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Abstract— Many modern robotic devices are characterized
by complex mechanics and a large number of sensors and
degrees of freedom. Moreover due to miniaturization, some
joints may lack absolute sensors which leads to unknown
initial configurations at startup. To control such systems a
reliable initialization and calibration of sensors and actuators
is required. Classical calibration methods rely on precise
mechanical adjustments and are often arduous and prone to
errors. In this paper we propose a sensor based methodology to
calibrate and initialize a humanoid robot head roll-pitch-yaw
angles using an inertial (vestibular) sensor fixed at its top. The
calibration is done during the initialization procedure exploiting
the characteristics of the head kinematics. Results are shown
both in simulation and in the real system comparing batch and
incremental approaches.

I. INTRODUCTION

The calibration of robotic devices with many sensors and
actuators is often an arduous task. Classical calibration meth-
ods require precise mechanical adjustments and parameter
tuning done by experts. With the growing complexity of
robotic devices, the development of automated and self-
calibration methods will significantly impact on the usability
and ease of maintenance of such systems.

The availability of multiple sensors in modern robots
opens opportunities for the development of sensor based cal-
ibration methods. Such methods exploit the information pro-
vided by the sensors together with some prospective move-
ments executed by the robot to self-calibrate the sensori-
motor relationships between the sensors and the actuators.
As an outcome, the estimation of the unknown configuration
at startup is often possible to obtain. In a previous work
[6] we have developed visual based methods for calibrating
the eyes pan-tilt degrees of freedom of a humanoid stereo
head. In this paper we use an inertial sensor emulating the
vestibular sense, to calibrate and initialize the neck pan-tilt-
swing angles (see Fig. II). Using both methodologies it is
possible to fully calibrate the humanoid head.

Despite only showing an application to a humanoid stereo
head, the method is more general. In particular it is applica-
ble to the class of kinematics chains with three serial rotation
joints orthogonally arranged having an inertial sensor at the
end of the chain. We propose two different approaches, one
based on the Newton’s Method for non-linear equations and
the other based on the Broyden’s method [2]. Their relative
efficiency is discussed and the one which presented the best
experimental results was implemented on a real humanoid
robot: the iCub.

II. PROBLEM FORMULATION

The humanoid head system considered in this work has
six degrees of freedom: neck pitch (tilt), neck roll (swing),

neck yaw (pan), eyes tilt, eyes version and eyes vergence, as
shown in figure II. In this work, we are solely interested in
the head movements: tilt, swing and pan.

Fig. 1. Illustration of the iCub’s head degrees of freedom.

It is important to establish a reference coordinate frame,
which will be denoted by {0}. This reference coordinate
frame corresponds to the body coordinate frame and is
defined by the local vertical and by the rotation of the body
along this axis. Considering identical reference coordinate
frames for all joints in the canonical state, the rotation matrix
representing the head’s orientation with respect to the body
reference frame depends on the tilt, swing and pan angular
displacements, and is given by [1]:

0R3 = 0R1 · 1R2 · 2R3 (1)
= ROTy(θt) · ROTx(θs) · ROTz(θp) (2)

=

 ct 0 st
0 1 0
−st 0 ct

 ·
1 0 0

0 cs −ss
0 ss cs

 ·
cp −sp 0
sp cp 0
0 0 1


(3)

with ct = cos(θt), st = sin(θt), cs = cos(θs), ss = sin(θs),
cp = cos(θp) and sp = sin(θp).

The robot head has an inertial sensor at the end of the pan
joint. The inertial sensor unit is composed of accelerometers
and rate-gyros for the three axis and a magnetometer to
measure the azimuth with respect to a earth fixed co-
ordinate system. The inertial unit is thus able to calculate
the orientation between the sensor-fixed coordinate system,
denoted by {S}, and the earth fixed co-ordinate system,
denoted by {G}, which is defined as a right handed Cartesian
coordinate system with:



• X̂ positive when pointing to the local magnetic North.
• Ŷ according to the right handed coordinates (West).
• Ẑ positive when pointing up.

Note that this co-ordinate system may not correspond to the
body coordinate system (that only happens if the inertial
sensor is placed facing North). Moreover, the sensor fixed
co-ordinate system does not correspond to the head fixed co-
ordinate system (above denoted by {3}), because of the way
the sensor is installed in iCub’s head. This two coordinate
systems are related acording to the following rotation matrix:

3RS = ROTz(π) =

−1 0 0
0 −1 0
0 0 1


Therefore, one can say that the inertial sensor outputs the
following rotation matrix:

GRS = GR0 · 0R3 · 3RS (4)

As already mentioned, the angular displacements given by
the motor encoders are measured with respect to the position
in which the robot is turned on. Thus, using the information
provided by the motor differential encoders (the joint angle
displacements) and the information provided by the inertial
sensor(GRS), our goal is to align iCub’s head with its body.
That is, iCub’s head should be put in a position such that
3R0 = I3.

III. THE PROPOSED METHODOLOGY

Considering equation 4 and having performed the required
calculations, one can state that:(

GRS
)
31

= rGS31 = st · cp − ct · ss · sp (5)(
GRS

)
32

= rGS32 = −st · sp − ct · ss · cp (6)

The goal is to place the iCub’s head in a position such that
0R3 = I3. In such a position the following equalities must
be verified:

rGS31 = 0 (7)

rGS32 = 0 (8)

It is important to note that, since GRS is a rotation matrix, if
equations 7 and 8 are verified then the following equalities
must also hold:

rGS13 = 0 (9)

rGS23 = 0 (10)

rGS33 = 1 (11)

In order to put the iCub’s head in a position in which
equations 7 and 8 hold, we only need to change the tilt and
swing angular displacements. This problem is one of solving
a system of nonlinear equations (the number of equality
conditions is equal to the number of variables):

r(θt, θs) =
[
rGS31 (θt, θs)
rGS32 (θt, θs)

]
=
[
0
0

]
(12)

Note that these constraints only align the head Z axis with
gravity. The azimuth (pan angle) is still undetermined and
will be computed with additional constraints.

A popular way to solve this kind of problems is to
use Newton’s method for nonlinear equations [2]. Newton’s
method defines a linear model Mk(∆θ) of r(θ+ ∆θ) in the
following way:

r(θ + ∆θ) = r(θ) + J(θ) ·∆θ (13)

where J(θ) denotes the jacobian of r evaluated in θ.
Newton’s method in its pure form chooses the step ∆θ to

be the vector for which Mk(∆θ) = 0, that is:

∆θ = −J(θ)−1 · r(θ) (14)

However, in this case, since r is not known, the information
required for computing the jacobian is not given. As such,
we propose two different strategies to compute the initial tilt
and swing angular displacements, respectively: θ0t and θ0s .

A. A Systematic Approach

One way of solving this problem is to express rGS31 and
rGS32 in the following way:

rGS31 (α, β) =sin(θ0t + α) cos(θ0p) (15)

− cos(θ0t + α) sin(θ0s + β) sin(θ0p)

rGS32 (α, β) =− sin(θ0t + α) sin(θ0p) (16)

− cos(θ0t + α) sin(θ0s + β) cos(θ0p)

where α and β are suitably chosen angle displacements of the
tilt and swing joints. The above equations can be rewritten
as expressed below:

rGS31 (α, β) =a1 sin(α) + a2 cos(α) + a3 sin(α) sin(β)
+a4 sin(α) cos(β) + a5 cos(α) sin(β) (17)
+a6 cos(α) cos(β)

rGS32 (α, β) =b1 sin(α) + b2 cos(α) + b3 sin(α) sin(β)
+b4 sin(α) cos(β) + b5 cos(α) sin(β) (18)
+b6 cos(α) cos(β)

Since the values of a1,...,a6 and b1,...,b6 depend on the values
of θ0t , θ0s and θ0p, they are unknowns. However, in order to
determine their values, one has simply to collect the values
of rGS31 and rGS32 in six different points (α1, β1),..., (α6, β6)
and then solve the linear system of equations obtained by
writing equations 17 and 18 for each one of these points.
In practice, since the information provided by the inertial
sensor is affected by noise, one should collect more than six
points and then use the Pseudo-Inverse matrix method.

After rewriting equation 12 in terms of α and β, one
obtains:

r(α, β) =
[
rGS31 (α, β)
rGS32 (α, β)

]
=
[
0
0

]
(19)

which is known (as explained: this amounts to solve a system
of linear equations). So Newton’s method for nonlinear
equations can now be applied to determine the angular



displacements α∗ and β∗ which solve equation 19. Clearly,
the initial tilt and swing angular displacements measured
with respect to the body reference frame are given by:

θ0t = −α∗ (20)

θ0s = −β∗ (21)

B. An Incremental Approach

Another way of addressing this problem consists in using
Broyden’s method [2]. Broyden’s method is a secant method:
it constructs its own approximation of the Jacobian, updating
it at each iteration so that it mimics the behavior of the true
Jacobian J over the step just taken.

The requirement that the approximate Jacobian should
mimic the behavior of the true Jacobian can be specified
as follows. Let sk denote the step from θk to θk+1 and let
yk denote the corresponding change in r, that is:

sk = θk+1 − θk (22)

yk = r(θk+1)− r(θk) (23)

Broyden’s method requires that the updated Jacobian approx-
imation Bk+1 to satisfy the following equation, which is
known as the secant equation:

yk = Bk+1 · sk (24)

The secant equation ensures that Bk+1 and J(xk+1) have
similar behavior along direction sk. Broyden’s method cor-
responds to the following update:

Bk+1 = Bk +
(yk −Bk · sk) · sTk

sTk · sk
(25)

The Broyden update makes the smallest possible change
to the Jacobian (as measured by the Euclidean norm:
‖Bk −Bk+1‖ 2) that is consistent with the secant equation,
which can be formally stated as:

Bk+1 ∈ arg min
B : yk=B·sk

‖B −Bk‖ (26)

The specification of the algorithm is presented below.

Algorithm 1 Broyden’s Method
Choose θ0 and a nonsingular initial

Jacobian approximation B0;
for k = 0, 1, 2, · · · do

Calculate a solution ∆θk to the linear equations:
Bk ·∆θk = −r(θk)

θk+1 ⇐ θk + ∆θk
sk ⇐ θk+1 − θk
yk ⇐ r(θk+1)− r(θk)
Obtain Bk+1 from formula 25

end for

After applying Broyden’s algorithm it is reasonable to
expect that the tilt and swing displacements are almost zero.
So:

θ0t = −
n∑
k=1

∆θkt (27)

θ0s = −
n∑
k=1

∆θks (28)

C. Computing the Initial Pan

Having applied one of these two approaches to compute θ0t
and θ0s , one can easily compute the initial pan displacement
θ0p by means of equations 5 and 6:

s0p =
b · r031 − a · r032

a2 + b2
(29)

c0p =
r031 − b · s0p

a
(30)

with a = st and b = −ct · ss. Therefore:

θ0p = atan2(s0p, c
0
p) (31)

Here, only the information corresponding to the initial po-
sition is being used in order to compute θ0p. However, both
the approaches presented in this work collect information
corresponding to several positions while computing θ0t and
θ0s . These data could be used to determine θ0p more precisely,
using, for instance, a Weighted Least Squares estimator [4].
Observe that positions closer to the zero present a greater
signal-to-noise ratio and, thus, should be assigned smaller
weights.

IV. EXPERIMENTAL RESULTS

Both Newton’s Method and Broyden’s Method (as de-
scribed in algorithm 1) were implemented in Matlab in
order to assess the way each one converges when applied
to the problem of aligning the iCub’s head with its body. We
assume that, initially, each joint angle (tilt, swing and pan)
is reasonably close to 0 with respect to the body reference
frame (every joint angle is assumed to be lower than 30◦).

A. Inertial Sensor Noise Characterization

As was stated in section II, the inertial sensor outputs a
rotation matrix, GRS , which describes the orientation of the
sensor fixed co-ordinate system, {S}, with respect to the
earth fixed co-ordinate system, {G}. Naturally, the informa-
tion provided by this sensor includes noise. Therefore, in
order to simulate it properly one needs to characterize the
noise variance.

We have evaluated the sample variance of the rotation
matrix provided by the inertial sensor in a wide range of
positions. In each position we recorded 100 samples and
then computed the sample variance. The maximum variance
registered was 0.00334233. Hence, in each of the simulations
presented in this section we shall assume a zero-mean
gaussian white noise with variance 0.0034.

B. Matlab Simulations

For both methods we performed several simulations with
different initial conditions and measured the error between
the ground truth position (zero angles) and the output of
the algorithms. For each initial condition, ten experiments
were performed. In each experiment, only ten iterations of
the algorithms are executed, since we experimentally verified



that when the algorithms converge, they typically converge
quickly. Nevertheless, in some experiments the algorithms
did not converge; therefore, only the successful trials are
considered when computing the average error between the
ground truth position and the ouput of the algorithm (we
consider a trial to be successful if the error corresponding
to each one of the joint angles is less than 0.5rad). Tables I
and II show the average errors expressed in radians as well
as the number of non-convergent trials out of ten.

TABLE I
APPLICATION OF NEWTON’S METHOD TO FOUR DISTINCT INITIAL

CONFIGURATIONS

Initial Configuration θtilt θswing θpan #Failures
π
6 ,

π
6 0.0509 0.0629 0.1067 1

π
6 ,

π
12 0.0493 0.0431 0.0706 0

π
6 ,

π
12 0.0436 0.0902 0.1460 1

π
12 ,

π
12 0.0593 0.0298 0.1233 1

TABLE II
APPLICATION OF NEWTON’S METHOD TO FOUR DISTINCT INITIAL

CONFIGURATIONS

Initial Configuration θtilt θswing θpan #Failures
π
6 ,

π
6 0.0812 0.0309 0.1334 1

π
6 ,

π
12 0.0778 0.0709 0.1404 1

π
6 ,

π
12 0.0177 0.0228 0.0807 0

π
12 ,

π
12 0.0222 0.0179 0.0692 2

The simulations presented in figures 2 to 5 illustrate
the way θtilt and θswing are changed in each iteration of
Broyden’s Method.

(a)

(b)

Fig. 2. Evolution of the tilt (top) and swing (bottom) angles along
the iterations of the Broyden’s method. Initial configuration: θtilt =
π
6

θswing = π
6

(a)

(b)

Fig. 3. Evolution of the tilt (top) and swing (bottom) angles along
the iterations of the Broyden’s method. Initial configuration: θtilt =
π
6

θswing = π
12

TABLE III
EVOLUTION OF THE INERTIAL SENSOR ORIENTATION MATRIX ALONG

THE ITERATIONS OF THE METHOD. INITIAL CONFIGURATION:
θ0tilt = 0.7561rad θ0swing = 0.3047rad θ0pan = 0.5927rad

Iterations r31 r32 r13 r23 r33

0 0.448124 -0.565588 -0.365259 -0.622327 0.692311
1 0.404702 0.03108 0.220109 -0.34103 0.91392
2 0.030612 0.262968 0.250975 0.084264 0.964319
3 -0.138035 0.059402 -0.008302 0.150045 0.988644
4 -0.064814 -0.097917 -0.116638 0.013573 0.993082
5 0.054952 -0.052626 -0.019847 -0.073453 0.997101
6 0.042871 0.023935 0.041518 -0.02621 0.998794
7 0.003065 0.041944 0.038273 0.017432 0.999115
8 -0.029368 -0.002641 -0.016464 0.024462 0.999565
9 0.003777 -0.005103 -0.002637 -0.005775 0.99998

C. Implementation on iCub

Broyden’s algorithm was successfully implemented on the
iCub. Considering the nature of the problem at hand, it is
quite difficult to evaluate its results in practice, since the
real zero is not known. Nevertheless, we can illustrate the
application of the algorithm by showing how the entries of
the rotation matrix provided by inertial sensor change during
the corresponding application. When the head of the robot is
aligned with its body, the orientation matrix provided by the
inertial sensor must be a rotation about the Z axis. So, the
entries r31, r32, r13 and r23 must be zero and entry r33 must
be 1. Table III presents the evolution of these entries when
Broyden’s algorithm is applied to the real robot. Naturally,
it is only possible to estimate the initial joint angles after
applying the algorithm and assuming that the head is then
aligned with the body.



(a)

(b)

Fig. 4. Evolution of the tilt (top) and swing (bottom) angles along
the iterations of the Broyden’s method. Initial configuration: θtilt =
π
12

θswing = π
6

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a method to automatically
calibrate the neck joints of a humanoid robot to its default
configuration, using measurements from the inertial sensor
placed in the top of the head. The method is suitable to be
used in systems lacking absolute sensing in their actuators’
joints.

Two alternative methods were presented: (i) a batch
method requiring the acquisition of inertial measurements
on several different head configurations before computing
the solution; and (ii) an incremental method computing
the solution while performing the prospective movements.
Results show that both methods provide good results in most
cases. However, in some circumstances, mainly when the
head configuration is taken to the limits of the workspace,
the methods may not converge to the solution. Whereas these
situations can be diagnosed online using the incremental
method, the batch method is not able to deal with these cases.

The Broyden’s method, due to its ability to diagnose online
algorithm non-convergence and to intrinsically avoid the joint
limits is the method of our choice. In terms of speed, we have
empirically shown that it converges to values close to zero in
less than ten iterations. Errors measured in the real robot and
in simulation trials with realistic noise conditions are very
low and confirm the practical utility of the proposed method.

In future work we will aim at integrating visual and
vestibular information to perform the full calibration of the
head eyes and neck sub-systems. Additionally we aim at
performing a more extensive analysis of the convergence
basin of the algorithms.

(a)

(b)

Fig. 5. Evolution of the tilt (top) and swing (bottom) angles along
the iterations of the Broyden’s method. Initial configuration: θtilt =
π
12

θswing = π
12
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