body with respect to {E}
expressed in {E}, respectively, and (s)× is the skew symmetric matrix defined by the

vector s ∈ R
3 such that (s)× b = s × b, b ∈ R

3.

The inertial sensors measure the angular velocity and specific force of the body, which

allows for the propagation of the attitude and position in time. The body angular velocity

is measured by a rate gyro sensor triad, corrupted by a bias term

ωr = ω + bω, (8.1)

where the nominal bias is considered constant, ḃω = 0. The triaxial accelerometer mea-

sures the specific force, which is the difference between the inertial and the gravitic acceler-

ations of the rigid body [20], Ba and Bg respectively, expressed in body frame coordinates,

bearing

ar = Ba − Bg.

As illustrated in Fig. 8.1, the GPS pseudoranges measurements are given by the dis-

tance from the GPS satellites to the receiver and a distance offset due to the clock bias

[62], yielding

ρij = ‖Epj − EpS i‖ + bρ, (8.2)

where Epj and EpSi are the positions of the receiver j and satellite i expressed in {E},
the total number of GPS satellites and receivers are represented by s and r, respectively,

j = 1..r and i = 1..s, and bρ is the range bias due to the offset between the receiver

and satellite’s clocks. In the communication process, the satellite coordinates EpSi are

transmitted to the receiver. Without loss of generality, receiver 1 is considered to be at

the origin of the body frame, i.e. Ep = Ep1.

The objective of the present work is to exploit the information provided by the sensors,

by deriving a position and attitude observer that combines the inertial measurements with

the pseudorange readings and, if available, with the vector observations.

8.2 Observer architecture

As depicted in Fig. 8.2, the proposed observer is described by a cascaded composition,

where the attitude observer estimates are fed into the position observer to rotate the
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(a) Pseudorange measurements.

(b) Position of the GPS satellites (EpSi
), GPS receivers (Bpi), and rigid

body (Ep).

Figure 8.1: Navigation system configuration.
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Vector Observations

Rate Gyro

GPS Pseudoranges

Accelerometer

!r

hr

ar

½r

Nonlinear
Attitude Observer

Aiding
Source
Select

Nonlinear
Position Observer

R̂

b̂!

Ep̂

Ev̂

Figure 8.2: Cascaded position and attitude observer.

specific force readings to Earth frame. In this section the attitude and the position ob-

servers are detailed, and the associated properties are derived. Namely, the exponential

convergence of the attitude and position estimation errors to the origin is evidenced, and

it is shown that the attitude and position observer equations can be expressed as explicit

functions of the IMU and GPS pseudorange measurements.

8.2.1 Attitude observer

The attitude observer considered in this section estimates the rotation matrix by exploit-

ing the angular velocity measurements (8.1), and i) the pseudorange measurements (8.2)

provided by multiple GPS receivers installed onboard the vehicle, or ii) vector observa-

tions. The latter is detailed in Chapter 6, where further insight on the observer derivation

and stability properties can be found, and can be integrated directly in the architecture

shown in Fig. 8.2.

The GPS based attitude observer is an alternative to vector based techniques for

scenarios where these sensors measurements are corrupted, distorted or unavailable. For

example, pendular readings are corrupted by external accelerations, including constant

centripetal acceleration of helicoidal trimming trajectories, and magnetometers readings

are distorted by electromagnetic interference, either created by other onboard devices

or externally by nonmodeled sources. The attitude observer integrated in the cascade

depicted in Fig. 8.2 allows for attitude and position estimation using only GPS and IMU

measurements.

The architecture of the GPS based attitude observer is similar to that of the vector

based attitude observer. The positions of two GPS receivers in body coordinates, Bpi and
Bp1, are subtracted to define the vector

Bxi := Bpi+1 − Bp1, (8.3)

which is known in body frame coordinates. Applying this operation to all the receivers

produces X :=
[

Bx1
Bx2 . . . Bxr−1

]

∈ M(3, r − 1), that is illustrated in Fig. 8.3.
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Figure 8.3: Body fixed vectors, defined by the position of the GPS receivers.

The attitude observer based on GPS units is dual to the attitude observer based on

vector measurements in the sense that: in the latter, the vectors are measured in body

frame and are known and constant in Earth frame; in the former observer, the vector

quantities are known and constant in body frame, and can be measured in Earth frame

using the position provided by the GPS units. Consequently, the attitude observer based

on GPS units can be derived directly using the results presented in Chapter 6.

To derive the observer, define the linear combination of the body vectors as

Byj :=

r−1
∑

i=1

aij
Bxi ⇔ YX = XAX , (8.4)

where AX := [aij ] ∈ M(r−1) is invertible by construction and YX :=
[

By1 . . . Byr−1

]

∈
M(3, r − 1). The nominal and the estimated coordinates of the transformed body vectors

in Earth frame are respectively given by

EYX := RYX ,
EŶX := R̂YX .

Some rotational degrees of freedom are unobservable if the vectors (8.3) are all collinear,

as discussed in Section 6.1, and the following necessary condition is assumed.

Assumption 8.1. There are at least two noncollinear vectors Bxi.

Note that the condition of Assumption 8.1 is satisfied using at least three noncollinear

GPS receivers, depicted in Fig. 8.3. The transformation AX is defined such that YXY′
X =

I, to shape uniformly the directionality introduced by the vector readings. The desired

AX exists if Assumption 8.1 is satisfied, as discussed in the derivation of the attitude

observer based on vector observations, found in Section 6.1.

The attitude observer is derived using a synthesis Lyapunov based on the measurement

error of the vectors Bx, given by

V =
1

2

n
∑

i=1

‖Bx̂i − Bxi‖2,

that is similar to the Lyapunov function defined in (6.3), but given by a vector measure-

ment error computed in body coordinates. Although the GPS based attitude observer can
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be derived by finding a feedback law such that V̇ < 0, the observer can be directly ob-

tained by considering the duality between the GPS based and the vector based observers.

Taking the observer architecture formulated in Theorem 6.8, the GPS based observer is

given by

˙̂R = R̂ (ω̂)× , ω̂ = R̂′EYXY′
X

(

ωr − b̂ω

)

− kωsω, (8.5a)

˙̂
bω = kbsω, sω =

n
∑

i=1

(R̂′EYXei) × (YXei), (8.5b)

where kω, kb > 0 are feedback gains. Note that YX can be seen as the dual of the matrix

UH adopted in Chapter 6, that are defined, known, and constant in body and Earth

coordinates, respectively.

The observer (8.5) is a function of the sensor measurements and states estimates. The

terms EŶX and EYX are given by the observer estimates and the pseudorange measure-

ments, respectively, as shown in the following proposition.

Proposition 8.1. Assume that the position fix (Ep, bρ) satisfying the pseudorange mea-

surements (8.2) for all i = 1..s is unique. The attitude observer dynamics (8.5) are a

function of the sensor measurements and observer estimates, where

EYX = −
[

fp(ρ2) − fp(ρ1) . . . fp(ρr) − fp(ρ1)
]

AX ,
EŶX = R̂XAX ,

ρj :=
[

ρ1j . . . ρmj

]

is the vector of pseudoranges measured by receiver j, ρ := ρ1, and

the function fp(ρj) is given by

fp(ρj) :=
1

2
(EU′WSj

EU)−1EU′WSjbSj ,

which encompasses matrices described by the pseudoranges measurements and satellite’s

positions as follows

EU :=
[

Ep′
S2 − Ep′

S1 . . . Ep′
Ss − Ep′

S1

]′
,

WS j := 4∆S j(4∆
′
S j∆S j − 1)−1∆′

S j − I(s−1)×(s−1),

∆Sj :=
[

ρ2j − ρ1j . . . ρsj − ρ1j

]′
,

bS j =









ρ2
2j − ρ2

1j −
(

‖EpS 2‖2 − ‖EpS 1‖2
)

...

ρ2
s j − ρ2

1 j −
(

‖EpS s‖2 − ‖EpS 1‖2
)









.

Proof. The formulation for EŶX is immediate from (8.4), and EYX is obtained by not-

ing that EYX =
[

Ep2 − Ep1 . . . Epr − Ep1

]

AX and using the derivation of fp(ρj)

presented in Appendix I.

The stability properties of the observer are obtained directly from Theorem 6.3, for

the case of ideal velocity readings, and Theorem 6.5, for the case of biased angular velocity

measurements. The attitude estimation error adopted to described the stability properties

is given by R̃ := R̂′R.
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Theorem 8.2 (Unbiased Velocity Measurements). Let b̃ω = 0. Under Assumption 8.1,

the closed-loop error kinematics of the attitude observer are given by

˙̃R = − kωR̃(R̃ − R̃′). (8.6)

The equilibrium point R̃ = I is exponentially stable, with region of attraction given by

RA = {R̃ ∈ SO(3) : ‖I − R̃‖2 < 8}.

For any initial condition R̃(t0) ∈ RA, the emanating trajectory satisfies

‖R̃(t) − I‖ ≤ ‖R̃(t0) − I‖e− 1
2
γR(t−t0), (8.7)

where γR = kω

2 (8 − ‖R̃ − I‖2).

Theorem 8.3 (Biased Velocity Measurements). Let b̃ω 6= 0. Under Assumption 8.1, the

closed loop dynamics are given by

˙̃R = −kωR̃(R̃ − R̃′) + R̃
(

b̃ω

)

×
,

˙̃
bω = −kb

(

R̃ − R̃′
)

⊗
. (8.8)

Let the feedback gain satisfy

kb >
b̃20

8 − c0
,

where c0 and b̃0 are the initial estimation errors bounds

‖I − R̃(t0)‖2 ≤ c0 < 8, ‖b̃ω(t0)‖ ≤ b̃0. (8.9)

Then the origin (R̃, b̃ω) = (I, 0) is exponentially stable, uniformly in the set defined by

(8.9). That is, let xR :=
(

R̃ − I, b̃ω

)

, there exists cb, γb > 0 independent of xR(t0) such

that the trajectories of the system (8.8) satisfy

‖xR(t)‖ ≤ cbe
− 1

2
γb(t−t0)‖xR(t0)‖. (8.10)

Remark 8.1. An alternative GPS based attitude observer can be formulated, based on

the difference of the satellites’ positions in Earth frame, that is known and given by
EpSi − EpSj. This quantity can be measured in body coordinates by a set of receivers

by exploiting the following duality: given that a constellation of satellites can be used to

determine the position of a receiver in Earth coordinates, a set of receivers can be used

to compute a satellite position in body coordinates. In this configuration, the vectors
EpSi − EpSj are known in Earth frame, and are measured in body frame, bearing the

same estimation problem of the vector based attitude observer formulated in Chapter 6.

However, the quantities EpSi − EpSj are time varying due to the motion of the GPS

satellites, and hence the directionality of the observer is time varying. This formulation

requires for a time dependent transformation AH , and thus for accurate satellite position

information, leading to a more complex observer implementation.
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8.2.2 Position observer

This section derives the position observer based on the IMU and GPS readings, and on

the attitude observer estimates. The position and velocity estimates are described by

E ˙̂p = Ev̂ + sp,
E ˙̂v = E â + sv, (8.11)

where sp and sv are feedback terms, the estimate of the acceleration in Earth coordinates

is given by

E â = R̂ar + Eg,

and the gravity representation in Earth coordinates Eg is known. As shown in the block

diagram of Fig. 8.2, the position observer uses the attitude estimate to rotate the ac-

celerometer measurements ar to the Earth frame. Consequently, the attitude estimation

error R̃ will influence the convergence and stability properties of the position observer.

The derivation of the feedback terms sp and sv in (8.11) is motivated by the Lyapunov

function

Vp =
1

2
‖Ep̃‖2 +

αv

2
‖Eṽ‖2.

where Ep̃ = Ep̂ − Ep and Eṽ = Ev̂ − Ev are the position and velocity estimation errors,

respectively.

The Lyapunov function time derivative is described by

V̇p = Ep̃′(Eṽ + sp) + αv
Eṽ′(ug + sv),

where ug = R(R̃′ − I)R′(Ea − Eg). The feedback terms are defined as

sp = −kp
Ep̃, sv = −kv

Ep̃, (8.12)

where kp, kv > 0, and choosing αv = 1
kv

produces

V̇p = −kp‖Ep̃‖2 +
1

kv

Eṽ′ug.

which is sign indefinite due to the second term. The term ug is the compensation error

generated by rotating the accelerometer readings to Earth frame using the estimated

attitude. In particular, if ug = 0, then V̇p is negative definite and the stability properties of

the position observer can be derived using Lyapunov stability theory. However, for ug 6= 0,

the convergence properties of the position observer are influenced by the convergence

properties of the attitude observer.

The position and velocity error dynamics are described by

E ˙̃p = −kp
Ep̃ + Eṽ, (8.13a)

E ˙̃v = −kv
Ep̃ + ug, ug = R(R̃′ − I)R′(Ea − Eg) (8.13b)
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which can be modeled as an autonomous system with an input. In this work, the stability

of the position observer is obtained by using input-to-state stability theory [78, 131]. To

that effect, it is assumed that the following condition for the rigid body acceleration is

verified.

Assumption 8.2. For any γg > 0, there exists cg such that the acceleration of the rigid

body satisfies

‖Ea(t) − Eg‖ ≤ cge
γg(t−t0), for all t > t0.

The conditions of Assumption 8.2 guarantee that the convergence of the attitude es-

timation error (I − R̃) dominates the acceleration term (Ea − Eg) in ug as t → ∞.

Interestingly enough, unbounded accelerations such as those that grow polynomially with

time satisfy Assumption 8.2, which therefore poses a weak limitation for most practical

applications.

We are now ready to present the stability and convergence properties of the cascaded

attitude and position observers. As before, the properties are derived separately for unbi-

ased and biased angular rate measurements.

Theorem 8.4 (Unbiased Velocity Measurements). Under Assumptions 8.1 and 8.2, the

equilibrium point (R̃,Ep̃,Eṽ) = (I,0,0) of the system (8.6, 8.13) is exponentially stable

with region of attraction given by

RA = {(R̃,Ep̃,Eṽ) ∈ SE(3) × R
3 : ‖I − R̃‖2 < 8}.

Proof. The stability and convergence of the position and attitude errors are shown by

analyzing (8.6) and (8.13) as a cascaded system. The position and velocity error dynamics

expressed in (8.13) are rewritten as

ẋp = Apxp + Bpug, (8.14)

where

xp =
[

Ep̃′ Eṽ′
]′
, Ap =

[

−kpI I

−kvI 0

]

, Bp =

[

0

I

]

.

To derive the stability and convergence properties of the cascaded system, it is first shown

that the system represented by (8.14) is input-to-state stable (ISS). It is a simple exercise

to verify that Ap is Hurwitz and, by the properties of linear systems [78], the system (8.14)

is ISS.

The exponential convergence of the state (R̃,Ep̃,Eṽ) is obtained by the bounds on

the solution of (8.14) and the exponential convergence of ug. The derivation is presented

here for the sake of clarity and to provide for explicit convergence bounds. Using

‖ug‖ ≤ ‖R(R̃′ − I)‖‖R′(Ea − Eg)‖ = ‖R̃ − I‖‖Ea − Eg‖, (8.15)
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the exponential convergence of the attitude observer error (8.7), and Assumption 8.2, an

exponential bound for the input is obtained

‖ug(t)‖ ≤ cge
−γe(t−t0)‖R̃(t0) − I‖, (8.16)

where γe = γR − γg. Choosing γg small enough, the exponential rate satisfies γe > 0.

Therefore ‖ug‖ → 0 and, by the ISS property of (8.13), ‖Ep̃‖ → 0 and ‖Eṽ‖ → 0 as

t→ ∞.

To see that the origin of the system (8.6, 8.13), is in fact exponentially stable, the results

derived in Appendix J are adopted. Define the attitude, position and velocity estimation

error state as xf :=
(

R̃ − I,xp

)

= (R̃− I,Ep̃,Eṽ). If the acceleration of the rigid body is

limited, then exponential convergence of ‖xf‖ is obtained from Proposition J.4, by taking

c3 = maxt∈R
+
0
‖Ea − Eg‖.

In the case where the acceleration satisfies Assumption 8.2, using (8.16) and Proposi-

tion J.4 produces

‖xp(t)‖ ≤cae−γmin(t−t0)

(

‖xp(t0)‖ +
cg‖Bp‖
|γa − γe|

‖R̃(t0) − I‖
)

,

where γmin = min(γe, γa). Using (8.7), γe < γR, and norm inequalities produces

‖xf (t)‖ ≤ ‖xp(t)‖ + ‖R̃(t) − I‖

≤ cae
−γmin(t−t0)

(

‖xp(t0)‖ +
cg‖Bp‖
|γa − γe|

‖R̃(t0) − I‖
)

+ e−
1
2
γR(t−t0)‖R̃(t0) − I‖

≤ e−γmin(t−t0)

(

ca‖xp(t0)‖ +

(

cacg‖Bp‖
|γa − γe|

+ 1

)

‖R̃(t0) − I‖
)

≤ e−γmin(t−t0)

(

ca‖xf (t0)‖ +

(

cacg‖Bp‖
|γa − γe|

+ 1

)

‖xf (t0)‖
)

≤ cmaxe
−γmin(t−t0)‖xf (t0)‖,

where cmax = ca +
cacg‖Bp‖
|γa−γe| + 1.

Remark 8.2. Following the proof of Theorem 8.4, it is possible to show that if the

acceleration grows exponentially with time, then there is a sufficiently high gain kω such

that the origin is exponentially stable for all ‖I − R̃(t0)‖2 ≤ c0 < 8.

The stability and convergence result for position and attitude estimation with biased

angular velocity measurements is presented next.

Theorem 8.5 (Biased Angular Velocity Measurements). Let the bias feedback gain satisfy

kb >
b̃20

8−c0
. Under Assumptions 8.1 and 8.2, the equilibrium point (R̃, b̃ω,

Ep̃,Eṽ) =

(I,0,0,0) of the system (8.8, 8.13) is exponentially stable, uniformly in the set defined by

(8.9).

Proof. By Theorem 8.3, the attitude observer error xR is bounded by (8.10). Using

‖R̃ − I‖ ≤ ‖xR‖, the input of the ISS system (8.13) is bounded by

‖ug(t)‖ ≤ cbee
−γbe(t−t0)‖xR(t0)‖,
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where cbe := cbcg and γbe := 1
2γb − γg. Repeating the algebraic manipulations of the proof

of Theorem 8.4 produces

‖xbf (t)‖ ≤cmaxe
−γmin(t−t0)‖xbf (t0)‖,

where xbf = (xR,xp) = (R̃ − I, b̃ω,
Ep̃,Eṽ) is the full attitude and position estimation

error state, γmin = min(γbe, γa) and cmax = ca +
cacbe‖Bp‖
|γa−γbe| + kb.

For the purpose of implementation, the dynamics of the position and velocity estimates,

formulated in (8.11), should be expressed as a function of known quantities. The next

proposition shows that the derived observer equations can be written as a function of the

observer estimates and of the sensor measurements.

Proposition 8.6. Assume that the position fix (Ep, bρ) satisfying the pseudorange mea-

surements (8.2) for all i = 1..s is unique. The dynamics of the position and velocity

estimates are a function of the sensor measurements and observer estimates

E ˙̂p = −kp

(

Ep̂ + fp(ρ)
)

+ Ev̂, (8.17a)

E ˙̂v = −kv

(

Ep̂ + fp(ρ)
)

+ R̂ar + Eg. (8.17b)

Proof. The formulation (8.17) is obtained by algebraic manipulation of (8.11) and (8.12),

and by writing the nominal position term in Ep̃ = Ep̂−Ep as a solution of the pseudorange

measurements. The details of the derivation are presented in Appendix I.

8.2.3 Stability in the presence of inertial sensor noise

The stability of the observer for inertial measurements with noise is addressed. The

accelerometer and rate gyro measurements are modeled as

ar = Ba − Bg + na, ωr = ω + nω,

where na, nω ∈ R
3 are nonmodeled disturbances, bounded by ‖na‖ ≤ na max, ‖nω‖ ≤

nω max, respectively.

The observer dynamics are given by (8.17) and by (8.5) with b̃ω = 0, that is

˙̂R = R̂ (ω̂)× , ω̂ = R̂′EYXY′
Xωr − kω

n
∑

i=1

(R̂′EYXei) × (YXei).

To attain boundedness of the input ug in the error kinematics (8.13), it is assumed

that the acceleration of the body is bounded

max
t∈R

+
0

‖Ea(t) − Eg‖ ≤ amax.

As shown in the next proposition, the attitude and position estimation errors are bounded

in the presence of accelerometer disturbances, i.e. the observer is almost ISS with respect

to (R̃,Ep̃,Eṽ) = (I,0,0).
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Theorem 8.7. Let kω > 1√
3
nω max. Then, almost all trajectories of the attitude and

position observer satisfy

lim sup
t→∞

‖I − R̃(t)‖2 ≤ γ(nω max), (8.18a)

lim sup
t→∞

‖(Ep̃,Eṽ)‖ ≤ ca
γa

(na max + γ(nω max)amax), , (8.18b)

where γ(n) = 4
(

1 −
√

1 − n2

4k2
ω

)

, and ca, γa satisfy the bound

∥

∥

∥

∥

e

h−kpI I

−kvI 0

i

τ
∥

∥

∥

∥

≤ cae
−γaτ .

Proof. The result (8.18a) is obtained from the ISS properties of the attitude observer,

formulated in Theorem 7.4.

The limit (8.18b) is obtained from the ISS properties of the position observer. The

position estimation error dynamics are given by

E ˙̃p = −kp
Ep̃ + Eṽ, E ˙̃v = −kv

Ep̃ + ug + R̂na. (8.19)

Using

∥

∥

∥

∥

[

0′
3 (ug + R̂na)

′
]′
∥

∥

∥

∥

= ‖ug + R̂na‖, the triangle inequality ‖ug + R̂na‖ ≤ ‖ug‖+

‖R̂na‖, and ‖R̂na‖ = ‖na‖, the solution of the LTI system (8.19) is bounded by

‖xp(t)‖ ≤ cae
−γa(t−t0)‖xp(t0)‖ +

∫ t

t0

cae
−γa(t−τ)(‖ug(τ)‖ + ‖na(τ)‖)dτ.

where xp =
[

Ep̃′ Eṽ′
]′

. Taking the bound
∫ t

t0
e−γa(t−τ)‖na(τ)‖dτ ≤ nmax

γa
produces

‖xp(t)‖ ≤ cae
−γa(t−t0)‖xp(t0)‖ +

ca
γa
nmax + ca

∫ t

t0

e−γa(t−τ)‖ug(τ)‖dτ

≤ cae
−γa(t−t0)‖xp(t0)‖ +

ca
γa

(

nmax + sup
t0≤τ≤t

‖ug(τ)‖
)

. (8.20)

The result (8.20) satisfies the ISS condition. It is well known in ISS theory [131] that the

inequality in the form (8.20) implies that

lim sup
t→∞

‖xp(t)‖ ≤ ca
γa

(nmax + lim sup
t→∞

‖ug(t)‖).

Taking the inequality (8.15) and the ISS property (8.18a) shows that

lim sup
t→∞

‖ug‖ ≤ amaxγ(nω max),

which bears (8.18b).

8.3 Simulations

In this section, simulation results for the proposed position and attitude observer are

presented. The GPS based attitude observer was simulated using GPS receivers placed at

Bp1 =







0

0

0






m, Bp2 =







1.5

0

0






m, Bp3 =







0

2

0






m.
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(a) Attitude estimation error.
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Figure 8.4: Attitude and bias estimation (biased angular velocity readings).

The satellites configuration is described by

EpS1 =







0

0

−20 × 106






m, EpS2 =







44 × 106

0

−20 × 106






m, EpS3 =







0

44 × 106

−20 × 106






m,

EpS4 =







0

0

0






m, EpS5 =







103

0

0






m,

where pS4 and pS5 are the coordinates of pseudo-satellites installed at ground level. The

clock bias, expressed in distance, is bρ = 105 m.

The feedback gains are given by kω = 2, kb = 1, kp = 2, kv = 2 and the rigid body

trajectory is computed using oscillatory angular rates and accelerations of 1 Hz. The

initial estimation errors are

Ep̃(t0) =







−2

2

2






m, Eṽ(t0) =







0.4

1

0.7






m/s, ϕ(t0) =

4

10
π rad,

φ(t0) =
1√
3







1

1

1






, b̃ω =

5π

180







1

−1

1






rad/s,

The initial bias estimate is b̂ω(t0) = 0 rad/s. The bounds (8.9) are defined by

c0 = 4

(

1 − cos

(

3

4
π

))

, b̃0 =
5
√

3π

180
rad/s,

that correspond to the maximum rotation error of γ(t0) = 3
4 rad and to the minimum gain

kbω min = 1.95 × 10−2.
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(a) Position estimation error.
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(b) Velocity estimation error.
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(c) Specific force compensation error ug.
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(d) Exponential convergence of the estimation error.

Figure 8.5: Position and velocity estimation (biased angular velocity readings).

The estimation results for the GPS based attitude observer are presented in Fig. 8.4,

for the nominal values of the feedback gains kω = 2, kb = 1 and for kω = 2
6 , kb = 1

6 .

The attitude and bias estimation errors converge to the origin, as expected, and the

characteristics of the observer are similar to the properties of the vector based observer

proposed in Chapter 6. Namely, the trajectories converge exponentially fast, and larger

feedback gains kω and kb bear faster convergence, as well as larger peaks in the estimation

errors, that however do not degrade the convergence rate of the state (R̃ − I, b̃ω) due to

the opposite phase of the transients in ‖R̃ − I‖ and ‖b̃ω‖. The simulation results for an

attitude observer based on vector observations yield similar results to those presented in

Fig. 8.4, since the attitude and bias error dynamics are identical.

The position and velocity estimation errors converge to the origin, as shown in Fig. 8.5.

The convergence rate of the position observer is influenced by the convergence of the

attitude errors, and hence is faster for larger feedback gains kω and kb. The specific force

compensation term ug is a function of the attitude error and of the rigid body acceleration,

and hence the effect of oscillating acceleration is verified in the small ripples in ug, shown
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(a) Position estimation error.
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(b) Velocity estimation error.
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(c) Attitude estimation error.
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(d) Specific force compensation error ug.

Figure 8.6: Attitude, position and velocity estimation (inertial sensor noise).

in Fig. 8.5(c). These oscillations are smoothed out in the velocity and position estimation,

as shown Fig. 8.5(a) and 8.5(b), respectively. The exponential convergence of the state

(Ep̃,Eṽ) is evidenced in Fig. 8.5(d), where a logarithmic scale is adopted.

To study the effect of noise in the inertial sensors, the accelerometer and angular ve-

locity readings are distorted by Gaussian white noise na ∼ N (0, σ2
aI) and nω ∼ N (0, σ2

ωI),

bounded by ‖na‖ ≤ na max = 3σa m/s2, ‖nω‖ ≤ nω max = 3σω rad/s, respectively. The

feedback bias kω satisfies the condition for aISS of the attitude observer formulated in

Theorem 8.7, given by kω >
1√
3
nω max.

The estimation errors converge to a neighborhood of the origin, as evidenced in Fig. 8.6,

where the attitude, position and velocity estimation errors are shown for i) nω = 0 and

na 6= 0 with σa = 0.1 m/s2, ii) nω = 0 and na 6= 0 with σa = 1 m/s2, and iii) nω 6= 0 and

na 6= 0 with σω = 10 π
180 rad/s and σa = 0.1 m/s2.

The asymptotic bounds of the estimation errors are proportional to the noise variances,

as expected. The degradation of the attitude estimate is small for the considered angular

velocity noise, as shown in Fig. 8.6(c). Consequently, the degradation in ug is also small,
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as evidenced Fig. 8.6(d), which is beneficial for the velocity and position estimates, since

ill estimation of the attitude could induce large errors in the estimated velocity, due to

the magnitude of Eg. That is, due to the small ISS bounds of the attitude observer, the

influence of the rate gyro noise in the velocity and position estimates is small, as shown

in Fig. 8.6(a) and 8.6(b), respectively.

The norm of the specific force compensation term ug is proportional to na, and hence

scaling na by a factor of 10 will also scale ug by the same factor, as shown in Fig. 8.6(d).

Although the velocity estimate is corrupted by the increase of na, the position estimate

smooths out the accelerometer noise with the aiding position measurement, as shown in

Fig. 8.6(a). The attitude estimates are unaffected by accelerometer noise, due to the

cascade structure of the observer.

The considered noise variances correspond to very low quality, low cost sensors, and

hence the asymptotic bounds of the estimation errors obtained in simulation are very

encouraging, and justify further development of these algorithms for practical applications.

8.4 Conclusions

In this chapter, the framework of nonlinear observer design was adopted for the classical

problem of GPS/IMU based navigation. While navigation solutions are often based on

Kalman filtering techniques, this chapter showed that a nonlinear attitude and position

observer can be derived using the techniques proposed in the second part of the thesis.

The navigation system structure was described by a cascade of an attitude and a posi-

tion observers. The stability and convergence results obtained for the nonlinear observers

derived in the previous chapters, were extended for the GPS/IMU nonlinear observer.

Namely, exponential convergence of the position, attitude and bias estimation errors to

the origin was derived, and the observer kinematics were expressed as an explicit function

of the GPS and IMU measurements, exploiting the sensor readings directly. Stability in

the presence of bounded accelerometer and rate gyro noise was obtained, using the almost

ISS analysis based on the combination of Lyapunov and density functions, discussed in

the previous chapter.

The simulation results illustrated the stability of the observer, and evidenced good

convergence rate of the attitude, position and bias estimates. Stabilization of the position

and attitude errors was obtained in the presence of large inertial sensor noise. These

results motivate future work on the discrete-time implementation of the algorithm, for the

purpose of practical implementation, and the study of the stability in the presence of noise

in the aiding sensors.



Chapter 9

Concluding remarks

This thesis addressed the problem of nonlinear navigation system design for autonomous

vehicles. Contributions were presented in the fields of Kalman filtering techniques, and of

design of nonlinear observers, for position and attitude estimation.

Chapters 2 and 3 studied aiding techniques for inertial navigation systems (INS), using

extended Kalman filtering (EKF). The proposed EKF/INS design methodologies were

performance driven, and allowed for the integration of advanced aiding techniques, with

a high accuracy multirate INS. In Chapter 2, a characterization of the vehicle dynamics

in the frequency domain was exploited. The information about the vehicle motion was

introduced in the EKF by modeling the pendular measurements as the result of a gravitic

measurement, and of disturbances due to the vehicle motion characterized in the frequency

domain. This simple approach was validated in simulation, and in experimental results

using the DELFIMx catamaran, built at IST/ISR. It was demonstrated that the pendular

measurements reduced the bias compensation errors, enhanced the accuracy of the position

and attitude estimates, and increased the autonomy of the navigation system with respect

to GPS aiding.

Chapter 3 studied the integration of a state model of the vehicle dynamics (VD) in

the EKF/INS architecture. A new integration technique efficiently exploited the vehicle

model, by using the VD to propagate the INS estimates. The proposed aiding technique

significantly reduced the computational cost of VD aiding, and increased the flexibility in

the integration of the vehicle model. High-accuracy estimation results were obtained. In

particular, it was shown that the linear velocity information of the VD can be exploited

in the form of a filter measurement residual, and hence that the associated computational

cost boils down to computing the measurement matrix and the Kalman gain. The accuracy

enhancements obtained by the linear velocity aiding suggest that the use of this component

of the VD may be enough to satisfy the accuracy requirements of most applications. In

such cases, the proposed technique brings about the integration of the vehicle model on

low-cost, low-power hardware, yielding significant accuracy improvements for inexpensive

navigation systems.

The implementation of a LASER range finder was also detailed, allowing for precise
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distance-to-ground estimates, that are critical in VTOL maneuvers. Simulations results

for a Vario X-Treme model-scale helicopter evidenced that the VD and LASER aiding

bear a navigation system suitable for precise maneuvering of autonomous aerial vehicles.

In Chapter 4, a new navigation system, based on complementary Kalman filtering

(CKF), was designed for stability, performance, and ease of implementation in autonomous

surface crafts (ASC). Attitude was parameterized using Euler angles, that are an intuitive

and simple representation, with the singularities located far away from the usual configu-

rations of oceanic and terrestrial vehicles. Designed for simplicity, the navigation system

was endowed with interesting theoretical properties. Namely, stability of the attitude and

position complementary filters was demonstrated for almost all attitude configurations,

and performance criteria was attained for operating conditions usually found in oceanic

and terrestrial vehicles. The navigation system architecture was computationally efficient,

and a multirate design methodology based on periodic systems was adopted, to address

the problem of sampling sensors at different rates. Also, the steady-state feedback gains

were designed in the frequency domain, exploiting the complementary sensor measure-

ments, but a stochastic description of the sensors can be considered, yielding a flexible

gain determination method.

Experimental results with the DELFIMx catamaran validated the navigation system

properties, and evidenced that the proposed solution is highly suitable for ASCs. It was

shown that the estimation results, and the autonomy of the system with respect to GPS

outage, are equivalent to that of the EKF/INS architecture, with a quite smaller compu-

tational load. The simplicity of the CKF allowed for a straightforward implementation of

the algorithm in low-cost, low-power hardware, and tuning of the filter parameters.

In review, the CKF is a simple, computationally efficient, and easy to tune algorithm,

that produces accurate results, based on the classical combination of an inertial mea-

surement unit (IMU) with a GPS unit and vector observations. The implementation of

the EKF/INS can be fairly complex and computationally demanding when compared to

the CKF, and stability of an EKF/INS is only guaranteed by extensive testing, whereas

the stability and performance of the complementary filters was demonstrated analytically.

However, the proposed CKF architecture is designed for a specific GPS/IMU configura-

tion, and the EKF/INS architecture is a more flexible solution, that can be easily extended

to exploit redundant aiding sources, and to account for other sensor non-idealities. The

flexibility of EKF/INS systems was demonstrated in the integration of the vehicle model,

that evidenced dramatic accuracy enhancements with a small computational cost. Also,

the EKF model exploits coupling phenomena, e.g. the correlation between velocity and

attitude errors produced by specific force measurements, and tightly-coupled GPS/INS ar-

chitectures can be obtained using the EKF model [10, 22, 62, 74, 134]. Consequently, the

choice between the proposed CKF and the EKF/INS architectures is subject to multiple

criteria, namely i) position and attitude estimation accuracy requirements, ii) available

computational resources, iii) available aiding sensors, and aiding information iv) ease of

implementation, debugging, and tuning, v) system scalability, among others.
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The design of nonlinear observers is a diverse approach from that adopted in Kalman

filtering. Nonlinear observers are mostly obtained by an inventive process, where the

feedback laws are tailored for the system at hand. The stability results are obtained by

first assuming ideal sensors, and new sensor disturbances are progressively considered by

extending the observer. The structure of nonlinear observers is often simple, and endowed

with interesting stability properties. Following this framework, the second part of the

thesis proposed nonlinear observers formulated on manifolds where attitude is naturally

described, such as SO(3), and emphasis was placed on stability properties in the presence

of non-ideal sensors.

In Chapter 5, a nonlinear observer derivation technique was proposed, using a Lya-

punov function defined by the measurement error of the aiding sensors. This technique

was adopted to derive a nonlinear attitude and position observer, using landmark and

velocity measurements. Almost global asymptotic stability (aGAS) and exponential con-

vergence on SE(3) were obtained for the case of ideal sensors, and it was shown that the

observer can be extended to compensate for bias in the velocity measurements. The pro-

posed technique produced feedback laws that exploited the sensor readings directly in the

observer, and that allowed for a characterization of the observer directionality given the

landmark geometry. Also, topological obstacles to global stabilization on manifolds were

illustrated, by characterizing explicitly the anti-stable manifolds and the regions of attrac-

tion on SE(3). Interestingly enough, the observer design parameters allow for the shaping

of the anti-stable manifold, and of the asymptotic behavior of the system trajectories.

In Chapter 6, the observer design methodology was reproduced for the case of an

attitude observer, using vector observation and angular velocity measurements. Identical

stability properties were obtained: aGAS and exponential convergence for ideal velocity

sensors, and exponential stability for worst-case initial estimation errors for biased velocity

readings. Directionality properties of the observer were derived in Appendix G, which are

of interest to shape the feedback gains. Besides demonstrating the design technique, the

observer derived in Chapter 6 motivated the new stability analysis techniques presented

in this thesis.

Chapter 7 proposed new stability analysis techniques of nonlinear systems, by combin-

ing the dual characterizations provided by density and Lyapunov functions. It was shown

that almost input-to-state stability (ISS) can be derived by studying weakly almost ISS

and local ISS, that are stability properties associated with density and Lyapunov func-

tions, respectively. Using this result, a method to analyze almost ISS of nonlinear systems

was proposed, and was described by i) finding a Lyapunov function that yields local ISS,

and ii) a density function such that, by means of weakly almost ISS, almost all trajecto-

ries enter the region where local ISS is verified. Almost global stabilization of nonlinear

systems was also derived, resorting to a new, local analysis result based on density func-

tions, that provides sufficient conditions for instability of an equilibrium point. Combined

with LaSalle’s invariance principle, the proposed result can be used to exclude undesirable

equilibria, yielding almost global stability of the origin.
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The results of Chapter 7 were illustrated for the attitude observer based on vector

observations. The origin of the attitude error was stabilized for bounded disturbances

in the velocity readings, and an explicit estimate of the ultimate bound for the attitude

estimation error was obtained. The new analysis tools were also illustrated for a reduced

order attitude observer with biased velocity measurements, producing aGAS of the origin.

Chapter 8 presented a GPS/IMU nonlinear observer formulated on SE(3), using the

design techniques proposed in Chapters 5 and 6, and the stability analysis tools derived in

Chapter 7. Exponential stabilization of the position and attitude estimates was demon-

strated, for a feedback law that exploited the inertial and GPS measurements directly.

Stability in the presence of noise in the inertial sensors, i.e. rate gyro and accelerometers,

was obtained using the almost ISS analysis technique proposed in this thesis. The conver-

gence and stability properties of the observer were verified in simulation, and encouraging

results were obtained, that motivate further research in the field of nonlinear observers.

In this thesis, the GPS/IMU sensor configuration was exploited using Kalman filtering

techniques and nonlinear observers, providing a bridge between the first and second parts

of the work. Extended Kalman filtering is driven by performance criteria, and a stochastic

description of the state and measurements is used to compute the feedback gains. Due to

the linearization of the system, the stability of the system is assessed only by extensive

simulation and experimental validation of the navigation solution. On the opposite side,

nonlinear observer design is driven by global stabilization criteria, formulated directly on

the manifold of interest, however the formulation of well posed performance criteria is

still under research [87]. The direct comparison of Kalman filtering techniques with the

proposed nonlinear observers is a challenging issue, however an unbiased comparison is

currently precluded by the distinct framework of the two design techniques.

Nonlinear observers are still at their infancy [37], and synthesis and analysis tools have

been proposed in very recent literature [5, 16, 28, 84, 97, 131]. This suggests that new

tools and mathematical insight will be brought into the light in the next years. The work

presented in this thesis contributed to the development of nonlinear observers for sensor

configurations found in autonomous vehicles applications. Given the obtained results,

directions for future work are proposed in the ensuing.

9.1 Directions for future work

Attitude and position estimation is a nonlinear problem, that plays a leading role in the

development of autonomous vehicles. Every advance in this research topic also springs

new and interesting questions, that foster future research.

The proposed VD aiding solutions for EKF/INS architectures motivate further exper-

imental validation, namely using the autonomous vehicles considered in the thesis, i.e.

the DELFIMx catamaran and the Vario X-Treme model-scale helicopter. To effectively

implement a VD aiding solution, accurate vehicle modeling techniques must be adopted.

For example, the problem of determining the vehicle model parameters calls for system



9.1. Directions for future work 185

identification techniques. A good first approach to the experimental validation would be

to consider only the linear velocity aiding. Using the proposed VD aiding technique, this

information can be introduced directly as a measurement residual, avoiding the caveats

related to computational cost, and providing a first insight on the feasibility of vehicle

model aiding. Encouraging results for a classical VD aiding technique, applied to under-

water vehicles, can be found in [64].

The CKF solution provided for a simple navigation system architecture that can be

subject to further developments. Stability and performance properties were derived sep-

arately for the proposed attitude and position filters, and should be generalized to the

cascade navigation system. Although the offline accelerometer bias calibration was found

suitable for the duration of the DELFIMx mission, online accelerometer bias compensation

is of interest in most applications. Moreover, the online compensation of accelerometer

bias is a challenging problem, because full observability of the filter states is not satisfied.

The observability problem can be tackled by either adding extra aiding information, or

by performing online calibration maneuvers [59, 60]. This suggests that persistency of

excitation conditions must be considered for the stability analysis of a navigation system

with online accelerometer bias compensation.

Nonlinear observer design is a very recent research field, and hence new directions for

future work can be naturally proposed. A promising line of work is given by progressively

considering sensor non-idealities that have long been accounted for in filtering estimation

techniques. Noise in the aiding sensors is an exciting research topic, that may be addressed

using some of the stability analysis tools adopted in the thesis. Interestingly enough, it

poses new, fundamental design questions, namely how to integrate the sensor measure-

ments in the observer (such that sensitivity to noise is small), what is the best feedback

gain (in the sense that it is a trade-off between measurement and process noise), and how

the scalar gains should be generalized to full matrices. An example of a contribution to

this topic is the linear transformation of the landmark and vector readings, that can be

adopted to counteract the directionality of the aiding sensor disturbances.

In this work, the stability results in the presence of bias and noise were presented

separately. Each non-ideality was studied using state-of-the-art analysis techniques, that

however use distinct approaches. New stability analysis tools are being presented in very

recent literature, and can provide the answer to the problem of simultaneously accounting

for bias and noise in the sensor readings. In particular, density functions step forward as

a promising analysis tool, that provides for almost global stability results, as opposed to

global stabilization using Lyapunov functions analysis, that cannot be obtained for systems

defined on manifolds. Note that bias can be seen as an non-modeled disturbance, and hence

ultimate bounds can be obtained for non-compensated bias, by using the stability results

obtained in Chapter 8. This approach provides for a worst-case result, that guarantees

convergence of the errors to a neighborhood of the origin. Extending the observer to

dynamically compensate for the bias can only yield stronger stability results, assuming

that the feedback law is properly designed. This suggests that interesting new results may
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be derived in the near future.

The encouraging results obtained with nonlinear observers justify the practical, discrete-

time implementation of the proposed algorithms. Experimental validation of nonlinear ob-

servers using naive discretization methods have presented good estimation results [80, 96].

More important, the last fifteen years have witnessed a remarkable progress in the de-

velopment of rigorous numeric integration methods that preserve geometric properties.

New algorithms have been proposed for integration of differential equations evolving on

Lie groups [26, 38, 106, 110], that generalize Runge-Kutta methods, and perform compu-

tations directly using the Lie algebra. Applications of geometric numeric integration to

dynamics evolving in SE(3) can be found in [19, 111]. Another approach is to re-derive

the observers in the discrete-time domain. On one hand, this approach yields simple and

computationally inexpensive estimation algorithms, similar to the continuous-time coun-

terpart. On the other hand, it is based on the assumption that the nonlinear kinematics

can be approximated by piecewise constant inputs, neglecting second order terms such as

coning and sculling, and hence compromising accuracy results for highly maneuverable

robotic platforms.

The density function techniques proposed in Chapter 7 pave the way to new advances

in the stability analysis of nonlinear systems. The results for local analysis using density

functions were derived for the case of isolated equilibrium points, which thus can be

combined with LaSalle’s invariance principle only if the invariant set is a countable union

of isolated points. The derivation of the analysis technique resorted mostly to results that

are valid for generic sets, and hence future work should address the rigorous extension of

the stability results to sets.

Interestingly enough, the local stability analysis using density functions provided an

alternative approach to the Hartman-Grobman theorem [125] for the classification of un-

stable equilibria. Given that the Hartman-Grobman theorem is conclusive only for the

case of hyperbolic equilibrium points, it is of interest to evaluate the contribution of the

proposed result for the stability analysis of equilibria in general. In particular, the nonlin-

ear attitude observer derived in Chapter 6 bears a connected anti-stable manifold, where

the Hartman-Grobman analysis will eventually be inconclusive. This strongly motivates

the generalization of the proposed local density function analysis for systems defined on

manifolds.

Finally, it should be noted that concepts well known in linear system theory are still

being extended for nonlinear systems. A well-posed definition of performance in non-

Euclidean spaces is an open question, although a recent contribution can be found in [87].

Therefore, the bridge between performance driven Kalman filtering techniques and the

stability oriented nonlinear observers is under construction. The recent surge of stability

results and new concepts in the nonlinear systems literature suggests that we are still on

the onset of this exciting research area, and that the unification of the two methodologies

addressed in this work may be only a matter of time and persistence.



Appendix A

Matrix results

This section contains elementary results from linear algebra that are adopted in this work.

A.1 Linear algebra

Let A,B ∈ M(n,m) and denote the matrix columns by ai,bi ∈ R
n, respectively. Let

R ∈ SO(n), K ∈ K(n), K3 ∈ K(3), S ∈ L(n) and {u,v} ∈ R
3

n
∑

i=1

a′
ibi = tr(AB′),

n
∑

i=1

aib
′
i = AB′,

tr(KS) = 0, tr(KA) = tr(
1

2
K
(

A − A′)),

u′K3u = 0, (u)× (v)× = vu′ − v′uI,

(u × v)× = vu′ − uv′, u′v = −1

2
tr((u)× (v)×).

R (u)× = (Ru)×R, R (K3)⊗ =
(

RK3R′)
⊗ ,

tr(RS) = tr(R′S), ‖(u)×‖2 = 2‖u‖2.

A.2 Special orthogonal group

Let R ∈ SO(n). The DCM formulation of R = rot(ϕ,φ) is given by

R = cos(ϕ)I3×3 + sin(ϕ) (φ)× + (1 − cos(ϕ))φφ′

= I3 + sin(ϕ) (φ)× + (1 − cos(ϕ)) (φ)× (φ)× ,

and the Euler angle-axis parameters are given by

ϕ = arccos

(

tr(R) − 1

2

)

, (φ)× =

√
2(R−R′)
‖R −R′‖ .
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The trace and the Frobenius norm of rotation matrices verify

‖I −R‖2 = 2 tr(I −R) = 4(1 − cos(ϕ)) = 8 − 4(1 + cos(ϕ)),

‖I −R2‖2 = 4(1 − cos(2ϕ)) =
1

2
(8 − ‖I −R‖2)‖I −R‖2,

‖R −R′‖2 = ‖I −R2‖2, −1 ≤ tr(R) ≤ 3.



Appendix B

DELFIMx characteristics

The autonomous catamaran DELFIMx, an ASC built at IST-ISR and displayed in Fig. B.1,

was designed for automatic marine data acquisition for risk assessment in semi-submerged

structures [130]. This robotic platform allows for the access to remote and confined loca-

tions in a systematic way, as required for precise sonar and LIDAR data acquisition.

The DELFIMx craft is a small Catamaran 4.5 m long and 2.45 m wide, with a mass

of 300 Kg. Propulsion is ensured by two propellers driven by electrical motors, and the

maximum rated speed of the vehicle with respect to the water is 6 knots. For integrated

guidance and control, a path-following control strategy was adopted due to its enhanced

performance, which translates into smoother convergence to the path and less demand on

the control effort [58]. The vehicle has a wing shaped, central structure that is lowered

during operations at sea. At the bottom of this structure, a low drag body is installed that

can carry acoustic transducers. For bathymetric operations and sea floor characterization,

the wing can be equipped with a Tritech Super SeaKing mechanically scanned pencil

beam sonar or a RESON 8125 multibeam sonar. On top of this structure it is installed

a SICK LD-LRS3100 laser range finder, to survey the emerged part of semi-submerged

infra-structures like breakwaters.

The DELFIMx hardware architecture developed by the ISR-IST is a self-contained

system mounted on three cases which can be fit into and removed from the autonomous

surface craft (ASC). The most sensitive parts are vibration isolated from the hull using

a soft suspension mechanism, which acts as a low pass mechanical filter that provides

further attenuation of the ASC vibration on the electronics. The hardware architecture

is built around the low-cost low-power floating point Digital Signal Processor (DSP) TI

TMS320C33, displayed in Fig. B.2(a), which is connected to the data acquisition hardware

through a dual port RAM expansion board developed by IST-ISR. Special care was taken

during the electronics development in order to implement measures that improve the Elec-

tromagnetic Compatibility (EMC). The data acquisition distributed architecture was built

around the CAN (Controller Area Network) Industrial Real Time Network, for control and

navigation purposes and on 100MBits/s Ethernet for payload data interface. A series of

very low-power boards designed at ISR using the Phillips XAS3 16 bit microcontroller,
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Figure B.1: The DELFIMx autonomous surface craft (length: 4.5 m; width: 2.45 m; mass: 300 Kg).

(a) Hardware architecture. (b) Mounted inertial sensors.

Figure B.2: Hardware and sensors installed onboard the DELFIMx ASC.

and the ATMEL AT90CAN128 8-bit AVRr Flash microcontroller with extended CAN

capabilities are used to interface all sensors and exchange data through the CAN Bus. In

this architecture the TMS320C33 schedules all Guidance, Control, and Navigation tasks to

meet their deadlines. Finally, a PC104 board connected to the CAN Bus and to Ethernet

runs the mission control system and implements a blackbox where relevant data generated

by the ASC are properly saved in a solid state disk for post-mission analysis.

The hardware architecture is also equipped with a Honeywell HMR3300 magnetometer,

interfaced by a serial port connection with a sampling rate of 8 Hz. The GPS receiver

installed on board the DELFIMx is a Thales Navigation DG14 receiver which presents

an accuracy of 3.0 m Circular Error Probable (CEP) in autonomous mode and 0.40 m

in differential mode. In the present work, the GPS works in autonomous mode and the

measurements are provided at a 4 Hz sampling rate.

The Inertial Measurement Unit (IMU) on-board the DELFIMx craft is a strapdown
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system comprising a triaxial XBOW CXL02LF3 accelerometer and three single axes Sil-

icon Sensing CRS03 rate gyros mounted along three orthogonal axes. These sensors are

attached orthogonally to a custom made stand that is presented in Fig. B.2(b) with the

sensors assembled. The inertial sensors are sampled at 56 Hz using six Texas ADS1210

directly connected to a microcontroller board. The ADS1210 is a high precision, wide

dynamic range, delta-sigma analog-to-digital converter with 24-bit resolution operating

from a single +5V supply. The differential inputs are ideal for direct connection to trans-

ducers guaranteeing 20 bits of effective resolution which is a suitable accuracy for the set

of inertial sensors used in the present application.

The hardware architecture is also equipped with a Honeywell HMR3300 magnetometer,

interfaced by a serial port connection with a sampling rate of 8 Hz. The GPS receiver

installed on board the DELFIMx is a Thales Navigation DG14 receiver which presents

an accuracy of 3.0 m Circular Error Probable (CEP) in autonomous mode and 0.40 m

in differential mode. In the present work, the GPS works in autonomous mode and the

measurements are provided at a 4 Hz sampling rate.





Appendix C

Vario X-Treme helicopter model

This section briefly describes the nonlinear Vario X-Treme helicopter model presented in

[40], deduced from first principles, and simplified under the assumptions described in [39].

As the complete model, the simplified model considers a six degrees of freedom rigid body

dynamics driven by the external forces and moments generated by the several components

of helicopter, however, the contributions of the fuselage, horizontal tailplane and vertical

tail fin are considered to be negligible. This model also considers simplified versions of the

first order dynamics for the main rotor blade pitch motion with Bell-Hiller mechanism, the

steady state dynamics for the main rotor blade flap dynamics and the blade lag dynamics

are neglected.

The motion of the helicopter is described using the rigid body equations of motion

ω̇ = I−1
B

(

n
(

ω,Bv,uhc

)

− ω × IB ω
)

,

Bv̇ = −ω × Bv +
1

m
f
(

ω,Bv,uhc

)

+ R′ Eg,

Ṙ = R (ω)× ,

where m is the vehicle mass, IB is the tensor of inertia about the Center of Mass coordinate

frame, denoted by {G}, uhc is the helicopter command vector and f and n are the vectors

of external forces and moments, respectively, along the same frame. The input vector

uhc =
[

ϕc0 ϕc1c ϕc1s ϕc0t

]′
comprises the blade pitch angle commands for the main

rotor collective ϕc0 , main rotor longitudinal cyclic ϕc1c , main rotor lateral cyclic ϕc1s and

the tail rotor collective ϕc0t
. To model the non symmetric shape of the rotor blades,

ϕc0 and ϕc0t
swashplate inputs are corrected in the helicopter model using the variables

ϕ0 = ϕc0 + α0 and ϕ0t = ϕc0t
+ α0t , where α0 and α0t are the lift curve slope offsets for

the main and tail rotor blades, respectively.

As noted before, for smooth low velocity maneuvers, the effects of the fuselage, hori-

zontal tailplane and vertical fin on the overall dynamics are negligible. For this reason, the

total force and moment vectors are modeled accounting only for the two most dominant

components of a helicopter, the main rotor and the tail rotor, yielding

f = fmr + ftr, n = nmr + ntr,
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where the subscripts mr and tr stand, respectively, for the main rotor and tail rotor

components.

The main rotor is the primary source of lift, required to sustain the helicopter, and

generates other forces and moments that allow for the control of position, orientation and

velocity of the helicopter. The main rotor forces and moments are described by

fmr :=







Xmr

Ymr

Zmr






= −s1







a0

(

1
2 ϕ1s λ0 + µλ0 ϕ0

)

+ δ0 µ

a0

(

1
2 ϕ1c λ0

)

a0

(

2
3 ϕ0 − λ0

)






,

nmr =







−kβ β1s

−kβ β1c

1
2 s2 δ0 + s2 a0

(

2
3 ϕ0 λ0 − λ2

0

)






+







Ymr hR

−Xmr hR + Zmr xcm

−Ymr xcm






,

where s1 and s2 are the main rotor’s force and moment normalizing constants, a0 is the

lift curve slope, δ0 is the profile drag coefficient, kβ is the center-spring rotor stiffness,

and xcm and hR determine the position of the main rotor hub aft and above the center of

mass, respectively. The remaining undefined variables are defined hereafter.

In helicopters equipped with the Bell-Hiller mechanism [40], the cyclic blade pitch

angles result from the combination of the commands introduced by the swashplate and

the flybar flapping motion. The simplified first order blade pitch dynamics of the main

rotor are described by

ϕ̇1c = Cϕ1 ϕ1c + Cϕ3 ϕc1c , ϕ̇1s = Cϕ1 ϕ1s + Cϕ3 ϕc1s + Cϕ8 µλ0,

with the coefficients given by

Cϕ1 = − Ω γf

4
[

(γf

8

)2
+ 4
] , Cϕ3 =

Ω (c4 + c1) γf

4c2

[

(γf

8

)2
+ 4
] , Cϕ8 = − η2 Ω γf

2c2

[

(γf

8

)2
+ 4
] ,

where µ stands for the normalized forward velocity at the main rotor, λ0 is the normalized

collective downwash induced by main rotor, Ω is the main rotor angular speed, γf is the

flybar lock number, and c1, c2 and c4 are flybar pitching parameters.

The main rotor blade flapping motion is described by the blade flap angle vector

β =
[

β0 β1c β1s

]

, where β0 denotes the collective mode, and β1c and β1s represent the

longitudinal and lateral cyclic modes, respectively. The blade flapping dynamics of the

main rotor can be approximated by the simplified steady-state solution given by

β0 = Cβ1 ϕ0,

β1c = Cβ3 µϕ0 + Cβ4 ϕ1c − Cβ5 ϕ1s + Cβ6 ωx + Cβ7 ωy+Cβ8 µλ0 − Cβ4 λ1c,

β1s = Cβ9 µϕ0 + Cβ5 ϕ1c + Cβ4 ϕ1s + Cβ7 ωx − Cβ6 ωy+Cβ10 µλ0 − Cβ5 λ1c,
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with the state coefficients

Cβ1 =
γ
8

γ
8Sβ + 1

, Cβ3 = −
8
3

S2
β + 1

, Cβ4 =
Sβ

S2
β + 1

,

Cβ5 =
1

S2
β + 1

, Cβ6 =
16

Ω γ

Sβ

S2
β + 1

, Cβ7 =
16

Ω γ

1

S2
β + 1

,

Cβ8 =
2

S2
β + 1

, Cβ9 =
8
3 Sβ

S2
β + 1

, Cβ10 = − 2Sβ

S2
β + 1

,

where Sβ is the blade stiffness number, Rm is the main rotor radius and γ is the lock

number.

The tail rotor, placed at the tail boom in order to counteract the moment generated

by the rotation of the main rotor, provides yaw control of the helicopter. Following the

same principles used for the main rotor and neglecting blade pitch, flap and lag dynamics,

the simplified expressions for the tail rotor force and torque are given by

ftr :=







Xtr

Ytr

Ztr






= s1t a0t







0
2
3 ϕ0t − λ0t

0






,

ntr =







Ytr htr

−1
2 s2t δ0t − s2t a0t

(

2
3 ϕ0t λ0t − λ2

0t

)

−Ytr (xcm + ltr)






,

where λ0t is the collective induced downwash of the tail rotor, s1t and s2t are the tail

rotor’s force and moment normalizing constants, a0t is the tail rotor lift curve slope, δ0t

is the tail rotor profile drag coefficient, ltr is the distance from the tail rotor hub to the

fuselage reference point and htr is the height of tail rotor hub above the fuselage reference

point.

The induced downwash results from the thrust force generated at the surface of the

rotating blades, that accelerates the air downwards creating a flowfield. By decomposing

the downwash in Fourier series and neglecting the second and higher order terms, results

in the collective, longitudinal and lateral cyclic components, respectively, λ0, λ1c and λ1s.

The collective components of the induced downwash at the main and tail rotors are given

by

λ0 = −a0 s

16
+

√

(a0 s

16

)2
+
a0 s

12
ϕ0,

λ0t = −a0t st

16
+

√

(a0t st

16

)2
+
a0t st

12
ϕ0t ,

where s and st are the solidity constants of the main and tail rotors, respectively. Finally,

the main rotor longitudinal cyclic induced downwash and the forward normalized velocity
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are described by

λ1c =















0, if µ = 0 (vertical flight)

λ0

(

√

1 +
(

λ0
µ

)2
−
∣

∣

∣

λ0
µ

∣

∣

∣

)

, otherwise
,

µ =
ux − hRωy

ΩRm
,

whereas the main rotor lateral cyclic downwash is neglected λ1s = 0, as well as both tail

rotor cyclic downwash components.



Appendix D

Performance of the

complementary attitude filter

The attitude filter estimation error kinematics, expressed in (4.7) as
[

λ̃k+1

b̃k+1

]

=

[

Q(λk)(I −K1λ)Q−1(λk−1) −TQ(λk)

−K2λQ
−1(λk−1) I

][

λ̃k

b̃k

]

+

[

−TQ(λk) 0

0 I

][

wωr k

wb k

]

+

[

Q(λk)(I −K1λ) − Q(λk−1)

−K2λ

]

vλ k.

can be written in the compact form as
[

λ̃k+1

b̃k+1

]

= (Fk − KkHk)

[

λ̃k

b̃k

]

+ Gk

[

wω k

wb k

]

− KkQ(λk−1)vλ k.

where

Fk =

[

I −TQ(λk)

0 I

]

, Gk =

[

−TQ(λk) 0

0 I

]

,

Kk =

[

Q(λk)(K1λ − I)Q−1(λk−1) + I

K2λQ
−1(λk−1)

]

, Hk =
[

I 0
]

.

It is well known [4] that the estimation error covariance, denoted by Σk+1|k = E
([

λ̃k+1

b̃k+1

]

[ λ̃
′
k+1 b̃′

k+1 ]
)

,

satisfies the propagation equation

Σk+1|k =(Fk − KkHk)Σk|k−1(Fk − KkHk)
′ + GkΞG′

k

+ KkQ(λk−1)ΘQ(λk−1)
′K′

k. (D.1)

The estimation error covariance of the Kalman filter for the attitude kinematics (4.4),

denoted by Pk+1|k, satisfies

Pk+1|k = FkPk|k−1F
′
k + GkΞG′

k − FkPk|k−1H
′
kS

−1
P kHkPk|k−1F

′
k, (D.2)

where SP k = HkPk|k−1H
′
k + Θ. The performance of the proposed attitude filter can

be studied offline by comparing the estimation error covariance given by (D.1) with the

optimal error covariance described by (D.2), as illustrated in the analysis presented in

Section 4.3.
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Appendix E

Extensions of the landmark based

nonlinear observer

This section discusses some specific configurations of the landmark based nonlinear ob-

server presented in Chapter 5. The problem of estimating directly the position of the

rigid body with respect to Earth frame is discussed, and the formulation of the landmark

transformation for three landmark measurements is described.

E.1 Position estimation in Earth coordinate frame

The observer proposed in Section 5.2.3 was designed to estimate position with respect to

the local frame. An estimate of the position with respect to Earth frame, denoted as Bp̂E ,

can be constructed using Bp̂ and R̂ in (5.26) . Proposition 5.7 showed that the estimation

error Bp̃E converges exponentially fast to the origin, however Bp̃E = 0 does not verify the

exponential stability property as defined in the literature [78, 125]. This section discusses

how the observer formulation can be modified to attain exponential stability of Bp̃E = 0.

As illustrated in Fig. 5.1, the position with respect to the Earth coordinate frame is

described by

BpE = Bp + R′EtL

where EtL represents the coordinates of the origin of {L} with respect to {E}, expressed

in {E}, and frames {L} and {E} have the same orientation by definition, R = E
BR = L

BR.

The nominal, estimated and error kinematics of pE are given by

BṗE = v − (ω)×
BpE ,

B ˙̂pE = v̂ − (ω̂)×
Bp̂E , (E.1a)

B ˙̃pE = (v̂ − v) − (ω)×
Bp̃E +

(

Bp̂E

)

× (ω̂ − ω). (E.1b)

The landmark coordinates measured in body frame can be written as a function of BpE ,

producing

qi = R′ExE i − BpE , (E.2)
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where ExE i = Lxi + EtL are the coordinates of landmark i in Earth frame.

The structure of the position kinematics (E.1) and of the landmark readings (E.2) for
BpE , is identical to the structure of the position kinematics (5.1), (5.5), (5.7b) and land-

mark readings (5.3) considered in the observer derivation. Consequently, an exponential

stable position observer for BpE can be obtained by rewriting the feedback term (5.24) as

svE = Bp̃E . (E.3)

Given that Bp and BpE are described by similar kinematics, an exponentially stable

observer can be designed using svE in v̂, for example (5.23b) can be rewritten as

v̂ = v + ((ω)× − kvI)svE + kω

(

Bp̂
)

× sω,

producing position error kinematics that are identical to (5.25),

B ˙̃pE = −kv
Bp̃E , (E.4)

The trajectories of the system (E.4) converge exponentially to the origin for any initial

condition, as desired. This observer formulation can also be adopted for the case of biased

velocity readings described in Section 5.3.

The output feedback architecture of the observer, obtained in Section 5.2.4, can be for-

mulated for the feedback term svE by writing (E.3) as a function of the observer estimates

and landmarks measurements. Based on the result (5.30), svE is given by

svE = Bp̂E − Qrdα = Bp̂E −
n
∑

i=1

αiqi, (E.5)

under the assumption that pE is given by a linear combination of the landmark readings

BpE =
n
∑

i=1

αiqi = Qrdα. (E.6)

where dα =
[

α1 . . . αn

]′
can be seen as the generalization of dp = − 1

n
1n. The condi-

tions under which svE can be written as (E.5) are obtained by expanding (E.6), producing

BpE =
n
∑

i=1

αiR′ExE i −
n
∑

i=1

αi
BpE ⇔ (ᾱ+ 1)EpE =

n
∑

i=1

αi
ExE i,

where ᾱ =
∑n

i=1 αi. The right-hand side of the equation is constant, while the position is

time-varying in general. Therefore, pE is a linear combination of the landmarks readings

if ᾱ = −1 and

n
∑

i=1

αi
ExE i = 0, (E.7)

and the output feedback (E.5) is obtained under the following condition.
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Assumption E.1. The landmarks are placed such that the coordinates with respect to the

Earth frame, denoted as ExE i, are linearly dependent.

The landmark characterization described in Assumption E.1 is useful to analyze where

the landmarks can be placed with respect to Earth frame, so that an output feedback

observer is obtained. If the landmarks location is rigid and the origin of {E} is a design

parameter, a characterization of valid EtL can be produced by rewriting (E.7) as

n
∑

i=1

αi
Lxi = EtL. (E.8)

Although the coefficients αi are constrained by ᾱ = −1, the condition (E.8) is verified

whenever EtL is a linear combination of Lxi.

Lemma E.1. The condition (E.8) is satisfied for some αi with
∑n

i=1 αi = −1 if and only

if EtL is spanned by the landmark coordinates Lxi, i = 1..n.

Proof. (⇒) Clearly, if (E.8) is verified, then LtE is a linear combination of Lxi, i = 1..n.

(⇐) If there are coefficients βi, i = 1..n such that

n
∑

i=1

βi
Lxi = EtL,

define β̄ =
∑n

i=1 βi and take 1−β̄
n

1n which is contained in the null space of X

n
∑

i=1

Lxi = 0 ⇔ 1 − β̄

n

n
∑

i=1

Lxi = 0 ⇔
n
∑

i=1

(

βi +
1 − β̄

n

)

Lxi = LtE ,

where
∑n

i=1

(

βi + 1−β̄
n

)

= 1. Making αi = βi + 1−β̄
n

concludes the proof.

The following corollary characterizes where the origin of {E} should be defined, given

the landmark coordinates Lxi, so that Assumption E.1 is verified and the output feedback

law (E.5) can be obtained.

Corollary E.2. Assumption E.1 is verified if and only if EtL can be expressed as a linear

combination of the landmark coordinates Lxi.

The conditions of Assumption E.1 are illustrated in Figure E.1. As depicted in Fig-

ure E.1(a), the assumption is satisfied if EtL is collinear with the line defined by the

two landmarks Lx1 and Lx2, which is equivalent to the linear dependence of ExE 1 and
ExE 2. In the configuration illustrated in Figure E.1(b), the coordinates ExEi are linearly

independent and the coordinates Lxi are not sufficient to describe EtL. Adding a third

landmark to the configuration allows for EtL to be described as a linear combination of
Lxi, as shown in Figure E.1(c). Interestingly enough, Assumption E.1 is automatically

satisfied for any number of landmarks if the origin of frame {E} is a landmark itself, that

is, if Lxi = LtE for some i.
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(a) Valid configuration: the landmarks Lxi and LtE are collinear.
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(b) Invalid configuration: the landmarks Lxi do not span EtL.
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(c) Valid configuration: EtL is spanned by the landmarks Lxi.

Figure E.1: Landmark configurations described by Assumption E.1 and Corollary E.2.
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E.2 Landmark coordinate transformation with minimal set

of landmarks

Assumption 5.1 establishes that rank(X) ≥ 2, however rank(H) = rank(X) and the coor-

dinate transformation described in Proposition 5.13 requires H = XDX to be full rank.

This section shows that, in case rank(X) = 2, it is possible to augment matrix H to

produce Ha such that rank(Ha) = 3. Taking two linearly independent columns of H, Lhi

and Lhj , the augmented matrix is given by

Ha =
[

H Lhi × Lhj

]

,

which is full rank. Defining UXa := HaAXa, by the steps of the proof of Proposition 5.13

there is AXa ∈ M(n+ 1) nonsingular such that UXaU
′
Xa = I, as desired.

The cross product is commutable with rotation transformations, (R′Lhi)× (R′Lhj) =

R′(Lhi × Lhj), so the representation of the augmented matrices in body coordinates is

simply given by

BUXa = R′UXa,
BÛXa = R̂′UXa, UXa = HaAXa.

Therefore, the modified observer is obtained by replacing UX and H by UXa and Ha, re-

spectively, and the derived observer properties are obtained by simple change of variables.

Namely, the output feedback term sω and sv, presented in Theorem 5.9, are given by

sω =
n
∑

i=1

(R̂′HaAXei) × (BUXaei), sv = p̂ +
1

n

n
∑

i=1

qi,

where BUXa is rewritten as BUXa =
[

QDX (QDXei) × (QDXej)
]

AXa. Clearly, the

feedback law is a function of the landmark readings and state estimates, as desired.





Appendix F

Uniform exponential stability of

parameterized time-varying

systems

The following result from [93] establishes that if the parameterized nonlinear system is

exponentially stable uniformly in λ, then uniform exponential stability (independent of

the initial conditions) of the associated nonlinear system can be inferred. This result is

presented here for the sake of clarity.

Lemma F.1 (λ-UGES and UES [93]). Consider

i) the nonautonomous system ẏ = f(t, y) where f : R≥0 × Dy → R
n is piecewise

continuous in t and locally Lipschitz in y uniformly in t, and Dy ⊂ R
n is a domain

that contains the origin,

ii) the parameterized nonautonomous system ẋ = fλ(t, λ, x), where fλ : R≥0×Dp×R
n →

R
n is continuous, locally Lipschitz uniformly in t and λ, Dp = R≥0×Dλ and Dλ ⊂ R

n

is a closed not necessarily compact set.

Let Dy ⊂ Dλ and assume that x(t) = 0 is λ-UGES, i.e. there exist ke and γe >

0 such that, for all t ≥ t0, λ ∈ Dp and x0 ∈ R
n, the solution of the system verifies

‖x(t, λ, t0, x0)‖ ≤ ke‖x0‖e−γe(t−t0). If the solution of both systems coincide, y(t, y0, t0) =

x(t, λ, x0, t0), for λ = (t0, y0) and x0 = y0, then y(t) = 0 is exponentially stable in Dy.

Proof. Let x0 = y0 and λ = (t0, y0), then x(t, λ, t0, x0) = y(t, t0, y0) and by change of

variables, the solution satisfies ‖y(t, t0, y0)‖ ≤ ke‖y0‖e−γe(t−t0), and uniform exponential

stability of y(t) = 0 in Dy is immediate.
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Appendix G

Directionality of the vector based

nonlinear attitude observer

In Chapter 6, an attitude observer, based on vector observations, was derived using the

techniques adopted for the design of the landmark based observer, presented in Chapter 5.

The vector observations were used in the observer by means of a transformation AH , that

shaped the directionality of the observer. In particular, the stability properties of the

attitude observer presented in Chapter 6 were obtained for a AH that produced uniform

directionality.

This section extends the stability properties of the attitude observer for a generic trans-

formation AH . The attitude observer is obtained by using the feedback law of Proposi-

tion 6.8, that is

ω̂ = R̂′HAHA′
HH′

r

(

ωr − b̂ω

)

− kωsω,

sω =
n
∑

i=1

(R̂′HAHei) × (HrAHei),

where AH is a generic, invertible matrix. The observer dynamics are

˙̂R = R̂ (ω̂)× ,
˙̂
bω = kbω

sω,

and the angular velocity reading is given by

ωr = ω + bω,

producing the attitude error dynamics

˙̃R = kωR̃(R̃′UHU′
H − UHU′

HR̃) + R̃
(

b̃ω

)

×
, (G.1a)

˙̃
bω = kbω

(

R̃′UHU′
H − UHU′

HR̃
)

⊗
, (G.1b)

that are autonomous and, in the case where UHU′
H = I, produce the attitude observer

dynamics (6.10).
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For the case of ideal velocity measurements, i.e. known bω, the system (G.1) reduces to

the error dynamics (5.19) of the landmark observer, and the directionality of the attitude

observer is immediate from the properties derived in Section 5.2.

Theorem G.1. Consider the system (G.1a) with b̃ω = 0. The attitude error R̃ = I is

an exponentially stable and almost globally asymptotically stable with region of attraction

given by

RA = {R̃ ∈ SO(3) : ‖I − R̃‖2 < 8}.

For any R̃(t0) ∈ RA, the solution of the system satisfies

‖R̃(t) − I‖ ≤ ‖R̃(t0) − I‖e− 1
2
γR(t−t0),

where γR = kω

4 (8 − ‖R̃(t0) − I‖2)σ3(P) = kω(1 + cos(ϕ(t0)))σ3(P).

Denote the Euler angle-axis parameterization of the attitude error by R̃ = rot(ϕ,φ),

and let the singular values of P = tr(UXU′
X)I−UXU′

X satisfy σ1(P) > σ2(P) > σ3(P).

The asymptotic convergence of the Euler axis is described by







limt→∞ φ(t) = sign(n′
3φ(t0))n3, if n′

3φ(t0) 6= 0

limt→∞ φ(t) ∈ {n1,n2}, if n′
3φ(t0) = 0

,

where ni is the unit eigenvector of P associated with σi(P).

Proof. The stability and convergence properties follow directly from Theorem 5.5 and

Theorem 5.10.

The stability properties for the more general system (G.1), with biased angular ve-

locity measurements, are determined by showing first the exponential convergence of the

trajectories emanating from a region around the origin, producing exponential stability of

the origin given bounded initial estimation errors. Secondly, asymptotic stability of the

origin for almost all initial conditions is demonstrated, which yields almost global stability

with exponential convergence after some time instant t ≥ t0.

The Lyapunov function for stability analysis in the presence of bias is given by

V =
1

2

n
∑

i=1

‖Bû − Bu‖ +
1

2kbω

‖b̃ω‖2 =
1

4
‖I − R̃‖2φ′Pφ +

1

2kbω

‖b̃ω‖2,

V̇ = −kωs′ωsω ≤ 0.

By Lemma 5.4, the set of points where V̇ = 0 is given by

CR = {(R̃, b̃ω) ∈ SO(3) × R
3 : R̃ = I ∨ R̃ = rot(π,φ ∈ eigvec(P))}. (G.2)

Sufficient conditions that guarantee that the trajectories do not converge to the set CR \
{(I, 0)} are provided by the generalization of Lemma 6.4.
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Lemma G.2. The attitude and bias estimation errors, R̃ and b̃ω respectively, are bounded.

For any initial condition such that

kbω
>

‖b̃ω(t0)‖2

4σ3(P) − 1
2‖I − R̃(t0)‖2σ1(P)

, (G.3a)

‖I − R̃(t0)‖2 < 8
σ3(P)

σ1(P)
, (G.3b)

the attitude error is bounded by ‖I − R̃(t)‖2 ≤ cmax < 8 for all t ≥ t0 .

Proof. The proof is obtained by reproducing the steps adopted in the demonstration of

Lemma 5.14. Let x := (R̃, b̃ω) and define the set Ωρ = {x ∈ D : V ≤ ρ} where D =

SO(3) × R
3. The Lyapunov function is lower bounded by the weighted distance of the

state to the origin V ≥ 1
4‖I−R̃‖2σ3(P) + 1

2kbω
‖b̃ω‖2, so the set Ωρ is contained in the set

defined by 1
4‖I−R̃‖2σ3(P)+ 1

2kbω
‖b̃ω‖2 ≤ ρ and thus is compact. The Lyapunov function

decreases along the system trajectories, V̇ ≤ 0, so any trajectory starting in Ωρ will remain

in Ωρ. Consequently, ∀t≥t0
1
2(1

2‖I−R̃(t)‖2σ3(P)+ 1
kbω

‖b̃ω(t)‖2) ≤ V (x(t)) ≤ V (x(t0)) and

the state is bounded for all t ≥ t0.

The conditions (G.3) imply that there exists ρmax such that V (x(t0)) ≤ ρmax < 2σ3(P).

The invariance of Ωρ, V (x(t)) ≤ V (x(t0)), and using σ3(P)
4 ‖I − R̃‖2 ≤ V (x(t)), produce

‖I − R̃‖2 ≤ 4
σ3(P)ρmax < 8 for all t ≥ t0.

Using the parameterized LTV systems theory, the exponential convergence of the at-

titude estimation errors in the presence of biased inertial measurements is obtained, for

the explicit region defined by (G.3).

Theorem G.3. For any initial condition given by (G.3b), let the feedback gain satisfy

(G.3a). Then the attitude and bias estimation errors converge exponentially fast to the

stable equilibrium point (R̃, b̃ω) = (I,0).

Proof. The proof is identical to that of Theorem 5.15 and generalizes the results of The-

orem 6.5. The dynamics of the closed loop attitude and bias compensation errors are

described in the quaternion form by

˙̃qq = −kωQ(q̃)Q′(q̃)Pq̃q +
1

2
Q(q̃)b̃ω,

˙̃
bω = −2kbω

Q′(q̃)Pq̃q, (G.4)

where Q(q̃) := q̃sI + (q̃q)×, ˙̃qs = kω q̃sq̃
′
qPq̃q − 1

2q
′
qb̃ω, and q̃ =

[

q̃′
q q̃s

]′
is the Euler

quaternion representation of matrix R̃. Using ‖q̃q‖2 = 1
8‖R̃− I‖2, the Lyapunov function

in quaternion coordinates is described by V = 2q̃′
qPq̃q + 1

2kbω
‖b̃ω‖2.

Define the system (G.4) in the domain Dq = {(q̃q, b̃ω) ∈ B(3) × R
3 : V ≤ 2σ3(P)(1 −

εq)}, 0 < εq < 1. The set Dq is given by the interior of the Lyapunov surface, so it is

positively invariant and well defined. The feedback gain (G.3a) implies that any initial

condition satisfying (G.3b) is in the set Dq for εq small enough, and by Lemma G.2, the

components of the attitude error quaternion are bounded by ‖q̃q‖2 ≤ cmax
8 and ‖q̃s‖2 ≥

1 − cmax
8 , with cmax = 8(1 − εq).
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Define the parameterized linear time-varying system
[

˙̃qq⋆

˙̃
bω⋆

]

=

[

A(t, λ) B′(t, λ)

−C(t, λ) 03×3

][

q̃q⋆

b̃ω⋆

]

, (G.5)

where (q̃q⋆, b̃ω⋆) ∈ R
3 × R

3, λ ∈ R≥0 ×Dq, and the matrices

A(t, λ) = kωQ(q̃(t, λ))Q′(q̃(t, λ))P, B(t, λ) =
1

2
Q′(q̃(t, λ)),

C(t, λ) = 2kbω
Q′(q̃(t, λ))P,

are bounded, so the system is well defined. The quaternion q̃(t, λ) represents the solution

of (G.4) with initial condition λ = (t0, q̃q(t0), b̃ω(t0)). If the parameterized LTV system

(G.5) is λ-UGES, then the nonlinear system (G.4) is uniformly exponentially stable in the

domain Dq. The parameterized LTV system verifies the assumptions of [93, Theorem 1]:

i) The elements of B(t, λ) and ∂B(t,λ)
∂t

= 1
2Q

′( ˙̃q(t, λ)) are bounded for all λ ∈ R≥0 ×Dq

, t ≥ 0.

ii) The positive definite matrices

P(t, λ) = 4kbω
P, Q(t, λ) = 8kbω

kωPQ(q̃(t, λ))Q′(q̃(t, λ))P,

satisfy

P(t, λ)B′(t, λ) = C′(t, λ), −Q(t, λ) = A′(t, λ)P(t, λ) + P(t, λ)A(t, λ) + Ṗ(t, λ),

4kbω
σ3(P)I ≤ P(t, λ) ≤ 4kbω

σ1(P)I, qmI ≤ Q(t, λ) ≤ qMI,

with qm = 8kωkbω
(1 − cmax

8 )σ2
3(P) and qM = 8kωkbω

σ2
1(P).

The system (G.5) is λ-UGES if and only if B(t, λ) is λ-uniformly persistently exciting

(λ-uPE) [93]. For any unit norm vector y the persistency of excitation condition yields

y′
∫ t+T

t

B(τ, λ)B′(τ, λ)dτy =
1

4
y′
∫ t+T

t

I − q̃qq̃
′
qdτy ≥ 1

4

∫ t+T

t

1 − ‖q̃q‖2dτ

≥ 1

4

∫ t+T

t

1 − cmax

8
dτ =

T

4

(

1 − cmax

8

)

.

Consequently, the parameterized LTV (G.5) is λ-UGES, and the nonlinear system (G.4)

is exponentially stable in the domain Dq. Using ‖q̃q‖2 = 1
8‖R̃ − I‖2 yields exponential

stability of the nonlinear system (G.1).

The trajectories of the attitude observer converge exponentially fast for any initial

condition in a region characterized by (G.3). The convergence of the trajectories of the

system emanating from anywhere in the domain is studied in the ensuing.

The equilibrium points of the system (G.1) are contained in CR, described in (G.2).

By LaSalle’s invariance principle, the trajectories of the system converge to the largest

invariant set in CR, that is given by

IR = CR ∩ {R̃, b̃ω ∈ SO(3) × R
3 : b̃ω = 0}

= {R̃, b̃ω ∈ SO(3) × R
3 : (R̃, b̃ω) = (I,0) ∨ (R̃, b̃ω) = (rot(π, eigvec(P)),0)}.
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If the eigenvectors of P are distinct, then IR is a set of isolated equilibrium points, and lo-

cal stability analysis allows for the identification of the stable and unstable equilibria. The

next theorem summarizes the convergence properties of the attitude observer, which guar-

antee almost global asymptotic stability (aGAS) of the origin and exponential convergence

within a region in the state space that is explicitly defined.

Theorem G.4. Define AH such that the eigenvalues of P are distinct. Under Assump-

tion 6.1, the equilibrium point (R̃, b̃ω) = (I,0) of the system (G.1) is almost globally

asymptotically stable. Furthermore, every system solution emanating from the region of

attraction of (R̃, b̃ω) = (I,0) converges exponentially fast for t ≥ te ≥ t0, where te is the

time instant that verifies V (R̃(te), b̃(te)) ≤ 2σ3(P).

Proof. By LaSalle’s invariance principle, the trajectories of the system converge to the set

IR. The equilibrium points contained in IR are characterized using a local analysis, based

on the local parameterization adopted in [29, Section 5], given by the first order terms of

the DCM formulation

R̃ ≈ R̃∗(I + (η)×), b̃ω ≈ b̃∗
ω + δb, (G.6)

where η, δb ∈ R
3, R̃∗ = rot(π,φ∗

i ), φ∗
i ∈ eigvec(P), b̃∗

ω = 0 and i = 1, 2, 3 is the index

of the equilibrium point. Applying (G.6) in the system (G.1) and neglecting second order

terms produces
[

η̇
˙δb

]

=

[

kω(R̃∗WH − tr(R̃∗WH)I) I

kbω
(R̃∗WH − tr(R̃∗WH)I) 0

][

η

δb

]

.

where WH = UHU′
H . Let the eigenvalues of WH and P be denoted by αl(WH) and

αl(P), l = 1, 2, 3, respectively, with α1(WH) > α2(WH) > α3(WH) and α1(P) >

α2(P) > α3(P). From the definition of P,

Pv = αl(P)v ⇔ WHv = (tr(WH) − αl(P))v,

hence the eigenvectors of P and WH are equal and the eigenvalue i satisfies

αi(P) = αk(WH) + αj(WH),

where i, k and j are distinct. Using R̃∗ = 2φ∗
i φ

∗
i
′ − I and the spectral decompo-

sition WH = UDU′ =
∑3

l=1 αl(WH)φ∗
l φ

∗
l
′, where U =

[

φ∗
i φ∗

j φ∗
k

]

∈ O(3) and

D = diag(αi(WH), αj(WH), αk(WH)) ∈ D+(3) produces

R̃∗WH − tr(R̃∗WH)I

= 2φ∗
i φ

∗
i
′αi(WH) − WH + (αj(WH) + αk(WH) − αi(WH))I = UΛU′,

where Λ = diag(αj(WH) + αk(WH), αk(WH) − αi(WH), αj(WH) − αi(WH)). The

linearized system can be rewritten as
[

η̇
˙δb

]

=

[

kωUΛU′ I

kbω
UΛU′ 0

][

η

δb

]

.
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The eigenvalues of
[

kωΛ I
kbωΛ 0

]

and
[

kωUΛU′ I
kbωUΛU′ 0

]

=
[

U 0
0 U

]

[

kωΛ I
kbωΛ 0

]

[

U′ 0
0 U′

]

are equal and

given by

αl =
kω[Λ]ll +

√

k2
ω[Λ]2ll + 4kbω

[Λ]ll

2
, αl+3 =

kω[Λ]ll −
√

k2
ω[Λ]2ll + 4kbω

[Λ]ll

2
,

where l = 1, 2, 3, and [Λ]ll denotes lth diagonal element of Λ. The real part of α1 is

always positive, and the real parts of α4, α5 and α6 are always negative. The sign of

the real parts of α2 and α3 depends on the equilibrium point but are always nonzero.

Therefore, the equilibrium points are hyperbolic and unstable. By the Stable-Unstable

Manifold theorem and the Hartman-Grobman theorem [29, 125], the stable manifold of

(R̃∗, b̃∗
ω) = (rot(π, eigvec(P)),0) has zero measure in SO(3) × R

3 and the complement

of the stable manifold is open and dense. Consequently, almost all initial conditions in

SO(3) × R
3 converge to the stable equilibrium point (R̃, b̃ω) = (I,0).

Almost global asymptotic stability of the origin implies that there exists a te ≥ t0 such

that the solution of the system enters the invariant set V ≤ 2σ3(P). The exponential

convergence for t ≥ te is a direct consequence of the exponential stability results presented

in Theorem G.3.

The results of Theorem G.4 yield that almost all trajectories converge to the origin,

exponentially fast for some t ≥ te. In the case where initial estimation errors are bounded,

exponential stability of the origin, for a sufficiently large feedback gain, follows directly

from Theorem G.3.

Corollary G.5. Assume that the initial estimation errors are bounded according to

‖I − R̃(t0)‖ ≤ c0 < 8, ‖b̃ω(t0)‖ ≤ b̃0, (G.7)

where c0 < 8σ1(P)
σ3(P) , and select kbω

such that

kbω
>

b̃20
4σ3(P) − 1

2c0σ1(P)
.

Then the origin (R̃, b̃ω) = (I,0) is uniformly exponentially stable in the set defined by

(G.7).



Appendix H

Supporting results for density

function methods

This section presents some fundamental results adopted in the stability analysis based on

density functions, presented in Chapter 7.

H.1 Stability of nonlinear systems

A key proposition in density function methods is the following.

Lemma H.1 ([115]). Let f ∈ C1(D,Rn) where D ⊂ R
n is open and let ρ ∈ C1(D,R) be

integrable. For x0 ∈ R
n, let φt(x0) be the solution x(t) of ẋ = f(x), x(0) = x0. For a

measurable set Z, assume that φτ (Z) = {φτ (x) : x ∈ Z} is a subset of D for all τ between

0 and t. Then
∫

φt(Z)
ρ(x)dx−

∫

Z
ρ(z)dz =

∫ t

0

∫

φτ (Z)
[div(ρf)](x)dxdτ.

Sufficient conditions for weakly almost ISS are formulated next, that are based on

finding a density function that yields a positive definite divergence, almost everywhere

outside a neighborhood of the origin.

Theorem H.2 (Weakly almost ISS, [5]). Consider that the system (7.4) is forward com-

plete. Let 0M be a locally stable equilibrium point for u(·) ≡ 0, and assume that a density

function ρ : M → R≥0 be defined of class C1 over M \ {0M} and such that
∫

M\U
ρ(x)dx < +∞,

for all open neighborhoods U of 0M ∈ M . If there exist γ2 ∈ K and so that the following

“density propagation inequality” is fulfilled

∀u ∈ U ∀x ∈M |x| ≥ γ2(|u|) ⇒ div[ρ(x)f(x, u)] ≥ Q(x), (H.1)

with Q(x) > 0 for almost all x ∈ M , then the system is almost globally asymptotically

stable and weakly almost ISS, with γ2 as the bounding class K function.
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H.2 Set measure results

This section presents some set measure results adopted in the derivation of the local

analysis method, proposed in Section 7.3.

Proposition H.3 ([125]). If f is smooth then φt is a diffeomorphism for each t.

Theorem H.4 ([121]). Every Borel set is measurable. In particular, each open set and

each closed set is measurable. The collection of measurable set is σ-algebra; that is the com-

plement of a measurable set is measurable and the union (and intersection) of a countable

collection of measurable sets is measurable.

Lemma H.5 ([85]). Suppose A ∈ R
n has measure zero and F : A → R

n is a smooth map.

Then F (A) has measure zero.

Corollary H.6. If f is smooth, then the set A has zero measure if and only if the set

φt(A) has zero measure.

Lemma H.7. Under Assumption 7.1, the set φ[τ0,τ ](A) has zero measure if and only if

φ(−∞,∞)(A) has zero measure.

Proof. (⇐) Immediate from φ[τ0,τ ](A) ⊂ φ(−∞,∞)(A). (⇒) If the set φ[τ0,τ ](A) has zero

measure, then φt(φ[τ0,τ ](A)) has zero measure by Corollary H.6. Using the properties of

autonomous systems, φt(φ[τ0,τ ](A)) = φ[τ0+t,τ+t](A). Let tk = (τ − τ0)k, k ∈ Z, then

φ(−∞,∞)(A) =
⋃

k∈Z
φ[τ0+tk,τ+tk](A) is a countable union of zero measure sets, and hence

has zero measure.

Corollary H.8. Under Assumption 7.1, the set φ[0,∞)(A) has zero measure if and only

if φ(−∞,∞)(A) has zero measure.

Lemma H.9. The local inset of an equilibrium point is measurable under Assumption 7.1.

Proof. The local inset ZU is characterized by the intersection of a “stability” and a “con-

vergence” sets, given by ZU = S ∩ C where

S = {x ∈ U : φt(x) ∈ U for all t ≥ 0}, C = {x ∈ U : ∀ǫ∃T∀t>T ‖φt(x) − xu‖ < ǫ}.

The set S can be described by S =
⋂

k∈N0
Sk where

Sk = {x ∈ U : φt(x) ∈ U for t ∈ [kT kT + T ]}.

By the continuous dependence of φt(x) on the initial conditions [78, 125], and on t, for

each x ∈ Sk there exists δ sufficiently small, such that ‖x − y‖ < δ ⇒ φt(y) ∈ U for the

compact interval t ∈
[

kT kT + T
]

. Consequently, the set Sk is open, thus measurable,

and the set S is measurable.

The set C can be described by C =
⋂

n∈N

⋃

k∈N0
Cn,k, where

Cn,k = {x ∈ U : ∃T∀t≥T ‖φt(x) − xu‖ <
1

n
for all t ≥ k}.



H.3. Divergence of vector fields defined on SO(3) 215

The set Cn,k is measurable, by the same arguments used for the measurability of S. Con-

sequently, C is a countable union and intersection of measurable sets and is measurable,

which concludes the proof.

H.3 Divergence of vector fields defined on SO(3)

This section details the computation of the divergence on SO(3), that is used in the

stability analysis of the attitude observer. The rotation matrix R is an element of SO(3)

R =







r1 r4 r7

r2 r5 r8

r3 r6 r9






,

the tangent space of SO(3) is identified with TR SO(3) ∼ {RK ∈ M(3, 3) : K = −K′,K ∈
M(3, 3)}, and let f : SO(3) → TR SO(3) be a vector field. In [30], explicit equations for

the computation of the divergence in local coordinates are provided. Given that R is

an implicit parameterization of SO(3), the parameterization based on Euler angle-axis is

considered instead

R(vR) = I + sin(‖vR‖)
(vR)×
‖vR‖

+ (1 − cos(‖vR‖))
(vR)× (vR)×

‖vR‖2
,

vR ∈ {vR ∈ R
3 : ‖vR‖ ≤ π},

where vR =
[

v1 v2 v3

]′
corresponds to the rotation axis and ‖vR‖ is the rotation angle.

The divergence is given by

div(f) =
M
∑

i=1

1
√

det(G)

∂
√

det(G)Fi

∂vi
, (H.2)

where G = J′WJ is the metric tensor, W is a diagonal weight matrix, J is the Jacobian

matrix characterized by the basis vectors ∂ vec(R)
∂vi

for the tangent hyper-plane

J =
[

∂ vec(R)
∂v1

∂ vec(R)
∂v2

∂ vec(R)
∂v3

]

=















∂r1
∂v1

∂r1
∂v2

∂r1
∂v3

∂r2
∂v1

...
...

...
...

...
∂r9
∂v1

∂r9
∂v2

∂r9
∂v3















,

and Fi are the coordinates of the vector field f in the tangent hyper-plane,

f =
3
∑

i=1

Fi
∂ vec(R)

∂vi
= JF, (H.3)

where F =
[

F1 F2 F3

]′
= (J′J)−1J′f .

The divergence of a vector field f is computed using (H.2). The following lemma allows

for the computation of a vector field ρf given div(f), where ρ is a scalar function defined

on the manifold.
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Lemma H.10. Let ρ(R) : SO(3) → R, the divergence of the product ρf satisfies

div(ρf) = ρ div(f) + (∇Rρ)
′f,

where ∇R(·) is the gradient with respect to the coordinates of R, i.e. ∇Rρ =
[

∂ρ
∂r1

∂ρ
∂r2

· · · ∂ρ
∂r9

]′
.

Proof. The result is obtained by algebraic manipulation of (H.2) applied to ρf ,

div(ρf) =
M
∑

i=1

1
√

det(G)

∂
√

det(G)ρFi

∂vi

=
M
∑

i=1

1
√

det(G)

(

ρ
∂
√

det(G)Fi

∂vi
+
√

det(G)Fi
∂ρ

∂vi

)

= ρ
M
∑

i=1

1
√

det(G)

∂
√

det(G)Fi

∂vi
+

M
∑

i=1

Fi
∂ρ

∂vi

= ρ div(f) + (∇vρ)
′F,

where ∇v(·) is the gradient with respect to the coordinates of vR, i.e. ∇vρ =
[

∂ρ
∂v1

∂ρ
∂v2

∂ρ
∂v3

]′
.

Using the chain rule yields the well known result ∂ρ
∂vi

=
∑9

j=1
∂ρ
∂rj

∂rj

∂vi
= (Jei)

′∇Rρ ⇒
∇vρ = J′∇Rρ, where ei is the unit norm vector with unit value at coordinate i. Conse-

quently,

div(ρf) = ρ div(f) + (∇Rρ)
′JF,

which, using (H.3), produces div(ρf) = ρ div(f) + (∇Rρ)′f .



Appendix I

Closed-form solution to the

pseudorange equations

In this section, the solution to the GPS receiver position given the pseudorange measure-

ments is derived. Algorithms to compute the position of the GPS receiver in Earth frame

using the pseudorange measurements are presented in [6, 7, 14, 27, 91]. The present ap-

proach builds on the geometric method presented in [27] for s > 4 satellites. Consider two

pseudorange measurements obtained by receiver j

ρij = ‖Epj − EpS i‖ + bρ, ρ1j = ‖Epj − EpS 1‖ + bρ,

with respect to satellites i and 1, respectively. Squaring and subtracting the pseudoranges

yields

−2(EpS i − EpS 1)
′Epj + 2(ρi j − ρ1 j)bρ = ρ2

ij − ρ2
1j − (‖EpS i‖2 − ‖EpS 1‖2),

which can be written in matrix formulation as

AS j

[

Epj

bρ

]

= bS j , (I.1)

where

AS j := 2
[

−EU ∆S j

]

, bS j =









ρ2
2j − ρ2

1j −
(

‖EpS 2‖2 − ‖EpS 1‖2
)

...

ρ2
s j − ρ2

1 j −
(

‖EpS s‖2 − ‖EpS 1‖2
)









,

EU :=
[

Ep′
S2 − Ep′

S1 . . . Ep′
Ss − Ep′

S1

]′
, ∆Sj :=

[

ρ2j − ρ1j . . . ρsj − ρ1j

]′
.

A solution of (I.1) is given by the Moore-Penrose inverse

[

Epj

bρ

]

= (A′
S jAS j)

−1A′
S jbS j ,
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which, by algebraic manipulation and using the properties of the block matrix inverse ,

produces

Epj = −(EU′WSj
EU)−1EU′WSjbSj

2
= −fp(ρj), (I.2)

where

WS j := 4∆S j(4∆
′
S j∆S j − 1)−1∆′

S j − I(s−1)×(s−1).

The conditions for existence and uniqueness of a position fix Epj given the pseudorange

measurements ρij depend on the user-satellite geometry for s = 4 satellites [27, 91]. For

s ≥ 5, the solution is unique if the satellite geometry is nonplanar [1]. In case rank(AS j) <

4, (I.1) yields multiple solutions, even if the position fix Epj is unique.

The ambiguity in (I.1), if present, can be easily tackled for any nonplanar satellite

configuration, under the proviso that the position fix Epj is unique. The nonplanar satellite

configuration bears rank(EU) = 3, and the solution is determined by intersecting the one

dimensional space defined by (I.2) with the cones defined by the pseudorange equations

(8.2). Using the derivation [27, p.1024], the solution is given by

[

Epj

bρ

]

= wS j + αa⊥,wS j = A∗′
S j(A

∗
S jA

∗′
S j)

−1A∗′
S jbS j ,

where A∗
S j ∈ M(3, 4) is obtained by selecting the linearly independent lines of AS j ,

a⊥ ∈ R
4 describes the null space of AS j , i.e. AS ja⊥ = 0, and the coefficient α is the

solution of the quadratic equation

α2w′
aZwa + 2αw′

aZa⊥ + a′
⊥Za⊥ = 0

wa = wS j −
[

Ep′
S1 ρ1j

]′
,Z = diag(1, 1, 1,−1),

which uniquely satisfies the pseudorange measurements ρij . For further study and solu-

tions for the planar configuration case, the reader is referred to [27, 91].



Appendix J

Exponential stability of a cascade

system

This section studies the convergence properties for cascade systems in the form

ẋ1 = Ax1 + Bu(x2, t), (J.1a)

ẋ2 = f2(x2), (J.1b)

where x1 ∈ R
m, x2 ∈ R

n, u : R
n × R

+
0 → R

p, A ∈ M(m), B ∈ M(m, p), and f2 : R
n → R

n

is locally Lipschitz.

The formulation (J.1) is motivated by the structure of the observer based on GPS

measurements, depicted in Fig. 8.2 and given by (8.5, 8.17). The results presented in

this section are adopted to derive the stability properties of the observer formulated in

Chapter 8.

Sufficient conditions for the global stability of the origin of the cascade system (J.1) can

be found in [78, 125], and the following stability results are well known in input-to-state

stability theory [131].

Theorem J.1 ([78]). If the system (J.1a) is input-to-state stable, and if the origin of the

system (J.1b) is globally asymptotically stable, then the origin of the cascade system (J.1)

is globally asymptotically stable.

Theorem J.2 ([131]). The system (J.1a) is input-to-state stable if and only if the matrix

A is Hurwitz.

The results of Theorem J.1 yield global asymptotic stability of the origin of the cascade

system. If the subsystem (J.1b) is exponentially stable, explicit convergence bounds of the

solutions of (J.1) can be obtained due to the linear, time-invariant formulation of (J.1a),

as shown in the ensuing. The following statement characterizes the solutions of (J.1a) for

an exponentially decaying input.

Proposition J.3. Consider the system

ẋ1 = Ax1 + Bu. (J.2)

219
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Assume that the origin of the system (J.2) is stable, and that there exist cu, γu, u0 > 0

such that the input verifies

‖u(t)‖ ≤ cue
−γu(t−t0)u0. (J.3)

Then the solution of the system (J.2) is bounded by

‖x1(t)‖ ≤cae−γmin(t−t0)

(

‖x1(t0)‖ +
cu‖B‖

|γa − γu|
u0

)

.

where γmin = min{γa, γu}, and ca, γa > 0 satisfy ‖eAτ‖ ≤ cae
−γaτ .

Proof. The solution of the LTI system (J.2) satisfies

‖x1(t)‖ ≤ cae
−γa(t−t0)‖x1(t0)‖ +

∫ t

t0

cae
−γa(t−τ)‖B‖‖u(τ)‖dτ,

where the stability of the origin implies that there exists ca and γa > 0 such that ‖eAt‖ ≤
cae

−γat [78]. Applying (J.3), yields

∫ t

t0

cae
−γa(t−τ)‖B‖‖u(τ)‖dτ ≤ cacu‖B‖u0

∫ t

t0

e−γa(t−τ)−γu(τ−t0)dτ

=
cacu‖B‖u0

γa − γu

(

e−γu(t−t0) − e−γa(t−t0)
)

.

Using the inequalities

e−γu(t−t0) − e−γa(t−t0)

γa − γu
≤ e−γmin(t−t0)

|γa − γu|
, e−γa(t−t0) ≤ e−γmin(t−t0),

where γmin = min(γu, γa), produces the desired bound.

The following result establishes convergence bounds for the trajectories of the cascade

system (J.1).

Proposition J.4. Assume that the origin of the system (J.1a) is stable, that the origin

of the system (J.1b) is exponentially stable as follows

∀‖x2(t0)‖<c ∃c2,γ2>0 ‖x2(t)‖ ≤ c2e
−γ2(t−t0)‖x2(t0)‖, (J.4)

and that there exists c3 > 0 such that ‖u(x2, t)‖ ≤ c3‖x2‖. Then the solution of the system

(J.1) is exponentially stable, bounded by

‖x(t)‖ ≤cmaxe
−γmin(t−t0)‖x(t0)‖,

for all ‖x2(t0)‖ < c, where

x =
[

x′
1 x′

2

]′
, cmax = ca + c2 +

cac3c2‖B‖
|γa − γ2|

, γmin = min{γa, γ2},

and ca, γa > 0 satisfy ‖eAτ‖ ≤ cae
−γaτ .
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Proof. The input of system (J.1a) satisfies

‖u(x2, t)‖ ≤ c3c2e
−γ2(t−t0)‖x2(t0)‖.

Using Proposition J.3 produces

‖x1(t)‖ ≤cae−γmin(t−t0)

(

‖x1(t0)‖ +
c3c2‖B‖
|γa − γ2|

‖x2(t0)‖
)

.

Using (J.4), and the inequalities

‖x‖ ≤ ‖x1‖ + ‖x2‖, ‖x1‖ ≤ ‖x‖, ‖x2‖ ≤ ‖x‖,

produces the exponential bound

‖x(t)‖ ≤ ‖x1(t)‖ + ‖x2(t)‖

≤ cae
−γmin(t−t0)

(

‖x1(t0)‖ +
c3c2‖B‖
|γa − γ2|

‖x2(t0)‖
)

+ c2e
−γ2(t−t0)‖x2(t0)‖

≤ e−γmin(t−t0)

(

ca‖x1(t0)‖ +

(

cac3c2‖B‖
|γa − γ2|

+ c2

)

‖x2(t0)‖
)

≤ e−γmin(t−t0)

(

ca +
cac3c2‖B‖
|γa − γ2|

+ c2

)

‖x(t0)‖.





Appendix K

Magnetometer calibration in

sensor frame

The EKF and CKF based navigation systems, derived in Chapters 2 and 4, resort to

magnetometer measurements for attitude aiding. In the experimental validation of the

algorithms using the DELFIMx catamaran, it was noted that the magnetometer measure-

ments were corrupted by bias and scaling effects, and that distortions occurred when the

sensor was mounted onboard the vehicle. Motivated by the magnetometer non-idealities

found in the experimental setup, this appendix derives an algorithm for the onboard cal-

ibration of three-axis strapdown magnetometers. The proposed calibration method is

written in the sensor frame, and compensates for the combined effect of all linear time-

invariant distortions, namely soft iron, hard iron, sensor non-orthogonality, bias, among

others. A Maximum Likelihood Estimator (MLE) is formulated to iteratively find the

optimal calibration parameters that best fit to the onboard sensor readings, without re-

quiring external attitude references. It is shown that the proposed calibration technique

is equivalent to the estimation of a rotation, scaling and translation transformation, and

that the sensor alignment matrix is given by the solution of the orthogonal Procrustes

problem. Good initial conditions for the iterative algorithm are obtained by a subopti-

mal batch least squares computation. Simulation and experimental results with low-cost

sensors data are presented and discussed, supporting the application of the algorithm to

autonomous vehicles and other robotic platforms.

K.1 Introduction to magnetometer calibration

Magnetometers are a key aiding sensor for attitude estimation in low-cost, high perfor-

mance navigation systems [8, 31, 66, 100], with widespread application to autonomous

air, ground and ocean vehicles. These inexpensive, low power sensors allow for accu-

rate attitude estimates by comparing the magnetic field vector observation in body frame

coordinates with the vector representation in Earth frame coordinates, available from ge-

omagnetic charts and software [108]. In conjunction with vector observations provided by

223
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other sensors such as star trackers or pendulums, the magnetometer triad yields complete

3-DOF attitude estimation [8, 98].

The magnetic field reading distortions occur in the presence of ferromagnetic elements

found in the vicinity of the sensor and due to devices mounted in the vehicle’s structure.

Other sources of disturbances are associated with technological limitations in sensor man-

ufacturing and installation. A comprehensive description of the magnetic compass theory

can be found in [41].

Magnetometer calibration is an old problem in ship navigation and many calibration

techniques have been presented in the literature. The classic compass swinging calibra-

tion technique proposed in [18] is a heading calibration algorithm that computes scalar

parameters using a least squares algorithm. The major shortcoming of this approach is the

necessity of an external heading information [55], which is a strong requirement in many

applications. A tutorial work using a similar but more sound mathematical derivation

is found in [41]. This book addresses the fundamentals of magnetic compass theory and

presents a methodology to calibrate the soft and hard iron parameters in heading and

pitch, resorting only to the magnetic compass data. However, the calibration algorithm is

derived by means of successive approximations and is formulated in a deterministic fashion

that does not exploit the data of multiple compass readings.

In recent literature, advanced magnetometer calibration algorithms have been proposed

to tackle distortions such as bias, hard iron, soft iron and non-orthogonality directly in

the sensor space, with no external attitude references and using optimality criteria. The

batch least squares calibration algorithm derived in [44, 55] accounts for non-orthogonality,

scaling and bias errors. A nonlinear, two-step estimator provides the initial conditions

using a nonlinear change of variables to cast the calibration in a pseudo-linear least squares

form. The obtained estimate of the calibration parameters is then iteratively processed

by a linearized least squares batch algorithm.

The TWOSTEP batch method proposed in [3] is based on the observations of the

differences between the actual and the measured unit vector, denoted as scalar-checking.

In the first step of the algorithm, the centering approximation derived in [52] produces a

good initial guess of the calibration parameters, by rewriting the calibration problem in a

linear least squares form. In a second step, a batch Gauss-Newton method is adopted to

iteratively estimate the bias, scaling and non-orthogonality parameters. In related work,

[36] derives recursive algorithms for magnetometer calibration based on the centering

approximation and on nonlinear Kalman filtering techniques.

Magnetic errors such as soft iron, hard iron, scaling, bias and non-orthogonality are

modeled separately in [44]. Although additional magnetic transformations can be mod-

eled, it is known that some sensor errors are compensated by an equivalent effect, e.g.

the hard iron and sensor biases are grouped together in [55]. Therefore, the calibration

procedure should address the estimation of the joint effect of the sensor errors, as opposed

to estimating each effect separately.

In this work, the magnetometer reading error model is discussed and cast in a error
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formulation which accounts for the combined effect of all linear time-invariant magnetic

transformations. The calibration algorithm is derived rigorously using a comprehensive

model of the sensor readings in R
3, that clarifies and exploits the geometric locus of the

magnetometer readings, given by an ellipsoid manifold. A rigorous geometric formulation

simplifies the problem of compensating for the modeled and unmodeled magnetometer

errors to that of the estimation of parameters lying on an ellipsoid manifold. A complete

methodology to calibrate the magnetometer is detailed, and a Maximum Likelihood Es-

timator (MLE) allows for the formulation of the calibration problem as the optimization

of the sensor readings likelihood. It is also shown that the calibration and alignment

procedures are distinct.

The sensor calibration problem is naturally formulated in the sensor frame. The cali-

bration parameters are estimated using the magnetometer readings, and without resorting

to external information or models about the magnetic field. In addition, a closed form

solution for the sensor alignment is also presented, based on the well known solution to

the orthogonal Procrustes problem [61].

The proposed calibration methodology is assessed both in simulation and using exper-

imental data. Because the calibration parameters are influenced by the magnetic charac-

teristics of the payload, the geomagnetic profile of the terrain and diverse vehicle operating

conditions, the online calibration of the magnetometers is analyzed. The calibration pa-

rameters are estimated for magnetometer data collected in ring shaped sets, corresponding

to yaw and pitch maneuvers that are feasible for most land, air and ocean vehicles. Simu-

lation and experimental results show that the algorithm performs a computationally fast

calibration with accurate parameter estimation.

The appendix is organized as follows. In Section K.2, a unified magnetometer error

parameterization is derived and formulated. It is shown that the calibration parameters

describe an ellipsoid surface and that the calibration and alignment problems are distinct.

A MLE formulation is proposed to calculate the optimal generic calibration parameters and

an algorithm to provide good initial conditions is presented. Also, a closed form solution

for the magnetometer alignment problem is obtained. Simulation and experimental results

obtained with a low-cost magnetometer triad are presented and discussed in Section K.3.

K.2 Magnetometer calibration and alignment

In this section, an equivalent parameterization of the magnetometer errors is derived. The

main sources of magnetic distortion and bias are characterized, to yield a comprehensive

structured model of the magnetometer readings. Using this detailed parameterization as

a motivation, the magnetometer calibration problem is recast, without loss of generality,

into a unified transformation parameterized by a rotation R, a scaling S, and an offset b.

Consequently, it is shown that for all linear transformations of the magnetic field, such as

soft and hard iron, non-orthogonality, scaling factor and sensor bias, the magnetometer

readings will always lie on an ellipsoid manifold.
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A Maximum Likelihood Estimator formulation is proposed to find the optimal cali-

bration parameters which maximize the likelihood of the sensor readings. The proposed

calibration algorithm is derived in the sensor frame and does not require any specific infor-

mation about the magnetic field’s magnitude and body frame coordinates. This fact allows

for magnetometer calibration without external aiding references. Also, a closed form op-

timal algorithm to align the magnetometer and body coordinate frames is obtained from

the solution to the orthogonal Procrustes problem.

K.2.1 Magnetometer errors characterization

The magnetometer readings are distorted by the presence of ferromagnetic elements in the

vicinity of the sensor, the interference between the magnetic field and the vehicle structure,

local permanently magnetized materials, and by sensor technological limitations.

Hard Iron / Soft Iron

The hard iron bias, denoted as bHI , is the combined result of the permanent magnets

inherent to the vehicle’s structure, as well as other elements installed in the vehicle, and

it is constant in the vehicle’s coordinate frame.

Soft iron effects are generated by the interaction of an external magnetic field with the

ferromagnetic materials in the vicinity of the sensor. The resulting magnetic field depends

on the magnitude and direction of the applied magnetic field with respect to the soft iron

material, producing

hSI = CSI
B
EREh, (K.1)

where CSI ∈ M(3) is the soft iron transformation matrix, E
BR is the rotation matrix

from body to Earth coordinate frames, B
ER := E

BR′, Eh is the Earth magnetic field.

As described in [41, chapter XI], the combined hard and soft iron effects are given by

hSI+HI = hSI + bHI . The linearization of the ferromagnetic effects (K.1) yields the well

known heading error δψ model [41, 55] adopted in compass swinging calibration, which

ignores the harmonics above 2ψ. The formulation (K.1), adopted in this work, yields a

rigorous approach to the simultaneous estimation of the hard and soft iron effects.

Non-orthogonality

The non-orthogonality of the sensors can be described as a transformation of vector space

basis, parameterized by [45]

CNO =







1 0 0

sin(ψ) cos(ψ) 0

− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)






,

where (ψ, θ, φ) are yaw, pitch and roll Euler angles, respectively.



K.2. Magnetometer calibration and alignment 227

Scaling and Bias

The null-shift or offset of the sensor readings is modeled as a constant vector bM ∈ R
3.

The transduction from the electrical output of the sensor to the measured quantity is

formulated as a scaling matrix SM ∈ D+(3), where D(n) denotes the set of n×n diagonal

matrices with real entries and D+(n) = {S ∈ D(n) : S > 0}.

Wideband noise

The disturbing noise is assumed wideband compared with the bandwidth of the system,

yielding uncorrelated sensor sampled noise.

Alignment with the body frame

The formulation of the proposed algorithm in the sensor frame allows for sensor calibra-

tion without determination of the alignment of the sensor with respect to a reference

frame. An alignment procedure of the sensor triad is proposed in this work for the sake

of completeness.

Other effects

Generic and more complex effects related to sensor-specific characteristics and to the

magnetic distortion are difficult to model accurately. The proposed calibration algorithm

compensates for the combined influence of all linear time-invariant transformations that

distort the magnetic field, which are estimated in the form of an equivalent linear trans-

formation.

K.2.2 Magnetometer error parameterization

In this section, an equivalent error model for the magnetometer readings is formulated.

First, the estimation problem of the non-ideal magnetic effects described in Section K.2.1

is recast, without loss of generality, as the problem of estimating an affine linear trans-

formation. Second, it is shown that the linear transformation is equivalent to a single

rotation, scaling and translation transformation. In other words, to calibrate the magne-

tometer it is sufficient to estimate the center, orientation and radii of the ellipsoid that

best fit to the acquired data.

Define a sphere and an ellipsoid as [133]

S(n) = {x ∈ R
n+1 : ‖x‖2 = 1}, L(n) = {x ∈ R

n+1 : ‖SR′x‖2 = 1},

where S ∈ D+(n+1) and R ∈ SO(n+1) describe the radii and orientation of the ellipsoid,

respectively. The three-axis magnetometer reading is given by the Earth’s magnetic field
Eh affected by the magnetic distortions and errors, yielding

hr i = SMCNO(CSI
B
ERi

Eh + bHI) + bM + nm i, (K.2)
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Figure K.1: Affine transformation of a two dimensional sphere.

where hr is the magnetometer reading in the (non-orthogonal) magnetometer coordinate

frame, nm ∈ R
3 is the Gaussian wideband noise, SM , CNO, CSI , bHI and bM are the

magnetic distortions described in Section K.2.1, and i = 1, . . . , n denotes the index of the

reading.

Without loss of generality, the magnetometer reading can be described by

hr i = CBhi + b + nm i, (K.3)

where C = SMCNOCSI , b = SMCNObHI + bM , Bhi = B
ERi

Eh, Bhi ∈ S(2) is the

magnetic field in body coordinate frame. In particular, C ∈ M(3) and b ∈ R
3 are un-

constrained, so unmodeled linear time-invariant magnetic errors and distortions are also

taken into account.

Given that the points Bhi are contained in the sphere, straightforward application of

the Singular Value Decomposition (SVD) [133] shows that the magnetometer readings hr i

lie on an ellipsoid manifold, as illustrated in the example of Fig. K.1 and summarized in

the following theorem. The proof is presented for the sake of clarity.

Theorem K.1 ([133]). Let c : R
n → R

n, c(x) = Cx be a linear transformation where

C ∈ M(n) is full rank. Then c(x) is a bijective transformation between the sphere and

an ellipsoid in R
n, i.e. there is an ellipsoid L(n − 1) such that the transformation c|S :

S(n− 1) → L(n− 1), c|S(x) = Cx is bijective.

Proof. Let the s decomposition C = UΣV′, where U,V ∈ O(n) and Σ ∈ D+(n). Define

the matrices RL := UJ,SL := Σ,VL := VJ,J :=
[

det(U) 0

0 In−1×n−1

]

, which describe a

modified singular value decomposition with at least one special orthogonal matrix C =

RLSLV′
L where RL ∈ SO(n), SL ∈ D+(n) and VL ∈ O(n). The transformation c(x)

applied to the sphere is given by

c|S(x) := RLSLy, (K.4)

where y := V′
Lx verifies ‖y‖2 = 1. Choosing the ellipsoid L(n − 1) = {x ∈ R

n :

‖S−1
L R′

Lx‖2 = 1} then c|S(x) ∈ L(n − 1). The function (K.4) is injective because
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RLSL is invertible. To see that it is surjective, given any z ∈ L(n − 1), the point

y = S−1
L R′

Lz ∈ S(n− 1) satisfies c(y) = z.

Corollary K.2. Let C ∈ M(n) be a full rank matrix and let the singular value de-

composition of C be given by C = RLSLV′
L where RL ∈ SO(n), SL ∈ D+(n) and

VL ∈ O(n). The ellipsoid described by c|
S

is spanned by the bijective transformation

l : S(n− 1) → L(n− 1), l(x) = RLSLx.

Theorem K.1 implies that the magnetic field readings hr i derived in (K.3) lie on the

surface of an ellipsoid centered on b, referred to as sensor ellipsoid. Corollary K.2 states

that the sensor ellipsoid centered at b is fully characterized the rotation RL and scaling

SL matrices.

Define Chi := V′
L

Bhi,
Chi ∈ S(2) where the coordinate frame {C} is obtained by the

orthogonal transformation V′
L of {B}, i.e. by the alignment matrix VL. The equivalent

model for the magnetometer readings (K.3) is described by

hr i = RLSL
Chi + b + nm i. (K.5)

Clearly, the calibration process is equivalent to the estimation of the ellipsoid’s parameters

b, RL and SL. As expected, the alignment matrix VL is not observable in the calibration

process given that Chi and Bhi are not measured.

The sensor description (K.5) is a function of the calibration parameters (RL,SL,b)

lying on the manifold SO(3)×D+(3)×R
3. Optimization tools on Riemannian manifolds are

required to solve for the calibration parameters directly on SO(3)×D+(3)×R
3, see [43, 51]

for a comprehensive introduction to the subject. Fortunately, an equivalent calibration

can be performed in the Euclidean space M(3) by estimating C directly, but where the

fact that the alignment matrix VL cannot be determined must be considered.

The sensor calibration and alignment algorithm is structured as follows. In the cali-

bration step, the parameters RL, SL and b are estimated, using a Maximum Likelihood

Estimator formulated on M(3). In the alignment step, the determination of the orthogonal

transformation VL is obtained from a closed form optimal algorithm using vector readings

in {C} and {B} frames.

K.2.3 Magnetometer calibration

The calibration parameters are computed using a Maximum Likelihood Estimator. An

intermediate estimator is formulated on the manifold Θ := SO(3)×D+(3)×R
3 to evidence

that the sensor alignment cannot be determined by a calibration algorithm written in the

sensor frame. However, the use of classical optimization tools in Euclidean spaces is

allowed for by writing an equivalent estimator formulation on M(3).

Assuming that the noise on the magnetometer readings is a zero mean Gaussian process

with variance σ2
m i, the probability density function (p.d.f.) of each hr i is also Gaussian

nm i ∼ N (0, σ2
m iI) ⇒ hr i ∼ N (RLSL

Chi + b, σ2
m iI).
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The MLE finds the parameters that maximize the conditional p.d.f. of each sensor read-

ing given the optimization parameters [75]. The resulting minimization problem of the

weighted log-likelihood function is described by

min
(RL,SL,b)∈Θ

Chi∈S(2),i=1,...,n

n
∑

i=1

(‖(hr i − b) −RLSL
Chi‖

σm i

)2

. (K.6)

The minimum of (K.6) is computed iteratively by gradient or Newton-like methods on

manifolds [43, 51]. Note that solving the minimization problem (K.6) implies estimating

n auxiliary magnetic field vectors Chi, and the dimension of the search space is (2n +

dim Θ) whereas the dimension of the calibration parameters space is dim Θ = dim SO(3)+

dim D+(3) + dim R
3 = 9.

The minimization problem (K.6) finds the ellipsoid points (RLSL
Chi) that best fit

the sensor readings (hr i − b). Intuitively, the minimization problem can be rewritten

to find the sphere points Chi that best fit to the pullback of the ellipsoid to the sphere

(S−1
L R′

L(hr i − b)), yielding

min
(RL,SL,b)∈Θ

Chi∈S(2),i=1,..,n

n
∑

i=1

(

‖S−1
L R′

L(hr i − b) − Chi‖
σm i

)2

. (K.7)

The minimization problem (K.7) is suboptimal with respect to the unified error model

(K.5), but can be rigorously derived using a MLE formulation by assuming that the

noise is external to the sensor, as detailed in the Section K.4.1. More important, the

log-likelihood function (K.7) can be optimized by searching only in the parameter space

Θ.

Proposition K.3. The solution (R∗
L,S

∗
L,b

∗) of (K.7) also minimizes

min
(RL,SL,b)∈Θ

n
∑

i=1

(

‖S−1
L R′

L(hr i − b)‖ − 1

σm i

)2

. (K.8)

Proof. Given (R∗
L,S

∗
L,b

∗), the optimal Ch∗
i satisfies

Ch∗
i =argmin

Chi∈S(2)

‖v∗
i − Chi‖2, (K.9)

where v∗
i := S∗−1

L R∗
L
′(hr i − b∗). The minimization problem (K.9) corresponds to the

projection of v∗
i on the unit sphere, which has the closed form solution Ch∗

i =
v∗

i

‖v∗
i ‖

.

Therefore, the minimization problem (K.7) can be written as

min
(RL,SL,b)∈Θ

n
∑

i=1

(

‖S−1
L RL

′(hr i − b) − vi

‖vi‖‖
σm i

)2

,

where vi := S−1
L RL

′(hr i−b). Using simple algebraic manipulation produces the likelihood

function (K.8).
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The minimization problem (K.8) can be formulated on the Euclidean space, which

allows for the use of optimization tools for unconstrained problems [12].

Proposition K.4. Let (T∗,b∗
T ) denote the solution of the unconstrained minimization

problem

min
T∈M(3)

n
∑

i=1

(‖T(hr i − bT )‖ − 1

σm i

)2

, (K.10)

and take the singular value decomposition of T∗ = U∗
TS∗

TV∗
T
′, UT ∈ O(3), ST ∈ D+(3),

VT ∈ SO(3). The solution of (K.8) is given by R∗
L = V∗

T , S∗
L = S∗

T
−1, b∗ = b∗

T .

Proof. Using the equality ‖VLS−1
L R′

L(hr i −b)‖ = ‖S−1
L R′

L(hr i −b)‖ for any VL ∈ O(3),

and the fact that, by the singular value decomposition, T := VLS−1
L R′

L is a generic

element of M(3), produces the desired results.

By Proposition K.4, the calibration parameters of equation (K.5) are obtained by

solving (K.10) and decomposing the resulting T∗. Although (K.10) could be derived using

(K.3), the intermediate derivations (K.7) and (K.8) where presented to show that (i)

the sensor readings lie on an ellipsoid manifold parameterized by RL, SL and b (ii) the

alignment matrix, represented by VL (or U∗
T ) cannot be determined in the calibration

process, given that there are no body referenced measurements.

In this work, the minimization problem (K.10) is solved by using the gradient and

Newton-descent method for Euclidean spaces [12], and the Armijo rule for the step size

determination. The gradient and Hessian of the log-likelihood function are computed

analytically and presented in the Section K.4.1.

Given the calibration parameters (RL,SL,b), an unbiased and unit norm represen-

tation of the Earth magnetic field in the calibration frame {C} is obtained by algebraic

manipulation of (K.5), resulting in

Chi = S−1
L R′

L(hr i − b). (K.11)

A good initial guess of the scaling and bias calibration parameters is produced by the

two-step estimator proposed in [55]. The locus of measurements described by

‖Eh‖2 = ‖S−1(hr − b)‖2,

is expanded and, by defining a nonlinear change of variables, it is rewritten as a pseudo-

linear least squares estimation problem

H(hr)f(b, s) = b(hr), (K.12)

where the matrix H(hr) ∈ M(n, 6) and the vector b(hr) ∈ R
n are nonlinear functions of

the vector readings and the vector of unknowns f(b, s) ∈ R
6 is a nonlinear function of the

calibration parameters. The closed form solution to the least squares problem (K.12) is

found to yield a good first guess of the calibration parameters [45].
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In alternative, the algorithm proposed in [24] can produce an initial ellipsoid guess

based on the difference-of-squares error criterion using a semidefinite programming (SDP)

formulation. However, the SDP algorithm is computationally feasible only for no more

than a few hundred samples, whereas the pseudo-linear least squares formulation (K.12)

allows for efficient processing of the several thousands of points contained in the calibration

data, which are required in practice.

K.2.4 Magnetometer alignment

The representation of Bhi in the body frame is necessary in attitude determination al-

gorithms [98]. Although the alignment and calibration procedures are independent, the

magnetometer alignment algorithm is detailed for the sake of completeness.

The magnetometer alignment with respect to a reference frame is represented by the or-

thogonal matrix VL ∈ O(3) contained in the unified transformation C, see Corollary K.2.

Given that Chi := V′
L

Bhi,
Chi ∈ S(2), the matrix VL is computed using the Chi observa-

tions given by the calibrated sensor reading (K.11), and the Bhi measurements obtained

from external information sources, such as heading reference units or external localization

systems.

As illustrated in Fig. K.2, two vector readings are sufficient to characterize a rigid rota-

tion VL ∈ SO(3), or a rotation with reflection VL ∈ (O(3)\SO(3)), but the determination

of an orthogonal transformation VL ∈ O(3) requires at least three linearly independent

vectors readings. The well known results for the orthogonal Procrustes problem [61] are

adopted to determine VL ∈ O(3).

Theorem K.5 (Orthogonal Procrustes Problem). Take two sets of vector readings in

{C} and {B} coordinate frames, concatenated in the form CX =
[

Ch1 . . . Chn

]

and

BX =
[

Bh1 . . . Bhn

]

where n ≥ 3. Assume that BXCX′ is nonsingular, and denote

the corresponding SVD as BXCX′ = UΣV′, where U,V ∈ O(3), Σ ∈ D+(3). The

optimal orthogonal matrix V∗
L ∈ O(3) that minimizes the transformation from {B} to

{C} coordinates frames in least squares sense

min
VL∈O(3)

n
∑

i=1

‖Chi − V′
L

Bhi‖2,

is unique and given by V′
L
∗ = VU′.

Using (K.11), the calibrated and aligned magnetic field vector reading is given by

Bhi = VLS−1
L R′

L(hr i − b).

Given that the vector magnitude is not relevant for the attitude determination algorithms

[98], it is assumed without loss of generality that Eh lies on the unit sphere, and the norm

scaling factor is thus incorporated in the scaling matrix SL. Clearly, if ‖Eh‖ = α, α 6= 1,

the calibrated sensor reading Bhiα is given by Bhiα = αBhi.
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Figure K.2: Alignment estimation ambiguity with two vector readings.

K.3 Algorithm implementation and results

In this section, the proposed calibration algorithm is validated using simulated and exper-

imental data from a triad of low-cost magnetometers.

K.3.1 Simulation results

The calibration algorithm was first analyzed using simulated data. The reference calibra-

tion parameters from (K.2) are

SM = diag(1.2, 0.8, 1.3),







ψ

θ

φ






=







2.0 ◦

1.0 ◦

1.5 ◦






, bHI =







−1.2

0.2

−0.8






G,

bM =







1.5

0.4

2.7






G, CSI =







0.58 −0.73 0.36

1.32 0.46 −0.12

−0.26 0.44 0.53






,

and the magnetometer noise, described in the sensor space, is a zero mean Gaussian noise

with standard deviation σm = 5 mG. The likelihood function f is normalized by the

number of samples n and the stop condition of the minimization algorithm is ‖∇f |xk
‖ <

ε = 10−3.

In a strapdown sensor architecture, the swinging of the magnetometer triad is con-

strained by the vehicle’s maneuverability and, consequently, only some sections of the

ellipsoid can be traced. The magnetic field readings are obtained for two specific cases,

illustrated in Fig. K.3. In the first case, a ring shaped uniform set of points is obtained

for unconstrained yaw and a pitch sweep interval of θ ∈ [−20, 20] ◦. Note that the con-

straint in the pitch angle can be found in most terrestrial vehicles. In the second case, the

ellipsoid’s curvature information is reduced by constraining the yaw to ψ ∈ [−90, 90] ◦.
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(a) Ring shaped data. (b) Arch shaped data.

Figure K.3: Ellipsoid fitting (simulation data).

The results of 20 Monte Carlo simulations using 104 magnetometer readings are pre-

sented in Tables K.1 and K.2 and depicted in Fig. K.3. Given the large likelihood cost of

the noncalibrated data, denoted by f(x−1), the initial condition draws the cost function

into the vicinity of the optimum, and the iterations yield a 20% improvement over the

initial guess.

Table K.1: Calibration results (gradient method).

f(x−1) f(x0) f(x∗) iterations θe se be

Ring Shaped Data 3.28 × 10−1 1.17 × 10−4 9.64 × 10−5 2246 1.74 × 10−3 7.61 × 10−3 3.54 × 10−4

Arch Shaped Data 4.36 × 10−1 1.18 × 10−4 9.62 × 10−5 1932 1.46 × 10−2 1.65 × 10−2 1.74 × 10−2

Table K.2: Calibration results (Newton method).

f(x−1) f(x0) f(x∗) iterations θe se be

Ring Shaped Data 3.28 × 10−1 1.18 × 10−4 9.64 × 10−5 37.0 1.74 × 10−3 7.61 × 10−3 3.54 × 10−4

Arch Shaped Data 4.37 × 10−1 1.18 × 10−4 9.62 × 10−5 37.2 1.46 × 10−2 1.65 × 10−2 1.75 × 10−2

The Newton algorithm converges faster than the gradient algorithm, exploiting the

second order information of the Hessian, as illustrated in Fig. K.4 and Fig. K.5. Although

the Hessian computations are more complex, the Newton method takes only 5 s to converge

to in a Matlab 7.3 implementation running on a standard computer with a Pentium Celeron

1.6 Ghz processor.

Defining the distance between the estimated and the actual parameter as se := ‖S∗ −
S‖,be := ‖b∗ − b‖, and θe := arccos

(

tr(R∗R′)−1
2

)

, Tables K.1 and K.2 show that the arch

shaped data set contains sufficient eccentricity information to estimate the equivalent mag-
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Figure K.4: Convergence of the log-likelihood function (arch shaped data).
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Figure K.5: Convergence of the log-likelihood gradient (arch shaped data).
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Figure K.6: Estimation error vs. signal-to-noise ratio (100 MC, ring shaped data).

netometer errors quantities R, s and b. For platforms with limited maneuverability, the

proposed optimization algorithm identifies the calibration parameters with good accuracy.

As expected, reducing the information about the ellipsoid curvature slightly degrades the

sensor calibration errors.

As depicted in Fig. K.3, although the noise is formulated in the sensor frame, the

suboptimal formulation (K.8) yields accurate results with unit likelihood weights σ2
m i.

Let the distance in the parameter space be given by d(x∗,x)2 := θ2
e +s2

e +b2
e, the influence

of the noise power in the estimation error is illustrated in Fig. K.6, where the magnetic

field magnitude in the San Francisco Bay area is adopted, ‖Eh‖ = 0.5 G.

K.3.2 Experimental results

The algorithm proposed in this work was used to estimate the calibration parameters for a

set of 6×104 points obtained from an actual magnetometer triad. The magnetometer was

a Honeywell HMC1042L 2-axis magnetometer and a Honeywell HMC1041Z for the third

(Z) axis, sampled with a TI MSC12xx microcontroller with a 24bit Delta Sigma converter,

at 100Hz, see [44] for details.

A gimbal system was maneuvered to collect (i) a set of sensor readings spanning the

ellipsoid surface, Fig. K.7(a), (ii) only four ellipsoid sections, Fig. K.7(b). The calibration

algorithm converged to a minimum within 60 Newton method iterations, taking less than

40 s and yielding f(x∗) = 2.51 × 10−6 for the ellipsoid surface data set and f(x∗) =

2.67 × 10−6 for the ellipsoid sections data set. Although the second data set included

less data points, the results were similar because the collected data were sufficient to

characterize the ellipsoid’s eccentricity and rotation, as depicted in Fig. K.7(b).

Given the calibration parameters, the sensor noise is characterized by rewriting (K.5)

as nm i = hr − (R∗
LS∗

L
Ch∗

i + b∗) where Ch∗
i is given in the proof of Proposition K.3. The
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(a) Ellipsoid surface data. (b) Ellipsoid sections data.

Figure K.7: Ellipsoid fitting (real data).
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Figure K.8: Magnetometer data fitting.
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obtained experimental standard deviation of the sensor noise is σm = 0.65 mG, which

evidences that the signal-to-noise ratio of a typical low-cost magnetometer is better than

that assumed in the simulations of Section K.3.1, as depicted in Fig. K.6.

The calibrated magnetometer data are compared to the raw data in Fig. K.8. The

calibrated readings are near to the unit circle locus, which validates the proposed unified

error formulation of Theorem K.1 and shows that the combined effect of the magnetic

distortions is successfully compensated for.

K.4 Auxiliary results

This section presents auxiliary results adopted in the derivation of the magnetometer

calibration algorithm.

K.4.1 External magnetic noise

In the proposed error model (K.2), electronic interference and sensor specific technology

are the main sources of noise. In the case where the main sources of electromagnetic

interference are external, the magnetic noise influence in the magnetometer reading can

be modeled as

hr i = SMCNO(CSI(
B
ERi

Eh + B
NRnm i) + bHI) + bM = CBhi + CB

NRnm i + b

= RLSL
Chi + RLSLV′

L
B
NRnm i + b,

where B
NR rotates from the coordinate frame {N} where the magnetic noise is defined,

to the body coordinate frame. Assuming that nm i is a zero mean Gaussian process with

variance σ2
m i, the p.d.f. of each hr i is also Gaussian

nm i ∼ N (0, σ2
m iI) ⇒ hr i ∼ N (RLSL

Chi + b, σ2
m iRLS2

LR′
L).

Using the p.d.f. of the hr i, straightforward analytical derivations show that MLE formu-

lation is given by (K.7). As convincingly argued in [53], if the noise exists in the sensor

frame (K.5), the ellipsoid obtained by (K.7) tends to fit best the points with lower eccen-

tricity. This effect can be balanced by defining appropriate curvature weights [53] σ2
m i,

producing results close to the optimal solution of (K.6).

K.4.2 Likelihood function derivatives

Let ui := hr i − b, the gradient of the likelihood function

f :=
n
∑

i=1

(‖T(hr i − b)‖ − 1

σm i

)2

,

denoted by ∇f |x =
[

∇f |T ∇f |b
]

, is described by the submatrices

∇f |T =
n
∑

i=1

2cT
σ2

m i

ui ⊗ Tui, ∇f |b =
n
∑

i=1

−2cT
σ2

m i

T′Tui,
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where cT := 1−‖Tui‖−1 and ⊗ denotes the Kronecker product [94]. The Hessian ∇2f |x =
[

HT,T HT,b

H′
T,b

Hb,b

]

is given by the following submatrices

HT,T =
n
∑

i=1

2

σ2

m i

[

(uiu
′
i) ⊗ (Tuiu

′
iT

′)

‖Tui‖3
+ cT [(uiu

′
i) ⊗ I]

]

,

HT,b =

n
∑

i=1

−2

σ2

m i

[

(ui ⊗ Tui)u
′
iT

′T

‖Tui‖3
+ cT (ui ⊗ T + I ⊗ Tui)

]

,

Hb,b =

n
∑

i=1

2

σ2

m i

[

T′Tuiu
′
iT

′T

‖Tui‖3
+ cT T′T

]

.
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