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Abstract—We propose a novel method for the automatic detec-
tion and measurement of fetal anatomical structures in ultrasound
images. This problem offers a myriad of challenges, including: dif-
ficulty of modeling the appearance variations of the visual object
of interest, robustness to speckle noise and signal dropout, and
large search space of the detection procedure. Previous solutions
typically rely on the explicit encoding of prior knowledge and
formulation of the problem as a perceptual grouping task solved
through clustering or variational approaches. These methods are
constrained by the validity of the underlying assumptions and
usually are not enough to capture the complex appearances of fetal
anatomies. We propose a novel system for fast automatic detection
and measurement of fetal anatomies that directly exploits a large
database of expert annotated fetal anatomical structures in ul-
trasound images. Our method learns automatically to distinguish
between the appearance of the object of interest and background
by training a constrained probabilistic boosting tree classifier.
This system is able to produce the automatic segmentation of
several fetal anatomies using the same basic detection algorithm.
We show results on fully automatic measurement of biparietal
diameter (BPD), head circumference (HC), abdominal circumfer-
ence (AC), femur length (FL), humerus length (HL), and crown
rump length (CRL). Notice that our approach is the first in the
literature to deal with the HL and CRL measurements. Extensive
experiments (with clinical validation) show that our system is, on
average, close to the accuracy of experts in terms of segmentation
and obstetric measurements. Finally, this system runs under half
second on a standard dual-core PC computer.

Index Terms—Discriminative classifier, medical image analysis,
supervised learning, top-down image segmentation, visual object
recognition.

I. INTRODUCTION

A CCURATE fetal ultrasound measurements are one of the
most important factors for high quality obstetrics health

care. Common fetal ultrasound measurements include: bipari-
etal diameter (BDP), head circumference (HC), abdominal cir-
cumference (AC), femur length (FL), humerus length (HL), and
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crown rump length (CRL). In this paper we use the American In-
stitute of ultrasound in medicine (AIUM) guidelines [1] to per-
form such measurements. These measures are used to estimate
both the gestational age (GA) of the fetus (i.e., the length of
pregnancy in weeks and days [34]), and also as an important di-
agnostic auxiliary tool. Accurate estimation of GA is important
to estimate the date of confinement and the expected delivery
date, to assess the fetal size, and to monitor the fetal growth.
The current workflow requires expert users to perform those
measurements manually, resulting in the following issues: 1) the
quality of the measurements are user-dependent, 2) exams can
take more than 30 min, and 3) expert users can suffer from repet-
itive stress injury (RSI) due to the multiple keystrokes needed
to perform the measurements. Therefore, the automation of ul-
trasound measurements has the potential of: 1) improving ev-
eryday workflow, 2) increasing patient throughput, 3) improving
accuracy and consistency of measurements, bringing expert-like
consistency to every exam, and 4) reducing the risk of RSI to
specialists.

We focus on a method that targets the automatic online detec-
tion and segmentation of fetal head, abdomen, femur, humerus,
and body length in typical ultrasound images, which are then
used to compute BDP and HC for head, AC for abdomen, FL for
femur, HL for humerus, and CRL for the body length [5] (see
Fig. 5). We concentrate on the following goals for our method:
1) efficiency (the process should last less than one second), 2)
robustness to the appearance variations of the visual object of in-
terest, 3) robustness to speckle noise and signal dropout typical
in ultrasound images, and 4) segmentation accuracy. Moreover,
we require the basic algorithm to be the same for the segmenta-
tion of the different anatomies aforementioned in order to facil-
itate the extension of this system to other fetal anatomies.

To achieve these goals, we exploit the database-guided seg-
mentation paradigm [14] in the domain of fetal ultrasound im-
ages. Our approach directly exploits the expert annotation of
fetal anatomical structures in large databases of ultrasound im-
ages in order to train a sequence of discriminative classifiers.
The classifier used in this work is based on a constrained ver-
sion of the probabilistic boosting tree [37].

Our system is capable of handling a previously issue in the
domain of fetal ultrasound image analysis, which are: the auto-
matic measurements of HL and CRL, and the fact that our ap-
proach is designed to be completely automatic. This means that
the user does not need to provide any type of initial guess. The
only inputs to the system are the image and the measurement to
be performed (BPD, HC, AC, FL, HL, or CRL). Extensive ex-
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periments show that, on average, the measurement produced by
our system is close to the accuracy of the annotation made by
experts for the fetal measurements mentioned above. Moreover,
the algorithm runs under half second on a standard dual core PC
computer.1

A. Paper Organization

This paper is organized as follows. Section II presents a liter-
ature review, Section III defines the problem, and in Section IV
we explain our method. Finally, Section V shows the experi-
ments, and we conclude the paper in Section VI.

II. LITERATURE REVIEW

In this literature review we survey papers that aim at the same
goals as ours, which are precise segmentation, robustness to
noise and to the visual class intravariability, and fast processing.
First, we focus on the papers that describe approaches for de-
tecting and segmenting fetal anatomies in ultrasound images.
Then, we survey methods designed to work on the segmenta-
tion of anatomical structures from ultrasound images that, in
principle, could also be applied to our problem. We also dis-
cuss relevant computer vision techniques for detection and seg-
mentation since our method is closely related to these computer
vision methods. Finally, we explain the main novelties of our
approach compared to the state-of-the-art in the fields of com-
puter vision, machine learning, and medical image analysis.

There is relatively little work in area of automatic segmenta-
tion of fetal anatomies in ultrasound images [7], [8], [15], [18],
[24], [29], [36]. One possible reason for this, as mentioned by
Jardim [18], is the low quality of fetal ultrasound images, which
can be caused by low signal-to-noise ratio, markedly different
ways of image acquisition, large intra class variation because of
differences in the fetus age and the dynamics of the fetal body
(e.g., the stomach in the abdomen images can be completely full
or visually absent, and the shape of the fetal body changes sig-
nificantly in terms of the gestational age—see Fig. 7), strong
shadows produced by the skull (in head images), spine and ribs
(in abdomen images), femur, and humerus. A noticeable com-
monality among the papers cited above is their focus on the de-
tection and segmentation of only fetal heads and femurs, but
not fetal abdomen (except for [8]), humerus, or body. Among
these anatomies, the fetal head segmentation is the least compli-
cated due to the clear boundaries provided by the skull bones,
and the similar texture among different subjects [see Fig. 7(a)].
The problem of femur and humerus segmentation is somewhat
more complicated because of the absence of internal texture [see
Fig. 7(c) and (d)], but the presence of clear edges produced by
the imaging of the bones facilitates the problem. Finally, the seg-
mentation of the fetal abdomen and fetal body are the hardest
among these anatomies. The fetal abdomen presents a lack of
clear boundaries and inconsistent imaging of the internal struc-
tures among different subjects [see Fig. 7(b)], while the fetal
body changes its shape considerably as a function of the fetal
age [see Fig. 7(e)].

1Intel Core 2 CPU 6600 at 2.4-GHz, 2 GB of RAM

The initial approaches for automatic fetal anatomical seg-
mentation in ultrasound images were mostly based on morpho-
logical operators [15], [24], [36]. These methods involve a se-
ries of steps, such as edge detection, edge linking, Hough trans-
form, among other standard computer vision techniques, to pro-
vide head and femur segmentation. When compared to the mea-
surements provided by experts, the segmentation results showed
correlation coefficients bigger than 0.97 [see (21)]. However,
a different method had to be implemented for each anatomy,
showing the lack of generalization of such algorithms. Also, the
segmentation of abdomen has not been addressed. Finally, the
implemented systems needed a few minutes to run segmentation
process.

Chalana et al. [7], [8], [29] describe a method for fetal head
and abdomen segmentation in ultrasound images based on
the active contour model. This method can get stuck at local
minima, which might require manual correction. Also, the
algorithm does not model the texture inside the fetal head,
which means that no appearance information is used to improve
the accuracy and robustness of the approach. Experiments
on 30 cases for BPD, HC, and AC, show that the algorithm
performs as well as five sonographers, and that it runs in real
time. Finally, another issue is that the user needs to provide
an initial guess for the algorithm, which makes the system
semi-automatic.

Jardim and Figueiredo [18] present a method for the seg-
mentation of fetal ultrasound images based on the evolution of
a parametric deformable shape. Their approach segments the
input image into two regions, so that pixels within each re-
gion have similar texture statistics according to a parametric
model defined by the Rayleigh distribution. A drawback of this
method is that there is no guarantee that the algorithm will al-
ways find the optimal solution, which is a fact noted by the au-
thors. Another limitation is that the appearance model based
on the Rayleigh distribution cannot take into account the spa-
tial structure of textural patterns present inside the cranial cross
section. This method also needs an initial guess from the user,
which makes the system semi-automatic. The authors use this
approach for the segmentation of fetal heads and femurs in 50
ultrasound images with good results.

The segmentation of other anatomies from ultrasound images
has also produced relevant solutions that can be applied to the
problem of segmentation of fetal anatomical structures. Thus,
in this section we focus on methods designed to work on prob-
lems involving similar challenges, which are low quality of ul-
trasound images, large intraclass variation, and strong shadows
produced by the anatomical structure. Several techniques have
been proposed [30], but we shall focus this review on the fol-
lowing promising techniques: pixel-wise and region-wise clas-
sifier models, low-level models, Markov random field models,
machine learning based models, and deformable models.

The most promising techniques in this area are based on a
combination of region-wise classifier models and deformable
models, where an evolving contour defines a partition of the
image into two regions. Assuming a parametric distribution for
each region, one can have a term of appearance coherence for
each region in the optimization algorithm for the deformable
model [6], [41]. This is a similar approach to the paper above
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by Jardim [18], and consequently shares the same problems that
makes it not ideal for our goals. Level set representations that in-
tegrates boundary-driven flows with regional information [26],
[35] can handle arbitrary initial conditions, which makes these
approaches completely automatic, but they are sensitive to noise
and incomplete data. The latter problem has been dealt with
by adding a shape influence term [20], [27]. The most promi-
nent similarity among these techniques is the under utilization
of the appearance model of the anatomical structure being de-
tected. The parameter estimation of the probability distributions
for the foreground and background regions is clearly insufficient
to model the complex appearance patterns for several reasons.
First, the parametric distribution might not provide a reasonable
representation for the appearance statistics. Second, the param-
eters may not be correctly estimated using only the image being
processed. Third, the spatial structure of the texture cannot be
captured with such representation. In general, these techniques
tend to work well whenever image gradients separate the sought
anatomical structure, but recall that for abdomens, this assump-
tion may not always be true, so one has to fully rely on its in-
ternal appearance for proper segmentation.

The use of deformable models alone has also been exploited
[2], but the lack of a learning scheme for the appearance term
restricts their applicability to our problem. Moreover, the priors
assumed for the anatomical structure and imaging process does
not generalize well for fetal anatomical structures in ultrasound
images, and even though Akgul et al. [2] work on the local
minima issues of such approaches, their design only alleviates
the problem. Deformable models can also be used with ma-
chine learning techniques to learn shape and motion patterns
of anatomical structures [17]. However, the lack of a term rep-
resenting appearance characteristics of the anatomical structure
in [17] restricts the applicability of this method to our problem.
Typically, the issue of low signal-to-noise ratio has been solved
with the utilization of a sequence of low-level models [23],
[28]. However, it is not clear whether these methods can gen-
eralize to all possible different imaging conditions that we have
to deal with. Finally, an interesting area of research is the use of
pixel-wise posterior probability term using a Markov random
field prior model [39]. The main problems affecting such ap-
proaches are the difficulty in determining the parameters for
spatial interaction [30], and the high computational costs that
limits its applicability for online methods.

More generally, in the fields of computer vision and machine
learning there has been a great interest in the problem of accu-
rate and robust detection and segmentation of visual classes.
Active appearance models [10] use registration to infer the
shape associated with the current image. However, modeling
assumes a Gaussian distribution of the joint shape-texture
space and requires initialization close to the final solution.
Alternatively, characteristic points can be detected in the input
image [11] by learning a classifier through boosting [11], [38].
The most accurate segmentation results have been presented by
recently proposed techniques that are based on strongly super-
vised training, and the representation is based on parts, where
both the part appearance and the relation between parts, is
modeled as a Markov random field or conditional random field
[4], [16], [19], [21], [22]. Although the segmentation results

presented by such approaches are excellent, these algorithms
are computationally intensive, which makes online detection a
hard goal to be achieved. Also, the use of parts is based on the
assumption that the visual object of interest may suffer severe
nonrigid deformations or articulation, which is not true in the
domain of fetal anatomical structure segmentation.

The method we propose in this paper is more aligned with the
state-of-the-art detection and top-down segmentation methods
proposed in computer vision and machine learning. Specifi-
cally, we exploit the database-guided segmentation paradigm
[14] in the domain of fetal ultrasound images. In addition to the
challenges present in echocardiography [14], our method has to
handle new challenges present in fetal ultrasound images, such
as the extreme appearance variability of the fetal abdomen and
fetal body imaging, generalization to the same basic detection
algorithm to all anatomical structures, and extreme efficiency.
In order to cope with these new challenges, we constrain the
recently proposed probabilistic boosting tree classifier [37] to
limit the number of nodes present in the binary tree, and also
to divide the original classification into hierarchical stages of
increasing complexity.

III. AUTOMATIC MEASUREMENT OF FETAL ANATOMY

Our method is based on a learning process that implicitly en-
codes the knowledge embedded in expert annotated databases.
This learning process produces models that are used in the seg-
mentation procedure. The segmentation is then posed as a task
of structure detection, where the system automatically segments
an image region containing the sought structure. Finally, the
fetal measurements can be derived from this region.

A. Problem Definition

The ultimate goal of our system is to provide a segmenta-
tion of the most likely rectangular image region containing the
anatomical structure of interest. From this rectangular region, it
is possible to determine the measurements of interest (i.e., BPD,
HC, AC, FL, HL, and CRL), as shown below. We adopt the fol-
lowing definition of segmentation: assume that the image do-
main is defined by with denoting the number
of rows and the number of columns, then the segmentation
task determines the sets , where represents the fore-
ground region (i.e., the structure of interest), and means the
background. The sets satisfy the constraint , where

. The foreground image region is determined by
the following vector:

(1)

where the parameters represent the top left region position
in the image, denotes orientation, and , the region
scale (see Fig. 1).

The appearance of the image region is represented with fea-
tures derived from the Haar wavelets [31], [38]. The decision
for the use of such feature set is based on two main reasons: 1)
good modeling power for the different types of visual patterns,
such as pedestrians [31], faces [38], and left ventricles in ultra-
sound images [14] and 2) computation efficiency with the use of
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Fig. 1. Foreground (rectangular) image region with five parameters.

Fig. 2. Image feature types used. Notice that the gray area represents the fore-
ground region S.

integral images. All the feature types used in this work are dis-
played in Fig. 2, and each feature is denoted by the following
feature vector:

(2)

where denotes the feature type, is the
top-left coordinate of the feature location within defined by
in (1) (i.e., and ),

, are the length and width of the spatial support of the
feature with and [note that is
defined in (1)], and represents the two versions
of each feature with its original or inverted signs. Note that the
feature has the same orientation as the image region.

The output value of each feature is the difference between
the image pixels lying in the white section (in Fig. 2, the region
denoted by ) and the image pixels in the black section (in
Fig. 2, the region denoted by ). This feature value can be
efficiently computed using integral images [31]. The integral
image is computed as follows:

(3)

where denotes the integral image. Then the
feature value is computed efficiently through a small number
of additions and subtractions. For example, the feature value of
feature type 1 in Fig. 2 can be computed as

where

This means that the integral image is computed once and each
feature value involves the addition and subtraction of six values
from the integral image. It is important to mention that the orig-
inal image is rotated in intervals of (in this work, )
and an integral image is computed for each rotated image. These
rotations and integral image computations comprise the prepro-
cessing part of our method. Taking into account all possible fea-
ture types, locations, and sizes, there can be in the order of
possible features within a region.

A classifier then defines the following function: ,
where with representing the prob-
ability that the image region contains the structure of interest
(i.e., a positive sample), and , the probability that
the image region contains background information (i.e., a
negative sample). Notice that the main goal of the system is to
determine

(4)

where is the foreground image region defined by in (1).
Therefore, our task is to train a discriminative classifier that min-
imizes the following probability of misclassification:

where

if
otherwise

with and being the correct
response for the parameter value .

IV. REGION CLASSIFICATION PROCESS

In this section, we discuss the classifier used in this work
and the strategy to improve the efficiency and efficacy of the
classification problem. We also show the training and detection
algorithms along with the training results.

A. Probabilistic Boosting Tree

The classifier used for the anatomical structure detection is
derived from the probabilistic boosting tree classifier (PBT)
[37]. The PBT classifier is a boosting classifier [12], [33], where
the strong classifiers are represented by the nodes of a binary
tree. Tu [37] demonstrates that the PBT is able to cluster the



1346 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 27, NO. 9, SEPTEMBER 2008

Fig. 3. PBT binary tree structure.

data automatically, allowing for a binary classification of data
sets presenting multi-modal distributions, which is typically
the case studied in this paper. Another attractive property of the
PBT classifier is that after training, the posterior probability can
be used as a threshold to balance between precision and recall,
which is an important advantage over the cascade method
[38] that needs to train different classifiers based on different
precision requirements.

Training the PBT involves the recursive construction of a bi-
nary tree, where each of its nodes represents a strong classifier.
Each node is trained with the AdaBoost algorithm [13], which
automatically learns a strong classifier by combining a set of
weak classifiers , where is an image
region determined by in (1), is the response of a weak
classifier, and is the weight associated with each weak classi-
fier. By minimizing the probability of error, the Adaboost clas-
sifier automatically selects the weak classifiers and their respec-
tive weights. The probabilities computed by each strong classi-
fier is then denoted as follows [37]:

and (5)

The posterior probability that a region is foreground
, or background is computed as in [37]

(6)
where is the total number of nodes of the tree (see Fig. 3), and

. The probability at each tree node is computed as

where is defined in (5)2, and

if
otherwise

2The value q(l jl ; . . . ; l ; S) is obtained by computing the value of
q(l jS) at PBT node reached following the path l � > l � >; . . . ; l , with
l representing the root node and l 2 f�1;+1g (see Fig. 3).

The original PBT classifier presents a problem: if the clas-
sification is too hard (i.e., it is difficult to find a function that
robustly separates positive from negative samples, which is the
case being dealt with in this paper), the tree can become overly
complex, which can cause 1) overfit of the training data in the
nodes close to the leaves, 2) long training procedure, and 3)
long detection procedure. The overfit of the data in the leaf
nodes happens because of the limited number of training sam-
ples remaining to train those classifiers. The number of strong
classifiers to train grows exponentially with the number of tree
levels, which in turn grows with the complexity of the classifi-
cation problem; hence the training process can take quite a long
time for complex classification problems. Finally, note that for
each sample [(1)] to evaluate during detection, it is neces-
sary to compute the probability over all the nodes of the clas-
sification tree. As a result, it is necessary to compute
for times, where de-
notes the number of sampling points to evaluate. Usually, is
in the order of , which can have a severe impact in the run-
ning time of the algorithm (in a standard dual-core computer the
probability computation of samples using a full binary PBT
classifier of height five can take around 10 s, which is substan-
tially above our target of less than 1 s).

B. Constrained Probabilistic Boosting Tree

We propose a two-part solution to the problems mentioned in
Section IV-A. The first part is based on dividing the parameter
space into subspaces, simplifying both the training and testing
procedures. The second part consists of constraining the growth
of the tree by limiting the height and number of nodes. This
solution decreases learning and detection times and improves
the generalization of the classifier, as shown below.

Motivated by the argument that “visual processing in the
cortex is classically modeled as a hierarchy of increasingly
sophisticated representations” [32], we design a simple-to-com-
plex classification scheme. Assuming that the parameter space
is represented by , the idea is subdivide this initial space into
subspaces , where the classification
problem grows in terms of complexity from to . This idea
is derived from the works on marginal space learning [40] and
sequential sampling [25], where the authors study the trade-off
between accuracy and efficiency of such strategy, and the main
conclusion is that by implementing such strategy, the training
and detection algorithms are several orders of magnitude more
efficient without damaging the accuracy of the approach. In
Fig. 4, we show a visual example of this idea. Notice that the
idea is to train different classifiers, where the first stages tend
to be robust and less accurate, and the last stages are more
accurate and more complex. The main difference between this
approach and the cascade scheme is that the first stages are
trained with a subset of the initial set of parameters instead of a
subspace of the full parameter space. We only train classifiers
using a subspace of the full parameter space in the last stages.

Each subset and subspace is designed to have in the order
of – parameter space samples to be evaluated, which re-
sults in a reduction of three orders of magnitude compared to
the initial number of samples mentioned above. Moreover, the
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Fig. 4. Simple to complex strategy using a 2-D parameter space, where the
target parameter values are represented by the position X. From left to right, the
first graph shows two regions in the parameter space: the black area containing
the negative samples, and the white area with the positive samples. Notice that
in this first graph, the training and detection happen only for the parameter � .
The second graph shows a training and detection using both parameters, where
the positive samples are acquired from the center of the white circle around
position X, and negatives are the samples in the black region. The gray area is
a no sampling zone. The last graph shows another classification problem in the
parameter space, with positive and negatives samples closer to the position X.
In Section IV-D those three graphs can be related to the ROI classifier, coarse
classifier, and fine classifier, respectively.

Fig. 5. Expert annotation of BPD, HC, AC, FL, HL, and CRL.

initial classifiers are presented with relatively simple classifi-
cation problems that produces classification trees of low com-
plexity, and consequently the probability computation in these
trees are faster than in subsequent trees. Finally, given that the
classification problem of each classifier is less complex than
the original problem, the height and the number of tree nodes
can be constrained. These implementations significantly reduce
the training and detection times, and improve the generalization
ability of the classifier. We call the resulting classifier the con-
strained PBT (CPBT).

C. Annotation Protocol

We explore the representation used by sonographers and clin-
icians for the BPD, HC, AC, FL, HL, and CRL measures. That

Fig. 6. Ellipse and line annotations.

is, HC and AC are represented with an ellipse, and BPD, FL, HL,
and CRL, with a line. Fig. 5 shows expert annotations of each
measurement. This annotation explicitly defines the parameter

in (1) for the positive sample of the training image as follows.
• For the ellipsoidal measurements, the user defines three

points: and , defining the major axis, and , defining
one point of the minor axis [see Fig. 6(a)]. With and ,
we can compute the center of the ellipse ,
then the region parameters of (1) are computed as follows:

(7)

where represents a two-dimensional vector, represent
vector dot product, such that a region comprises the
anatomy plus some margin, denotes the horizontal
unit vector, and .

• For the line measurements, the user defines two points:
and [see Fig. 6(b)]. With and , we can compute
the center , then the region parameters of
(1) are computed as follows:

(8)

where represents a 2-D vector, represent vector dot
product, such that a region comprises the anatomy
plus some margin, denotes the horizontal unit vector,

, and .
The manual annotation is used to provide aligned images of

anatomies normalized in terms of orientation, position, scale,
and aspect ratio. These images will be used for training the clas-
sifier. There are five classifiers to be trained: 1) head, 2) ab-
domen, 3) femur, 4) humerus, and 5) fetal body. The head clas-
sifier is used to provide the HC and BPD measurements (note
that even though the BPD is a line measurement it is derived
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Fig. 7. Examples of the training set for (a) BPD and HC, (b) AC, (c) FL, (d)
HL , (e) and CRL.

from the HC measurement through the use of its minor axis), the
abdomen classifier allows for the AC, femur classifier is used to
produce the FL, humerus classifier produces HL, and fetal body
is used to compute the CRL measurement. Fig. 5(b) shows the
head annotation, where caliper (red) is located at the back
of the head, caliper (blue) is at the front of the head, and
caliper (pink) defines the minor axis of the ellipse and is lo-
cated at the side of the head (moving from to in counter-
clockwise direction). Fig. 5(c) shows the abdomen annotation,
where caliper (red) is located at the umbilical vein region,
caliper (blue) is at the spinal chord, and caliper (pink)
defines the minor axis of the ellipse and is located close to the
stomach. Fig. 5(d) and (e) displays the femur and humerus an-
notations, respectively, where caliper (red) and (blue) are
interchangeably located at the end points of the femur bone. Fi-
nally, Fig. 5 (f) displays the fetal body annotation, respectively,
where caliper (red) is located at the bottom of the fetal body
and (blue) is located at the head. This annotation protocol
allows for building an aligned training set as the ones shown
in Fig. 7, with and for femur and humerus
and for fetal body in (7) and (8). The values for
are defined based on the aspect ratio of the anatomical struc-
ture. Notice that the original image regions are transformed into
a square size of 78 78 pixels (used linear interpolation) in the
cases of head, abdomen, and fetal body, and into a rectangular
size of 78 30 pixels (again, using bilinear interpolation) for
femur and humerus with aspect ratio width height for

.

D. Training a Constrained Probabilistic Boosting Tree

As mentioned in Section IV-B, the training involves a se-
quence of classification problems of increasing complexity.

Fig. 8. Examples of the ROI training set for (a) BPD and HC, (b) AC, (c) FL,
(d) HL, (e) CRL.

Fig. 9. Detection procedure.

Here, we rely on a training procedure (see Algorithm 1) in-
volving three stages referred to as the region of interest (ROI)
classification stage, the coarse classification stage and the fine
classification stage (see Fig. 9).

Algorithm 1: Training Algorithm

Data: M training images with anatomy region

Maximum height of each classifier tree: , ,

Total number of nodes for each classifier: , ,

and

for do

Add random samples from subspace (9) to

Add random samples from subspace (10) to

end

Train ROI classifier with and using and .

and

for do
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Add random samples from subspace (11) to

Add random samples from subspace (12) to

end

Train coarse classifier with and using and
.

and

for do

Add random samples from subspace (13) to

Add random samples from subspace (14) to

end

Train fine classifier with and using and .

Result: ROI, coarse, and fine classifiers.

For the ROI stage, the main goal is to use a subset of the ini-
tial parameter set in order to have a fast detection of hypothesis
for subsequent classification stages. Recall from Section III-A
that we rotate the image in intervals of and compute the in-
tegral image for each rotated version of the image. During de-
tection, determining the parameter in (1) requires loading the
respective rotated integral image, which is in general a time con-
suming task because it is not possible to have all integral im-
ages loaded in cache (the usual image size is 600 800, where
each pixel is represented by a float number; this means that each
image has around 2 MB). Therefore, leaving the parameter
out of the ROI classifier means a large gain in terms of detec-
tion efficiency. Another important observation for the ROI stage
is that the aspect ratio of the anatomy does not vary sig-
nificantly in the training set. Specifically, for heads, abdomens,
and fetal body, and for femurs and humerus,

. Therefore, the parameter can also be left out
from the ROI stage, and its estimation happens in the subsequent
stages.

As a result, in the ROI stage, the positive samples are located
in a region of the parameter space defined by

(9)

where ,
, , and

denotes a parameter that is not learned in this stage (in this
case and ). In Fig. 4 we display this concept of training
for a subset of the initial parameter set. Recall that the positive
sample is located at as defined in (1). On the
other hand, the negative samples are located in the following
region of the parameter space:

(10)

where represents the whole parameter space. The ROI classi-
fier is able to detect the position and scale of the object (within
the limits of ), but not its rotation nor its aspect ratio (that
is, and in (7) and (8) for this stage). This means
that the training images are kept in its original orientation and

aspect ratio, resulting in training images aligned only in terms of
position and scale, and these images are transformed to a square
patch of size 78 78 pixels. In Fig. 8, we show a few examples
of training images for training the ROI classifier.

The coarse classifier is then trained with positive samples
from the parameter subset

(11)

where

and

In order to improve the precision of the detection from the ROI
to the coarse classifier, we set in (9) for all
parameters. The negative samples for the coarse classifier are
located in the following region of the parameter space:

(12)

where is defined in (10). Finally, the positive samples for
the fine classifier are within the subset

(13)

where

and

The detection precision from the coarse to the fine classifier is
improved by setting
in (11) for all parameters. The negative samples for the fine clas-
sifier are located in the following region of the parameter space:

(14)

where is defined in (12).

E. Detection

According to the training algorithm in Section IV-D, the de-
tection algorithm must run in three stages, as described in Al-
gorithm 2. The ROI detection samples the search space uni-
formly using the as the sampling interval for position
and scale. The coarse detection only classifies the positive sam-
ples for the ROI detector at smaller intervals of ,
while the fine detection searches the hypotheses selected from
the coarse search at smaller intervals of .

Algorithm 2: Detection algorithm

Data: Test image and measurement to be performed (BPD, HC,

AC, FL, HL, or CRL)

ROI, coarse, and fine classifiers
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for
do

Compute (6) using ROI classifier, where is an

image region determined by (1)

end

Assigned all hypotheses from in terms of
to

for do

Assume element of

for : :

do

Compute (6) using coarse classifier, where is

an image region determined by (1)

end

end

Assigned the top hypotheses from in terms of

to

for do

Assume element of

for

do

Compute (6) using fine classifier, where is

an image region determined by (1)

end

end

Select the top hypothesis from in terms of ,
and

display hypothesis if .

Result: Parameter of the top hypothesis.

The value was set in order to eliminate the bottom 5%
of the cases in the training set. We found important to set such
threshold in order to avoid large error cases. Therefore, after the

detection process if , then the system
outputs a message, which says “no anatomy detected.”

F. Training Results

We have expert annotated training samples for head,
for abdomen, for femur, 547 for humerus, 325 for

fetal body. An ROI, a coarse, and a fine CPBT classifiers have
been trained. We are interested in determining the tree structure
of the classifier, where we want to constrain the tree to have the
fewest possible number of nodes without affecting the classifier
performance. Recall from Sections IV-D and E that a smaller
number of nodes produces more efficient training and detec-
tion processes and a more generalizable classifier. Therefore,
we compare the performance of the full binary tree against a
tree constrained to have only one child per node. The number
of weak classifiers is set to be at most 30 for the root node
and its children (i.e., nodes at heights 0 and 1), and at most
30 (tree height) for the remaining nodes. Note that the ac-
tual number of weak classifiers is automatically determined by
the AdaBoost algorithm [13]. The height of each tree is defined
as , , and , with
its specific value determined through the following stop condi-
tion: a node cannot be trained with less than 2000 positives and
negative samples (total of 4000 samples). This stop condition
basically avoids over-fitting of the training data. The sampling
intervals values for each stage are ,

, and . Finally
in Algorithm 1, the number of additional positives per image

and the number of negatives per image .
From the parameter of the top hypoth-

esis, each measurement is computed as follows.
• using the response from the head detector,

where . This value for is estimated from the
training set by computing
with being the number of training images for heads,

is the manual BPD measurement for image ,
with denoting the height of the

rectangle which contains the head image [see (7)].
• , where

this value is the Ramanuja’s approximation of the ellipse
circumference with and [see (7)].

• , which
is the same computation as for HC.

• , where [see (8)].
Fig. 10 shows the measurement errors for HC and BPD in

the training set for the constrained tree and the full binary tree,
where the training cases are sorted in terms of the error value.
Assuming that the contains the expert annotation for BPD,
HC, AC, FL, HL, or CRL and denotes the respective auto-
matic measurement produced by the system, the error is com-
puted as

(15)

Notice that the performance of the constrained tree is better than
that of the full binary tree. This is explained by the fact that the
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Fig. 10. Training comparison between the constrained PBT and full binary tree.
The training cases are sorted in terms of the error measurement. The horizontal
axes show the training set indexes, which varies from 0 to 1, where 0 is the index
to the training case with the smallest error, and 1 represents the case with the
largest error.

constrained tree is more regularized and should be able to gen-
eralize better than the full binary tree. Another key advantage
of the constrained tree is the efficiency in training and testing.
For the cases above, the training process for the full binary tree
takes between seven to ten days, while for the constrained tree
the whole training takes two to four days on a standard PC com-
puter. The detection process for the constrained tree takes, on
average, less than one second, while that of the full binary tree
takes around three to four seconds. Hence, a constrained tree
classifier is used in the experiments.

V. EXPERIMENTAL RESULTS

In this section, we show qualitative and quantitative results
of the database-guided image segmentation based on the CPBT
classifier proposed in this paper. First, we describe the method-
ology to quantitatively assess the performance of our system,
then, we describe the experimental protocol. Finally, we show
the quantitative results along with screen shots of the detection
provided by the system.

A. Quantitative Assessment Methodology

For the quantitative assessment of our algorithm, we adopted
the methodology proposed by Chalana et al. [8] and revised by
Lopez et al. [3], which is briefly explained in this section.

Assume that the segmentation of the anatomy is produced
by a curve , where represent the
image positions of the control points that define this curve.
Given another curve , the Hausdorff distance
between these two curves is defined by

(16)

where , with denoting Euclidean
distance.

The gold standard measurement is obtained through the av-
erage of the user observations. Given that represents the
measurement of user on image
(i.e., represents one of the six measurements considered
in this work-BPD,HC,AC,FL,HL,CRL), then the gold standard
measurement for image is obtained as

(17)

The following statistical evaluations compare the computer-
generated segmentation to the multiple observers’ segmenta-
tions. The main goal of these evaluations is to verify whether the
computer-generated segmentations differ from the manual seg-
mentations as much as the manual segmentations differ from
one another. Assume that we have a database of curves, such
as and in (16), represented by the variable , with

and , where is a user index and
is an image index. User shall always represent the com-
puter-generated curve, while users are the curves
defined from the manual segmentations. We use the following
two kinds of evaluations as proposed by Chalana [8]: 1) mod-
ified Williams index, and 2) percentage statistic. The modified
Williams index is defined as

(18)

where with defined in
(16). A confidence interval (CI) is estimated using a jackknife
nonparametric sampling technique [8], as follows:

(19)

where (representing the th percentile of the stan-
dard normal distribution

with . Note that is the Williams
index of (18) calculated by leaving image out of the computa-
tion of . A successful measurement for the Williams index
is to have close to 1.

The percentage statistic transform the computer-generated
and manual curves into points in a 2 -dimensional Euclidean
space (recall from (16) that is the number of control points of
the segmentation curve), and the goal is to verify the percentage
of times that computer-generated curve is within the convex
hull formed by the manual curves. An approximation to this
measure is computed by [8]

(20)

where is the computer-generated curve, for
are the observer-generated curves, and defined in (16).
The expected value for the percentage statistic depends on the
number of observer-generated curves. According to Lopez et
al. [3], who revised this value from [8], the successful expected
value for the confidence interval of (20) should be greater than or
equal to , where is the number of manual curves.
The confidence interval for (20) is computed in the same way as
in (19).

B. Experimental Protocol

This system was quantitatively evaluated in a clinical setting
using typical ultrasound examination images. It is important to
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Fig. 11. Detection and segmentation results.

mention that all ultrasound images used in this evaluation were
not included in the training set. The evaluation protocol was set
up as follows.

1) User selects an ultrasound image of a fetal head, abdomen,
femur, humerus, or fetal body.

2) User presses the relevant detection button (i.e., BPD or HC
for head, AC for abdomen, FL for femur, HL for humerus,
CRL for fetal body).

3) System displays automatic detection and measurement and
saves the computer-generated curve.

4) User makes corrections to the automatic detection and
saves the manual curve.

Three sets of data are available, as follows.
• Set 1: Ten distinct images of fetal heads for the BPD mea-

surement, 10 distinct images of fetal heads for the HC mea-
surement, 10 distinct images of fetal abdomen, and 10 dis-
tinct images of fetal femur were evaluated by 15 expert
users. Therefore, we have 15 different manual measure-
ments per image (i.e., a total of measure-
ments).

• Set 2: Fifteen expert users annotated 20 head images, 20
abdomen images, and 20 femur images. In total, we have
300 head images, 300 abdomen images, and 300 femur im-
ages, which means that there is no overlap between images
annotated by different users in this second set.

• Set 3: Three expert users annotated 30 humerus and 35 fetal
body images. In total, we have 90 humerus images, and 105
fetal body images, which means that there is no overlap
between images annotated by different users in this third
set.

C. Results

In this section we show qualitative results in Fig. 11 and the
quantitative assessment of our system using the Williams index
and the percentage statistic described in Section V-A on the sets
of data described in Section V-B.

Table I shows the error between control points of the curves
generated by our system and by the manual measurements. The
curves generated for the HC and AC measurements contain 16
control points, while the curve for BPD, FL, HL, and CRL have
two control points (just the end points of the line). In addition to
the Hausdorff distance, we also show results using the average
distance, where in (16) is substituted for

for curves and . The Williams index and its confidence in-
terval are shown in Table I for Set 1. The computer-to-observer
errors measured on Sets 2 and 3 are displayed in Table I (last two
columns)3. Recall that the confidence interval for the Williams
index has to be close to 1, so that it can be concluded that there
is negligible statistical difference between the computer-gener-
ated and user measurements.

The measurement errors computed from Set 1 are shown in
Table II. Note that in this table we only consider the errors (15)
computed from the measurements of BPD, HC, AC, and FL,
and the gold-standard is obtained from the average of the five

3We could not compute the Williams index for Sets 2 and 3 because we have
only one user measurement per image
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TABLE I
COMPARISON OF THE COMPUTER GENERATED CURVES TO THE OBSERVERS’

CURVES FOR FETAL HEAD, ABDOMEN, FEMUR, HUMERUS, AND BODY

DETECTIONS ON SETS 1, 2, AND 3 (SEE SECTION V-B)

CO = Mean Computer-To-Observer Distance, IO =

Mean Inter-Observer Distance, WI = Williams Index,
CI = Con�dence Interval

TABLE II
COMPARISON OF COMPUTER-GENERATED MEASUREMENTS TO THE

GOLD-STANDARD (AVERAGE OF THE FIFTEEN OBSERVERS’ MEASUREMENTS)
USING ABSOLUTE DIFFERENCES ON SET 1

r = Correlation Coe�cient

observers’ measurements. We also present the correlation coef-
ficient , which denotes the Pearson correlation, defined as fol-
lows:

(21)
where is the user measurement and is the system mea-
surement for the image (see Section IV-F). The measurement
errors computed from Sets 2 and 3 are shown in Table III, where
the gold-standard is simply the user measurement.

Table IV shows the Williams index and percentage statistic
with respect to the user measurements (as shown in [8]). Note
that the confidence interval for the percentage statistic should
be around , where

number of manual measurements. Finally, Fig. 12
shows the average error in terms of days as a function of the ges-
tational age (GA) of the fetus for Sets 1, 2, and 3. In this case the

TABLE III
COMPARISON OF COMPUTER-GENERATED MEASUREMENTS TO THE

GOLD-STANDARD (OBSERVERS’ MEASUREMENTS) USING ABSOLUTE

DIFFERENCES FOR SETS 2 AND 3

r = Correlation Coe�cient

TABLE IV
WILLIAMS INDEX AND PERCENT STATISTIC FOR BPD, HC, AC, AND FL

MEASUREMENTS ON SET 1

WI = Williams Index, P = Percent Statistic, CI =

Con�dence Interval

gestational age is computed as a function of each measurement
using the Hadlock regression function [9]. The error is com-
puted by taking the average error of the measurement (Table II
for Set 1, and III for Sets 2 and 3) and computing what that error
represents in terms of number of days, but notice that this error
varies as a function of the GA of the fetus.

For all cases above, notice that the confidence interval (CI)
for the Williams index is around 1 for all measurements, and the
percentage statistic CI is close to the expected value of 87.50%
for all measurements. In general, the HL and CRL measure-
ments present similar results compared to the other anatomies,
even though their classifier models were built with much smaller
training sets. Finally, it is interesting to see in Fig. 12 that the
errors reported for each anatomy represent a deviation of only
a couple of days when GA weeks and a few days (usually
less than seven days) for GA weeks.

Chalana et al. [8] show the same experimental results for fetal
heads and abdomens (see Tables V–VII), and in general, the re-
sults for head detection and measurements are comparable, but
our results for abdomen detection and measurements are more
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Fig. 12. Average error in days in terms of gestational age for Sets 1, 2, and 3.

TABLE V
COMPARISON OF THE COMPUTER GENERATED CURVES TO THE FIVE

OBSERVERS’ CURVES FOR FETAL SKULL AND ABDOMEN DETECTIONS ON A

SET OF 30 TEST IMAGES—TABLE FROM [8]. SEE TABLE I FOR DETAILS

accurate. In Chalana’s evaluation [8], there is no statistic assess-
ment of the fetal femur, humerus, and fetal body measurements.

The running time for our algorithm is on average 0.5 s for all
measurements on a PC computer with the following configura-
tion: Intel Core 2 CPU 6600 at 2.4 GHz, 2 GB of RAM.

VI. CONCLUSION

We presented a system that automatically measures the BPD
and HC from ultrasound images of fetal head, AC from images
of fetal abdomen, FL in images of fetal femur, HL in images of

TABLE VI
COMPARISON OF COMPUTER-GENERATED MEASUREMENTS TO THE

GOLD-STANDARD (AVERAGE OF THE FIVE OBSERVERS’ MEASUREMENTS)
USING ABSOLUTE DIFFERENCES ON A SET OF 30 TEST IMAGES—TABLE FROM

[8]. SEE TABLE II FOR DETAILS

TABLE VII
WILLIAMS INDEX AND PERCENT STATISTIC FOR BPD, HC, AC, AND

FL MEASUREMENTS ON A SET OF 30 TEST IMAGES—TABLE FROM [8].
SEE TABLE IV FOR DETAILS

fetal humerus, and CRL from images of fetal body. Our system
exploits a large database of expert annotated images in order
to model statistically the appearance of such anatomies. This
is achieved through the training of a Constrained Probabilistic
Boosting Tree classifier. The results show that our system pro-
duces accurate results, and the clinical evaluation shows results
that are, on average, close to the accuracy of sonographers. A
comparison with the method by Chalana [8] shows that our
method produces, in general, superior results. Moreover, the al-
gorithm is extremely efficient and runs in under half second on
a standard dual-core PC computer. Finally, the clinical evalua-
tions showed a seamless integration of our system into the clin-
ical workflow. We observed a reduction of up to 75% in the
number of keystrokes when performing the automatic measure-
ments (compared to the manual measurements).
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