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Abstract. This paper presents a novel manifold learning approach for high di-
mensional data, with emphasis on the problem of motion tracking in video
sequences. In this problem, the samples are time-ordered, providing additional
information that most current methods do not take advantage of. Additionally,
most methods assume that the manifold topology admits a single chart, which is
overly restrictive. Instead, the algorithm can deal with arbitrary manifold topol-
ogy by decomposing the manifold into multiple local models that are combined
in a probabilistic fashion using Gaussian process regression. Thus, the algorithm
is termed herein as Gaussian Process Multiple Local Models (GP–MLM).

Additionally, the paper describes a multiple filter architecture where standard
filtering techniques, e.g. particle and Kalman filtering, are combined with the
output of GP–MLM in a principled way. The performance of this approach is
illustrated with experimental results using real video sequences. A comparison
with GP–LVM [29] is also provided. Our algorithm achieves competitive state-of-
the-art results on a public database concerning the left ventricle (LV) ultrasound
(US) and lips images.

1 Introduction

There has been long standing interest in learning non-linear models to approximate
high-dimensional data, and specifically in reducing the dimensionality of the data, while
preserving relevant information. The scope of application is vast, including, e.g., mod-
eling dynamic textures in natural images, surface reconstruction from 3-D point clouds,
image retrieval and browsing, and discovering patterns in gene expression data.

Consider the example of an image sequence. In the absence of features such as con-
tour points or wavelet coefficients, each image is a point in a space of dimension equal
to the number of image pixels. When facing an observation space of possibly tens or
hundreds of thousands of dimensions, it is often reasonable to assume that the data is not
dense in such a space and that many of the measured variables must be dependent with
only a few free parameters that are embedded in the observed variables, frequently in a
nonlinear way. Assuming that the number of free parameters remains the same through-
out the observations, and also assuming spatially smooth variation of the parameters,
we have geometric restrictions which can be well modeled as a manifold. Learning this
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manifold is a natural approach to the problem of modeling the data, with the advantage
of allowing nonlinear dimensionality reduction.

This paper proposes a new algorithm, named Gaussian Process with Multiple Lo-
cal Models (GP–MLM), that applies manifold learning ideas to the problem of motion
tracking, e.g., in video sequences. The emphasis in motion tracking means that, unlike
most manifold learning methods, the observations are assumed to be time-ordered. The
proposed methodology addresses the problem of estimating unknown dynamics on an
unknown manifold, from noisy observations. This leads to the simultaneous estima-
tion of a nonlinear observation model and a nonlinear dynamical system - a nonlinear
system identification type of problem, which has received some attention ([11,29,23]),
but seldom in the context of manifolds, with a few recent exceptions [24]. While this
problem is ill-posed (see e.g. [11]), it can be advantageous to exploit information that
is common to both subproblems: the velocity vectors. Moreover, purely from a mani-
fold learning point of view, GP–MLM addresses some limitations of existing methods,
namely: (i) it is not limited to a simple coordinate chart - it can deal with arbitrary mani-
fold topology through multiple local models; (ii) it provides a computationally efficient
way to partition the manifold into multiple regions and compute the corresponding lo-
cal parameterizations; (iii) it offers a principled way of combining the estimates from
the multiple local models by using Gaussian process regression to compute the corre-
sponding likelihoods. From a tracking perspective, it will be shown that GP–MLM can
retrieve the contours with remarkable fidelity.

2 Background

Key concepts: A manifold [4] M is a set contained in R
m, associated with a collection

of p one-to-one continuous and invertible functions gi : Pi → Ui, indexed by i =
1, . . . , p with overlapping domains Pi ⊂ M such that M is covered by the union of
the Pi and where each Ui ⊂ R

n. For points y ∈ Pi ∩ Pj in the overlap between
patches i and j, with images xi and xj , it is possible to define a transition function Ψij :
gi(Pi∩Pj) −→ gj(Pi∩Pj) which converts between the two local coordinate systems.
See Fig. 1 for an illustration. Locally, M is “like” R

n and its intrinsic dimension is n.
The gi are called charts. It is assumed that M is compact, i.e., it can be covered with
p < ∞ charts. The inverse mappings hi = g−1

i are parameterizations of the manifold.

m

n

Fig. 1. A manifold and its charts
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The Ui are parametric domains and the Pi are patches. Two charts gi and gj defined
in the overlapping region Pi ∩Pj should be compatible, that is, g−1

j (Ψij(gi(y))) = y.
For manifolds with arbitrary topology, there must be, in general, more than one chart
and, therefore, more than one patch in order to maintain the one-to-one property.

The tangent bundle [4] of an n-dimensional manifoldM is another manifold, T (M),
whose intrinsic dimension is 2n and whose members are the points of M and their tan-
gent vectors. That is, T (M) = {(y,v) : y ∈ M,v ∈ Ty(M)} where Ty(M) is the
tangent space of M at y. It is readily apparent that Ty(M) is the set of possible ve-
locity vectors of trajectories in M through y. Therefore, any dynamic system defined
in M must induce trajectories where both the velocities and their points of application
belong to T (M).

A Gaussian process [22] is a real-valued stochastic process {YX}x∈X , over an in-
dex set X , where the joint probability density function for any finite set of indices
{x1, . . . ,xN} is Gaussian, with mean μ ∈ R

N and covariance K ∈ R
N×N . Note that,

in order to be a valid covariance matrix, K must be symmetric and positive semidef-
inite. This means that it can also be thought of as a valid Mercer kernel matrix. An
attractive feature of Gaussian processes is that they allow the computation, in closed
form, of probability densities in observation space.

Problem statement: Let y0:T−1 ≡ {yt, t = 0, . . . , T − 1}, with discrete t and yt ∈
R

m, be a trajectory. Let Y ≡ {y0:Tl−1, l = 1, . . . , L} be a set of L such trajectories. It
is assumed that the trajectories in Y lie close to an unknown manifold M of intrinsic
dimension n (also unknown) embedded in R

m, with n < m. Therefore, one or more
lower dimensional representations Xi of the original set Y can be found, where each
Xi ≡ {x0:Tl−1,i, l = 1, . . . , L} represents all the trajectories in i-local coordinates,
with xt,i ∈ R

n. Being assumed compact, M can be charted by p charts, where p is
unknown, and each Xi corresponds to one of the charts. It is intended to estimate M
and identify the dynamics in the lower dimensional coordinates given by the charts of
M, assuming that the trajectories are generated by one or more discrete state space
models of the form:

xt,i = fi(xt−1,i) + ωt,i (1)

yt,i = hi(xt,i) + νt,i (2)

where ωt,i and νt,i are noise variables. hi is the ith parametrization being used around
yt, and fi defines the dynamics. In summary, given Y , we wish to learn the state model
(2) and (1), thus capturing both geometrical and dynamical information about the tra-
jectories.

Prior work: Several manifold learning algorithms have emerged in recent years. Re-
cent advances include, on one hand, probabilistic methods such as the Generative To-
pographic Mapping (GTM) [2], Gaussian process related algorithms, such as Gaussian
Process Latent Variable Models (GP-LVM) [18] and Gaussian Process Dynamical Mod-
els (GPDM) [29]; on the other hand, graph spectral methods such as ISOMAP [27],
Locally Linear Embedding (LLE) [25], Laplacian [1] and Hessian Eigenmaps [10], as
well as Semi-Definite Embedding [31,30].
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Most methods assume that the manifold can be modeled using a single coordinate
patch, an assumption that fails for manifolds with topologies as simple as a sphere.
Also, spectral methods usually do not provide out-of-sample extension. Only a few
methods, such as [5,19], attempt to deal with multiple charts without assuming p known
somehow.

Estimating the intrinsic dimension n remains a challenge. The most common method
[13] for estimating n is based on local Principal Component Analysis (PCA), relying
on a threshold to select the n most significant eigenvalues of local covariance matri-
ces. Other approaches can be found in [20,15] and the references therein. With either
type of algorithms, the estimate often suffers from high variance and bias, as well as de-
pendence on the unknown scale parameters for neighborhood analysis, as pointed out in
[15]. Hence, dimensionality estimation continues to be a challenging problem, although
some promising advances have recently been made using multiscale approaches [16].

Finally, while simultaneous dimensionality reduction and dynamical learning has
received some attention [23,11,14], many of these approaches are not formulated in
terms of manifolds. Some techniques that do explicitly use the manifold assumption are
[24,21,12]. In [24], the manifold is modeled as a mixture of local linear hyperplanes
(i.e., factor analyzers), while we use instead a mixture of nonlinear GP regressors. In
[21], a mapping from high-dimensional observations to latent states is estimated, both
not the inverse. In [12] a manifold tracking method is used for learning nonlinear mo-
tion manifolds in the recovery of 3D body pose, but does not address the case when
significant dynamics changes are observed in the video sequence (i.e., multiple dynam-
ics). Other methods that, like ours, are based on Gaussian Processes include [29,28].
However, [29] assumes one single chart and a priori fixed latent dimensionality, while
[28] encourages certain topologies in a top-down manner, based on prior knowledge.
Our approach also somewhat resembles, in spirit, the Spatial GPCA method [3], al-
though Spatial GPCA operates at the pixel level rather than extracting contours and
requires downsampling for computational reasons. Our main advantage resides in the
fact that we perform dimensionality reduction, avoiding the need to downsample. In
summary, our proposed method explicitly utilizes the manifold assumption, avoids the
need to perform alignment of multiple local coordinate systems and maintains topo-
logical flexibility. To summarize, the following main differences should be considered:
we consider arbitrary topologies with multiple nonlinear charts and multiple nonlinear
dynamics, while existing methods consider either: (i) single nonlinear charts/dynamics
[29]; (ii) multiple linear charts/dynamics [24]; or (iii) predefined topologies [28]. Be-
sides, we do not marginalize over parameters and therefore can more easily perform
out-of-sample prediction, as well as sequential state estimation, while GPDM [29] and
[28] use batch inference.

3 GP–MLM Algorithm

The GP–MLM algorithm comprises the following steps: (i) estimation of intrinsic di-
mensionality and tangent subspaces; (ii) a nonparametric, nonlinear regression proce-
dure for partitioning the manifold and learning the charts. Each of the steps is described
here.
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Intrinsic dimension: In the spirit of [13], GP–MLM addresses the problem of dimen-
sionality estimation by automatically finding the “knee” of the eigenvalues λ1, . . . , λm

of the local covariance Syj = 1
|Byj,ε|−1

∑
yk∈Byj ,ε

(yk − μByj ,ε
)(yk − μByj ,ε

)T ,

using local PCA, but in GP–MLM this is done for all ε-local neighborhoods Byj,ε

around each data point yj . For each neighborhood, the eigenvalue immediately before
the greatest drop in value should correspond to the intrinsic dimension, estimated by
n̂j ≡ argmaxi=1,...,m−1 |λi+1 − λi|. The global estimate is n̂ = medianj=1,...,N (n̂j),
which is more robust than the mean. The advantage of this approach is that it takes
advantage of the potentially large number of local PCA neighborhoods.

Temporal information is also used to improve the estimates of the tangent subspaces.
We use the first differences Δyt = yt − yt−1, together with the observations yt for
performing local PCA, by augmenting Byj ,ε with μByj ,ε +Δyk, for k = 1, . . . , |Byj,ε|,
with the neighborhood centers μByj ,ε given by the sample means

μByj ,ε = 1
|Byj ,ε|

∑
yk∈Byj,ε

yk. Note that the velocities (of which the Δyt are rough

estimates), applied at the neighborhood centers, must live on the corresponding tangent
subspaces. This leads to an effective increase in the number of available points at each
neighborhood, from |Byj ,ε| points to 2|Byj,ε| (or 2|Byj,ε| − 1 if either the first or last
Δyt can not be computed).

Charts: At this stage, an estimate n̂ of the intrinsic dimension is available. The tangent
bundle TM can, if approximated by some finite set of n̂-dimensional tangent linear
hyperplanes, form a convenient collection of local parametric domains upon which to
map the manifold points. We partition M into overlapping patches P1, . . . ,Pp, find
p corresponding tangent hyperplanes, and estimate mappings back and forth between
the patches and the hyperplanes. It is important to find a partition which facilitates
subsequent estimation of the mappings. We follow the Tangent Bundle Approximation
(TBA) approach proposed in [26] which is based on principal angles, a generalization
of the concept of angle to linear subspaces.

The idea is not to allow the maximum principal angle between the tangent sub-
spaces – spanned by matrices Vi and Vj of column eigenvectors found by local PCA
on neighborhoods i and j – to vary more than a set threshold τ . The exact value of τ is
not critical, as long as it is below π

2 .
Patches are found by an agglomerative clustering procedure, i.e., region growing.

Each patch grows by appending all neighboring (within an ε radius) points where the
tangent subspace does not deviate, in maximum principal angle, more than a set thresh-
old from the tangent subspace at the initial seed. Any specific point may belong to more
than one patch. The final result is a covering of M by a finite number, p, of overlap-
ping patches. Within each patch, the curvature is controlled through τ , and the distance
test ensures that each patch is a connected set. Subsequently, we find the best fitting
hyperplane for each patch using PCA, providing local coordinate systems for differ-
ent manifold regions. The collection of hyperplanes approximates the tangent bundle.
Thus, PCA must be performed twice: first with local scope, in tight neighborhoodsBx,ε

around each point, so that the principal angles can be controlled within the patch dur-
ing the partitioning procedure; and second, for all patch members, in order to find an
overall hyperplane for charting and the corresponding coordinate system. If SPi is the
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covariance of the points in Pi, i.e. SPi = 1
|Pi|−1

∑
yk∈Pi

(yk−μPi
)(yk−μPi

)T , then,

by performing the eigendecomposition SPi = VPiDPiV
T
Pi

, where VPi is the matrix
whose columns are the eigenvectors of SPi and DPi = diag(λ1, . . . , λm), an orthonor-
mal basis is found in the columns of VPi . Note that the patch mean μPi

does not, in
general, coincide with the patch seed. The added computational burden of patch-wide
PCA is negligible, compared to that of local PCA.

An important note is that GP–MLM (like TBA) does not guarantee that the number
of patches is minimal - in fact, the followed approach usually leads to an overestimation
of the number of patches needed to cover a manifold. On the other hand, it should also
be noted that, since the principal angles only need to be computed between the data
and the seeds, and not between all pairs of data points, the overall complexity of the
partitioning algorithm is not quadratic in N , but rather it is O(Np).

Gaussian process regression: Using the coordinate systems found above, and since
there are no folds in any patch (thanks to the angular restriction), the regression prob-
lem associated with the charts is significantly simplified. From the previously obtained
partition of the dataset into patches Pi, with i = 1, . . . , p, it is now intended to estimate
the charts gi(y). Let a particular training point y, belonging to patch Pi, be denoted
y = [y1 . . . ym]T , where yj , j = 1, . . . , m refers to the jth coordinate. Projecting y
onto the subspace spanned by VPi yields the ith local representation xi. This can be
done according to x̃i = VT

Pi
(y − μPi

) in which the intermediate quantity x̃i simply
corresponds to y in a new coordinate system with origin at μPi

and versors given by
the columns of VPi ; the following step is

xi = [x̃i,1 . . . x̃i,n]T = gi(y) (3)

where xi denotes a truncated version of x̃i using only the first n components. This is the
chart. The inverse mapping, that is, the parametrization hi(xi) follows the expression

hi(xi) = VPi

[
xi h̃i(xi)

]T

+ μi (4)

in which h̃i must be estimated. The remaining m − n components of x̃i are approxi-
mated by h̃i(xi), and thus the nonlinear character of the manifold is preserved. In the
ith local coordinates, the parametrization is xi → [xi h̃i(xi)]T .

It is now necessary to estimate h̃. For a particular m − n-dimensional vector x̃i,
consider an independent Gaussian process for each scalar component x̃j , dropping the
j subscript of the jth coordinate for conciseness – the exposition will proceed, without
loss of generality, as if m−n = 1. The regression problem is that of estimating h̃i, from
the set of available data X̃Pi = {x̃k,i}k=1:|Pi| and the corresponding set of |Pi| local
projections XPi = {xk,i}k=1:|Pi|, all collected in x̃ ∈ R|Pi| and X ∈ Rn×|Pi| respec-
tively. The estimate should be the one that best matches the model x̃k = hi(xk,i)+ωk,i

with noise ωk,i ∼ N (0, σ2
i ), ∀k. It is assumed that the joint pdf of x̃ is Gaussian,

with zero mean (the data can be mean-subtracted) and with known covariance matrix
K ∈ R

|Pi|×|Pi|. With this assumption, it is possible to derive the conditional density
p(x̃|X). Furthermore, for any new set of inputs X� outside of the training set, the con-
ditional density p(x̃�|X∗,X, x̃) is given [22] by

p(y�|X∗,X,y) = N (K(X∗,X)K(X,X)−1y, (5)

K(X∗,X∗) − K(X∗,X)K(X,X)−1K(X,X∗)).
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For constructing K, we choose the RBF covariance function

k(xi,xj) = θ1 exp(− 1
2θ2

‖xi − xj‖2) + δijθ3 (6)

and optimize the hyperparameters by maximizing the marginal likelihood, as proposed
in [22].

4 Dynamical Learning Using the Manifold Model

We now extend GP–MLM to deal with the simultaneous estimation of the data manifold
and dynamics. The idea is to start from the state model in (1), (2), assuming that, in the
observation equation, h is given by the manifold model found by the GP–MLM and
therefore fixed. We then tackle the following two subproblems: (i) Identification of the
dynamics f , given h; (ii) Estimation of the state at time t, given all information up
to time t. The first subproblem is called system identification and is solved offline, as
explained next.

System identification: We assume that the training trajectories have been mapped to
low dimensional points xt,i in patch Pi, at instant t. For each i, we form training pairs
(xt−1,xt). The subscript i has been dropped for conciseness, since it will be assumed
that the trajectory segment remains on patch i. This is no loss of generality, since in the
case when the original high dimensional {yt}t=0:T−1 crosses patches i and j (or more),
this simply results in multiple trajectory segments, {xt,i}t=0:Ti−1 and {xt,j}t=0:Tj−1,
which can be treated separately and which count towards the dynamics in patch Pi and
Pj respectively.

The regression procedure aims at finding the best fi that maps xt−1 to xt in patch Pi,
given the corresponding set Xi of trajectory segments pertaining to Pi. The generative
model is

xt,i = fi(xt−1,i) + ωt,i. (7)

In the case when the dynamics are linear, and dropping the i subscript, (7) turns into
xt = Axt−1 + ωt, with A a n × n matrix. When, additionally, the ωt are iid and
Gaussian, then this is a thoroughly studied case; identification consists of estimating A
from the pairs (xt−1,xt), which can be done by the Least Mean Squares method.

When f is not a linear function of x, then we propose a nonparametric approach,
again based on Gaussian process regression using the RBF kernel (6).

As in the geometrical step, but now with training pairs (xt−1,xt) arranged in matri-
ces Ξ,X defined as X = [x1, . . . ,xT−1], Ξ = [x0, . . . ,xT−2], the regression proce-

dure yields, for any new x�
t−1, Gaussian conditional densities p(x̂(i)

t |x�
t−1, Ξ, ξ(i)) =

N (μ
x
(i)
t

, σ2

x
(i)
t

), for all i = 1, . . . , n components of x̂t and with ξ(i) ∈ R
(T−1) equal to

the i-th column of XT .

Filtering: The second subproblem is one of filtering. It is not desirable in general to
use one single observation to obtain the state, because simply inverting the observa-
tion equation (2) ignores the temporal dependence between successive data points. The
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Fig. 2. Block diagram of the mixture architecture for combining the local dynamic models

correct procedure is to estimate the state, at each instant t using information about the
whole trajectory up to time t. This can be done online by a variety of filtering methods.

Note that GP–MLM is a multiple-model framework; thus, we employ one filter for
each patch, using different dynamics, observation models and coordinate systems. This
means that a procedure for combining the local estimates is required. Fig. 2 illustrates
how this is performed. Essentially, we make use of the predictive variance from each
local GP in order to compute patch posterior probabilities (mixture weights) inexpen-
sively, i.e., we set

P (θi|x,Yt) ∝ p(x|θi,Yt). (8)

The mixture weights provided by block G take the different dynamics into account.
Different strategies are possible: a “winner-take-all” rule, where only the output of the
model with the highest posterior probability is used, or a “blending” rule, where the
weighted average using all models is computed. In this paper we present results using
Kalman and particle filtering with the above mentioned rules.

5 Experimental Results

This section presents an experimental evaluation of GP–MLM in several data sequences.
The evaluation is done in two main situations: first, two ultrasound sequences of the left
ventricle (LV) of the heart, aiming at estimating the endocardium boundary. In both,
the object of interest undergoes changing motion dynamics. For all experiments, three
identification strategies are compared: (i) linear first order; (ii) linear second order and
(iii) Gaussian process (GP) first order. In the second experiment, lip sequences are con-
sidered. Two situations are presented: (i) speaking, and (ii), singing, where in the latter
the lips boundary exhibits a higher deformation. An objective evaluation is conducted
for all the experiments using several metrics proposed in the literature.

Heart tracking: This example consists of two ultrasound (US) images sequence. Each
US image displays a cross section of the left ventricle (LV) in the long-axis. The length
of the sequences is: 490 frames (26 cardiac cycles) and 470 frames (19 cardiac cycles).
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The heart motion is described by two dynamics: an expansion motion that occurs in di-
astole phase, and a contraction motion that characterizes the systole phase. To represent
the boundary of the LV, 21 contour points are used, which would require thousands of
manual clicks, if we were to obtain ground-truth by hand. Instead, an automatic proce-
dure is used [17]. The MMDA (Multiple Model Data Association) tracker is robust with
respect to outliers and capable of coping with different, abrupt motion dynamics. Thus,
we measure the performance of the GP–MLM with the respect to the MMDA tracking
output, which we treat as ground truth.

In this study, we go further in the attempt to find the best technique (i.e. Kalman vs
particle filtering; “winner-take-all” vs “blending” rules); at the same time we hope to
demonstrate the superiority of the non-linear GP 1st order model. To attain this goal
an objective evaluation between the MMDA contour estimates (taken as gold contours)
and the GP–MLM estimates is provided; several metrics proposed in the literature for
contours comparison are used. To accomplish this, a comparison between the contour
estimates provided by MMDA tracker (i.e. the ground-truth) and the GP–MLM esti-
mate is conducted. Five metrics are used in these tests: Hammoude distance (HMD)
[6]; average distance (AV); Hausdorff distance (HDF); Mean sum of Square Distances
(MSSD); Mean Absolute Distance (MAD) (as in used in [9]); and the DICE metric.
Next, we briefly describe them.

Let X = {x1,x2, . . . ,xNx}, and Y = {y1,y2, . . . ,yNy}, be two sets of points
obtained by sampling the estimated contour and the reference contour. The smallest
distance from a point xi to the curve Y is

d(xi,Y) = min
j

||yj − xi|| (9)

This is known as the distance to the closest point (DCP). The average distance between
the sets X , Y is

dAV = 1
Nx

∑Nx

i=1 d(xi,Y) (10)

where Nx is the length of the X The Hausdorff distance between both sets is defined as
the maximum of the DCP’s between the two curves

dHDF(X ,Y) = max
(
max

i
{d(xi,Y)}, max

j
{d(yj ,X )}

)
(11)

The Hammoude distance is defined as follows [6]

dHMD(X ,Y) =
#((RX ∪ RY) − (RX ∩ RY))

#(RX ∪ RY)
(12)

where RX represents the image region delimited by the contour X , similarly for RY .
To define MSSD [7] and MAD [8] distances, let us consider the tracked sequence Si

with m contours {c1, c2, ..., cm}, where each jth contour cj has n points {(xj,1, yj,1),-
(xj,2, yj,2), ..., (xj,n, yj,n)}, the distances of sequence Si from other version of the se-
quence Sr

i (which is the ground truth) are

dMSSDi = 1
m

∑m
j=1

1
n

∑n
k=1((xj,k − xr

j,k)2 + (yj,k − yr
j,k)2) (13)

dMADi = 1
m

∑m
j=1

1
n

∑n
k=1

√
(xj,k − xr

j,k)2 + (yj,k − yr
j,k)2 (14)
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The overall performance measure for a particular method is the averaged distance on
the whole test set of L sequences:

dMSSD = 1
L

∑L
i=1 dMSSDi , dMAD = 1

L

∑L
i=1 dMADi

The DICE metric is also used, which is the mean perpendicular distance between esti-
mated contour and the ground-truth contour. We compute the average metric distance
for all points in the curve as follows

dDICE = 1
N

∑N
i=1 ‖xi − yi‖ni (15)

where ni defines the normal vector at point i.
Table 1 left, lists the MSE for the three identification strategies for each path found

by GP–MLM. In both sequences the GP consistently provide the best results comparing
with the remaining strategies. In these experiments, the data was split in two disjoint
training/test sets (50% for training and testing).

Objective evaluation: Table 1 shows the fidelity in the representation of the LV contour
obtained in the two US sequences. These values correspond to the mean values of the
metrics. From this table and in both sequences and for the majority of the measures,
the best values are obtained when ones used particle filtering with the “blending” rule.
Although, the particle filtering with the “blending” rule provides the best results, what
is important to stress is that any tracking method can be incorporated in the framework
and the manifold is always well estimated.

In this study we carried out an additional experiment, we varied the number of frames
used in training-testing sets for both sequences, more specifically, we varied the number
of training images from 25%, 50% and 75%. Table 2 shows the Hammoude distance
using the particle filter with the blending rule (similar behavior is observed of the other
tracking versions). From the Table 2, what it is interesting to note is that changing
the number of training-test images, the manifold is always well estimated for both se-
quences, where a slight and negligible increase of this metric is shown.

Table 1. MSE for the three identification strategies obtained in both US sequences: linear 1st and
2nd order models and a non-linear GP model (left); objective evaluation considering five metrics.
The mean values are shown for the two US sequences(right).

Sequence # 1 MSE
Patch # Linear 1st order Linear 2nd order GP 1st order

1 4.7826 6.9604 1.1440
2 2.5327 1.7007 0.4164
3 4.8318 4.4788 0.4199
4 7.1060 1.7813 0.3520
5 2.0454 4.2491 0.4662

Sequence # 2 MSE
Patch # Linear 1st order Linear 2nd order GP 1st order

1 5.8521 5.3898 0.5788
2 5.9573 3.6770 0.1379
3 4.8241 4.5712 0.4720
4 6.0968 4.9661 2.6763

dHMD dAV dHDF dMSSD dMAD dDICE

Seq. 1

KF - WTA 0.14 3.08 5.48 13.23 3.09 2.52

KF - BLD 0.14 3.08 5.47 13.20 3.09 2.53

PF - WTA 0.09 2.12 3.86 7.42 2.17 1.79

PF - BLD 0.09 2.02 3.63 6.22 2.04 1.70

Seq. 2

KF - WTA 0.11 2.73 4.80 10.66 2.79 2.00

KF - BLD 0.11 2.81 4.89 11.33 2.89 2.04

PF - WTA 0.08 1.76 3.70 4.92 1.78 1.59
PF - BLD 0.08 1.74 3.64 4.81 1.75 1.59
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Table 2. Hammoude metric for two US sequences, varying the number of training images

dHMD 25% 50% 75%

Seq. 1 0.063 0.088 0.093

Seq. 2 0.077 0.081 0.090

Fig. 3. GP–MLM tracking estimates (yellow line), superimposed with MMDA tracker (red line)
taken as gold contours. First sequence (top row), and second sequence (bottom row).

Fig. 3 shows some snapshots for both LV sequences. The manifold results are shown
in yellow solid lines, and the ground truth is (output of the MMDA tracker).

Lip tracking: The second example consists of lip tracking in two different situations:
speaking and singing. We show results in seven speaking sequences and three singing
sequences. In the speaking sequences, each one has about 80 images, while in the
singing case the sequence are a bit longer (100 images). Comparing to the previous
example, the nonrigid object (lip boundary) exhibits an higher variability in the shape,
specially when a person is singing.

From this point on, and due to the lack of space we present the results using particle
filtering with the blending rule (other alternatives are, of course, possible to use as
previously illustrated).

In the following, the training and testing mechanism follows a leave-one-out strategy
(this can be also used in the case of the LV tracking, but there was no need to do this
due to the large extension of the LV sequences).

Table 3 (left) shows the results obtained for the speaking case. It can be seen that
the framework proposed herein maintain comparable results as in the previous case.
Recall that the Hammoude metric (XOR pixel wise operation between the ground truth
and the manifold estimates) is always below 15%. Comparing to the results obtained
for the singing sequences (see right of the Table 3), we see that a small decrease on
this distance, and the small increase of the metrics which penalizes maximum local
distances. This is somehow expected, since in this case, a large and sudden changes
in the lips boundary may be obtained in consecutive frames. For instance, in Fig. 5
(top row) the 2nd, 3rd and 7th, 8th frames are consecutive in the video frame. These
correspond to difficult situations where the GP–MLM is able to produce good results.

We also compare the GP-MLM approach with the Gaussian Process Latent Variable
Model GPLVM. 1 To perform the comparison, we first used the reconstruction parameters

1 The code is available from the authors athttp://www.cs.man.ac.uk/˜neill/gplvm/

http://www.cs.man.ac.uk/~neill/gplvm/


Manifold Learning for Object Tracking with Multiple Motion Dynamics 183

Table 3. Average distances and metrics obtained using the GP–MLM, for speaking sequences
(left) and singing sequences (right)

Speaking Sequences
dHMD dAV dHDF dMSSD dMAD dDICE

Seq1 0.08 2.89 5.80 12.58 3.06 2.14

Seq2 0.11 3.68 7.33 22.44 4.07 3.29

Seq3 0.15 4.62 10.29 48.78 5.69 4.26

Seq4 0.09 3.74 7.93 39.99 4.18 3.04

Seq5 0.14 4.36 8.62 35.19 4.71 3.91

Seq6 0.08 3.23 6.86 15.31 3.33 2.53

Seq7 0.10 3.67 8.08 23.65 3.93 3.02

Singing Sequences
dHMD dAV dHDF dMSSD dMAD dDICE

Seq1 0.16 5.19 10.82 68.62 6.60 4.52

Seq2 0.14 4.31 9.07 71.53 5.24 4.19

Seq3 0.14 4.95 10.07 54.79 5.48 4.33

Fig. 4. GP–MLM tracking estimates for seven speaking sequences shown in red dots

of the GPLVM (see [18] for details). We then applied the GPLVM (as we do for the
GP-MLM) using the particle filtering with the blending rule for contour tracking. We
illustrate the results by showing the Hammoude distance provided by both methods. As
previously, this metric is computed between the GP-MLM contour estimates with the
output of the MMDA (taken as the ground-truth); and the GPLVM estimates with the
MMDA. From the Table 4, we can see that comparable results are achieved. Recall that,
for sequences having a higher deformation (see the results in the singing sequences) the
GP-MLM exhibits good results.

Fig. 5. GP–MLM tracking estimates for three singing sequences shown in red dots
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Table 4. Comparison between the tracked contours provided by GP-MLM and the GPLVM in
terms of the Hammoude distance. The mean values of the distance are shown for each sequence.

Left Ventricle Speaking Singing

GP-MLM 0.088 0.081 0.104 0.079 0.142 0.092 0.150 0.084 0.113 0.157 0.141 0.145

GPLVM 0.091 0.088 0.091 0.081 0.112 0.095 0.140 0.084 0.127 0.177 0.151 0.156

6 Conclusions

A novel method for manifold learning has been proposed in this paper. This frame-
work employs a local and probabilistic approach to learn a geometrical model of the
manifold and thus reduce the dimensionality of the data. The GP-MLM uses the Gaus-
sian process regression as a way to find continuous patches. The decomposition of the
patches renders GP-MLM more flexible when dealing to arbitrary topology. A frame-
work was proposed for probabilistically combining the local patch estimates, based on
the output of Gaussian process regression. The optimization of the Gaussian process
hyperparameters is accomplished via standard gradient descent, which offers a suitable
and effective tool for model selection. Dynamical system identification and recursive
state estimation are tackled by using the multiple local models returned by the man-
ifold learning step. Identification is accomplished via Gaussian process regression. A
filter bank architecture (which uses the learned dynamics) was also developed, both for
Kalman and particle filters. A systematic comparative evaluation in several sequences
was conducted, combining both filtering techniques with different gating strategies. The
experimental evaluation provided indicates that the performance of the GP-MLM pro-
vides good results and it is competitive with the GPLVM approach.

Issues for future research include reducing the number of patches, as well as a way to
compute the scale parameter ε. Reliable estimation of the intrinsic manifold dimension
also remains a difficult challenge, on its own right. Robust statistics may be a fruitful
direction of research for this problem.
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8. Mikić, I., Krucinki, S., Thomas, J.D.: Segmentation and tracking in echocardiographic se-
quences: Active contours guided by optical flow estimates. IEEE Trans. Med. Imag. 17(2),
274–284 (1998)

9. Comaniciu, D., Zhou, X., Krishnan, S.: Robust real-time tracking of myocardial border:an
information fusion approach. IEEE Trans. Med. Imag. 23(7), 849–860 (2004)

10. Donoho, D.L., Grimes, C.: Hessian eigenmaps: new locally linear embedding techniques for
high-dimensional data. Tech. Report TR-2003-08 (2003)

11. Doretto, G., Chiuso, A., Wu, Y., Soatto, S.: Dynamic textures. IJCV (2003)
12. Elgammal, A., Lee, C.-S.: Nonlinear manifold learning for dynamic shape and dynamic ap-

pearance. CVIU 106, 31–46 (2007)
13. Fukunaga, K., Olsen, D.R.: An algorithm for finding intrinsic dimensionality of data. In:

IEEE Trans. on Computers (1971)
14. Julosky, A., Weiland, S., Heemels, M.: A Bayesian approach to identifications of hybrid

systems. IEEE Trans. on Automatic Control 10, 1520–1533 (2005)
15. Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: NIPS

(2004)
16. Little, A., Jung, Y.-M., Maggioni, M.: Multiscale Estimation of Intrinsic Dimensionality of

Data Dets. AAAI, Menlo Park (2009)
17. Nascimento, J.C., Marques, J.S.: Robust shape tracking with multiple models in ultrasound

images. IEEE Trans. on Image Proc. 17(3), 392–406 (2008)
18. Neil, L.: Probabilistic non-linear principal component analysis with gaussian process latent

variable models. J. of Machine Learning Research 7, 455–491 (2005)
19. Raginsky, M.: A complexity-regularized quantization approach to nonlinear dimensionality

reduction. In: IEEE Int. Symp. on Info. Theory (2005)
20. Raginsky, M., Lazebnik, S.: Estimation of intrinsic dimensionality using high-rate vector

quantization. In: NIPS, vol. 18 (2005)
21. Rahimi, A., Recht, B.: Unsupervised regression with applications to nonlinear system iden-

tification. In: NIPS, vol. 19 (2007)
22. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cam-

bridge (2005)
23. Roweis, S.T., Ghahramani, Z.: An EM algorithm for identification of nonlinear dynamical

systems. Kalman Filtering and Neural Networks (2000)
24. Li, R., Tian, T.-P., Sclaroff, S.: Simultaneous Learning of Nonlinear Manifold and Dynamical

Models for High-dimensional Time Series. In: ICCV (2007)
25. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.

Science 290, 2323–2326 (2000)
26. Silva, J., Marques, J., Lemos, J.M.: Non-linear dimension reduction with Tangent Bundle

Approximation. In: ICASSP (2005)
27. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear

dimensionality reduction. Science 290, 2319–2323 (2000)
28. Urtasun, R., Fleet, D.J., Geiger, A., Popovic, J., Darrell, T., Lawrence, N.: Topologically-

Constrained Latent Variable Models. In: ICML (2008)
29. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. In: NIPS, pp.

1441–1448. MIT Press, Cambridge (2005)
30. Weinberger, K., Saul, L.: Unsupervised learning of image manifolds by semidefinite pro-

gramming. IJCV 70(1), 77–90 (2006)
31. Weinberger, K., Sha, F., Saul, L.: Learning a kernel matrix for nonlinear dimensionality

reduction. In: ICML, pp. 839–846 (2004)


	Manifold Learning for Object Tracking with Multiple Motion Dynamics
	Introduction
	Background
	GP–MLM Algorithm
	Dynamical Learning Using the Manifold Model
	Experimental Results
	Conclusions
	References


