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Synchronization of multi-agent systems using
event-triggered and self-triggered broadcasts

João Almeida, Carlos Silvestre, and António M. Pascoal

Abstract—This paper addresses the problem of synchronizing
a group of identical linear time-invariant agents that exchange
information through a communication network. The agents may
only broadcast information at discrete time instants and the
decision to execute a broadcast is based on an event-triggered
communication protocol. We prove that with the proposed control
architecture the state of each agent converges to and remains in
a neighborhood of a desired reference signal and the closed-
loop system does not exhibit Zeno solutions. A self-triggered
implementation of the proposed event-triggered communication
protocol is also derived.

I. INTRODUCTION

In this paper, we define a multi-agent system as a dynamical
system formed by a set of agents, each with dynamics mod-
eled by a linear time-invariant (LTI) system, connected by a
communication network that provides them with the means to
exchange information. A survey of applications of multi-agent
systems presented in [1] illustrates how local decentralized
coordination strategies can be employed so that a desired
global behavior is observed. A special class of applications
requires the agents to align their states in a well-defined sense,
with the most representative examples being the consensus and
synchronization problems (see, e.g., [1]–[5]).

We address the synchronization problem for groups of
identical agents. Although the authors of [5] solve this problem
for groups of heterogeneous agents, our goal is to drop the
assumption of continuous communication links present in [5]
by employing sampled-data control techniques. The objective
is to derive decentralized control laws and communication
protocols capable of making the state of each agent converge
to the same reference signal.

Due to the digital nature of the communication network, an
additional constraint on the protocol design arises from the fact
that communications can only occur at discrete time instants.
The standard approach would be to broadcast information
periodically. However, in recent years a different strategy has
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received attention due to a flurry of theoretical developments.
Known as event-triggered control, in this new approach such
tasks as sampling a signal or broadcasting information are
only executed when deemed necessary according to some
triggering conditions, often dependent on the state of each
agent. For more details on this approach, the interested reader
is referred to, e.g., [6]–[9] for the single plant case and to [10]–
[12] for the case of multiple plants. It is important to point
out that in event-triggered control, triggering conditions must
be constantly monitored which may be infeasible for some
applications. To circumvent this issue, self-triggered control
strategies were developed where instead of continuously test-
ing a triggering condition, an event scheduler computes when
the next event should occur by using information available at
the current time instant (see, e.g., [13]–[16]).

In a multi-agent scenario where agents have to communicate
with each other, the event-triggered strategy is even more
relevant since the communication medium is often shared by
all agents, meaning that if each agent tried to transmit too
often, successful communications would become impossible.
Hence, by resorting to event-triggered control techniques, a
communication protocol that avoids redundant broadcasts of
information is sought. These techniques have been applied
to the consensus problem in [17]–[20]. We note that the
consensus problem is a particular type of synchronization
problem where the reference signal is constant.

The contribution of this paper is twofold: i) we extend
the event-triggered consensus results reported in [18] for 1st
and 2nd order integrators with an undirected communica-
tion network; this is done by deriving an event-triggered
communication protocol capable of achieving synchronization
for a class of agents with LTI dynamics that are connected
by a directed communication network and ii) we offer a
self-triggered implementation of the proposed event-triggered
communication protocol.

Notation: If {ak}k≥0 and {bk}k≥0 are two strictly in-
creasing sequences with elements in R, then their union is a
sequence {ck}k≥0 defined as the set of unique elements in
{ak}k≥0 and {bk}k≥0 reordered to satisfy ck < ck+1 for all
k ≥ 0. We denote this by writing {ck}k≥0 = {ak}k≥0 ∪
{bk}k≥0. For a complex number z, <{z} denotes its real part.
For a signal x : [0,+∞)→ Rn, if the limit from below at time
t ∈ [0,+∞) exists, then it is defined as x−(t) = lims↑t x(s).
If t is understood from context, we simply write x and x− to
stand for x(t) and x−(t), respectively. A vector of dimension
n whose entries are all equal to one is denoted by 1n. Given
a collection of vectors {x1, . . . , xN} where xi ∈ Rni , the
vector obtained by stacking all xi column-wise is represented
by z = (x1, . . . , xN ) =

[
x>1 . . . x>N

]>
. The symbol In
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denotes the identity matrix of dimension n. For a square
matrix X , eX , ‖X‖, and σ(X) denote its matrix exponential,
its spectral norm (defined as its largest singular value), and
its spectrum (the set of eigenvalues of X), respectively. The
symbol ⊗ denotes the Kronecker product.

II. GRAPH THEORY REVIEW

In this section we introduce some necessary concepts and
results from graph theory (adapted from [1], [21]) required for
the presentation and analysis of our proposed solution for the
problem of event-triggered synchronization.

A (directed) graph G = G(V, E) consists of a finite set
V = {1, 2, . . . , N} of N vertices and a finite set E ⊆ V × V
of m ordered pairs of vertices (i, j) named edges (in this
paper, self-edges (i, i) are not allowed). An undirected graph
is defined as a graph where (i, j) ∈ E if and only if
(j, i) ∈ E . If (i, j) ∈ E , then we say that vertex i is an in-
neighbor of vertex j and that j is an out-neighbor of vertex
i. The set of in-neighbors and the set of out-neighbors of
vertex i are defined as N−i = {j ∈ V : (j, i) ∈ E} and
N+
i = {j ∈ V : (i, j) ∈ E}, respectively. A path in G from

vertex i to vertex j is a sequence of distinct edges of the form
{(i, i1), (i1, i2), . . . , (ik, j)}. A vertex i is a root of a graph G
if there exists a path in G from vertex i to every other vertex in
G. If G has at least one root, we say that it is a rooted graph. If a
graph G is undirected and rooted, then it is said to be connected
(in this case, all vertices are roots). A weighted graph is a
graph where a real number (weight) is associated with every
edge in the graph (in this paper, all graphs are weighted). The
adjacency matrix of a graph, denoted by A = [aij ] ∈ RN×N ,
is a square matrix with rows and columns indexed by the
vertices and whose entries satisfy aij > 0 if (j, i) ∈ E and are
zero otherwise (aij denotes the weight for edge (j, i) ∈ E).
The in-degree matrix D of a graph is a diagonal matrix where
the (i, i)-entry is equal to the in-degree of vertex i defined as∑N
j=1 aij . The Laplacian matrix of a graph G is defined as

L = D − A and has the following properties: i) L1N = 0
and there exists β ∈ RN , β>1N = 1 such that β>L = 0;
ii) σ(L) = {0, λ2, . . . , λN} with <{λi} > 0 for all non-
zero eigenvalues; iii) G is a rooted graph if and only if 0
is a simple eigenvalue of L; iv) if G is a rooted graph, then
there exist matrices L̂ ∈ R(N−1)×(N−1), V ∈ RN×(N−1), and
W ∈ R(N−1)×N such that σ(L̂) = σ(L)\{0},

[
1N V

]
is

nonsingular,
[
β W>

]>
=
[
1N V

]−1
, and

L =
[
1N V

]
diag(0, L̂)

[
β W>

]>
. (1)

III. SYNCHRONIZATION OF MULTI-AGENT SYSTEMS

The multi-agent system that we consider consists of N
agents with identical LTI dynamics. Each agent has a state
denoted by ζi ∈ Rm such that ζi(0) ∈ Rm and, for all t ≥ 0,

ζ̇i = Arζi + vi (2)

where vi ∈ Rm is the control input and Ar ∈ Rm×m (Ar
may have unstable eigenvalues). To achieve synchronization,
the state ζi must evolve in such a way that its trajectory is
eventually the same across all agents. Note that due to different

initial conditions, the agents are not guaranteed to converge
to the same trajectory. In order to correct this misalignment,
the agents must exchange information among them by using
a communication network. This network is modeled by a
communication graph G that is assumed to be fixed over time
and where an edge (j, i) ∈ E means that agent i receives
information from agent j. Convergence to the same trajectory
must be distributed in the sense that vi may only depend on
information obtained from the in-neighbors of agent i. When
continuous communication links among agents are allowed,
one possible solution is to let vi be given by

vi =
N∑
j=1

aij(ζj − ζi), (3)

where aij denotes the entries of the adjacency matrix associ-
ated with G. In [3] it is shown that if the following assumption
is satisfied, then all agents synchronize asymptotically, that
is, for all initial conditions ζi(0) ∈ Rm, limt→+∞ ‖ζi(t) −
ζj(t)‖ = 0, for all i, j ∈ {1, . . . , N}.
Assumption 1. The communication graph G is a rooted graph
and, for all i ∈ {1, . . . ,m} and j ∈ {2, . . . , N},

<{λi(Ar)− λj(L)} < 0. (4)

Assumption 1 requires the connectivity of the graph to be
strong enough to dominate the unstable dynamics in Ar so that
(4) holds. One way to accomplish this is to design the graph
topology or edge weights such that the non-zero eigenvalues of
L meet condition (4). This is always possible, as shown next.
Suppose Gρ is a rooted graph with all edge weights equal to
ρ > 0 and let Lρ denote its corresponding Laplacian matrix.
Notice that Lρ = ρL1. In this case, the stability condition (4)
becomes

ρ > max
i,j
j 6=1

<{λi(Ar)}
<{λj(L1)} =

maxi <{λi(Ar)}
minj 6=1<{λj(L1)} . (5)

Thus, by selecting ρ sufficiently large, the unstable dynamics
of Ar (eigenvalues of Ar with positive real part) can be
dominated. Note that if all eigenvalues of Ar are imaginary,
that is, σ(Ar) ⊂ iR, then (4) is satisfied for all rooted graphs.

A. Event-triggered synchronization

To avoid the need for continuous communication links in
(3) and inspired by the work reported in [18] for event-
triggered consensus, in this section we propose an event-
triggered solution for the multi-agent synchronization problem.

The proposed control architecture is represented in Fig. 1,
from the point of view of agent i. The agent has been
augmented with additional state variables and is responsible
for deciding when its current state should be broadcast to
the network, as represented by the broadcast event detector.
This event detector triggers the broadcast of the current value
of ζi to the out-neighbors of agent i whenever a given state
dependent condition is violated. The sequence of time instants
where these violations occur is referred to as the sequence of
broadcast times of agent i and is denoted by {bik}k≥0.
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Fig. 1. Proposed control architecture from the point of view of agent i.

The state of the augmented agent is described by three
variables: ζi, ζ̂i, and ζ̂ij with j ∈ N−i . The dynamics of ζi
are as in (2). The state variable ζ̂i evolves according to a
unperturbed model between broadcast times of agent i and is
reset to the current value of ζi when a broadcast occurs. The
dynamics of ζ̂i may be written in the form of an impulsive
system as {

˙̂
ζi = Ar ζ̂i, t ∈ [bik, b

i
k+1), (6a)

ζ̂i = ζ−i , t = bik (6b)

(for an introduction to impulsive systems see, e.g., [22]). The
additional states ζ̂ij represent local replicas of the state ζj
of agent i’s in-neighbors and are used to store information
received from them. When an in-neighbor of agent i, say
j ∈ N−i , broadcasts the current value of ζj , this value is used
to reset the value of ζ̂ij , as modeled by the impulsive system{

˙̂
ζij = Ar ζ̂

i
j , t ∈ [bjk, b

j
k+1), (7a)

ζ̂ij = ζ−j , t = bjk . (7b)

To remove the need for continuous communication links
among agents, (3) is replaced by

vi =
N∑
j=1

aij(ζ̂
i
j − ζ̂i). (8)

Without loss of generality, suppose that, for all i, j ∈
{1, . . . , N}, ζ̂ij is initialized with the value ζj(0). Since ζ̂j
and ζ̂ij have the same dynamics (compare (6) with i = j and
(7)), we have that ζ̂ij(t) = ζ̂j(t) for all t ≥ 0. Therefore, for
analysis purposes, only the state variables ζ̂j are required and
we may write (8) as

vi =
N∑
j=1

aij(ζ̂j − ζ̂i). (9)

If the broadcasted information were to arrive at each out-
neighbor of agent i at different times due to, e.g., transmission
delays, then the previous simplification would not be possible.

Finally, the sequence of broadcast times satisfies

bik+1 = inf{t > bik : ‖ζ̂i(t)− ζi(t)‖ = c(t)}, (10)

for all k ≥ 0, where bi0 = 0 and c(t) represents a time-varying
threshold defined as c(t) = c0 + c1e

−αt with c0, c1, α ≥ 0.

The setup described in [18] for event-triggered consensus
is recovered by taking m = 1 and Ar = 0. In this case, the
authors proved the following result.

Theorem 1 ([18, Theorem 3.2]). If G is an undirected
connected graph and c0 > 0, then the closed-loop system does
not exhibit Zeno solutions and each agent’s trajectory satisfies

lim
t→+∞

‖ζi(t)− a‖ ≤
√
N‖L‖
λ2(L)

c0, (11)

for all ζi(0) ∈ R, where a = 1
N

∑N
i=1 ζi(0) and λ2(L) is the

smallest nonzero eigenvalue of L.

In the next section, we extend Theorem 1 by allowing
directed graphs and an arbitrary Ar matrix as long as As-
sumption 1 is satisfied.

B. Stability analysis

For analysis purposes, it is more convenient to work with
the errors ei = ζ̂i − ζi that originate from the fact that ζ̂i is
used for feedback rather than ζi. The dynamics of ei are given
by {

ėi = Arei − vi, t ∈ [bik, b
i
k+1), (12a)

ei = 0, t = bik. (12b)

Using the error ei, (10) is equivalent to

bik+1 = inf{t > bik : ‖ei(t)‖ = c(t)}. (13)

Let ζ = (ζ1, . . . , ζN ) and e = (e1, . . . , eN ) denote new
state vectors. Their dynamics are derived from (2), (9), and
(12), and may be written as

[
ζ̇
ė

]
=

[
Z −L⊗ Im

L ⊗ Im IN ⊗Ar + L ⊗ Im

] [
ζ
e

]
, t ∈ [bk, bk+1),

(14a)[
ζ
e

]
=

[
IN ⊗ Im 0

0 (IN −Rk)⊗ Im

] [
ζ−

e−

]
, t = bk,

(14b)

where {bk}k≥0 =
⋃N
i=1{bik}k≥0,

Z = IN ⊗Ar − L⊗ Im, (15)

and Rk = diag(r1,k, r2,k, . . . , rN,k) is a diagonal matrix
whose entries satisfy ri,k = 1 if bip = bk for some p ≥ 0
and are zero otherwise.

We will show that each ζi converges to a neighborhood of
the reference signal a(t) = (β> ⊗ Im)ζ(t). Note that if the
graph is undirected, then L is symmetric, β = 1N/N , and
a(t) becomes the average of all ζi(t). The signal a satisfies

ȧ = (β> ⊗ Im) (Zζ − (L ⊗ Im)e)

= (β> ⊗Ar)ζ − ((β>L)⊗ Im)(ζ + e)

= (1⊗Ar)(β> ⊗ Im)ζ

= Ara, (16)

for all t ∈ [bk, bk+1), with initial condition a(0) = (β> ⊗
Im)ζ(0). When t = bk, we have that a = a−.

Let δ(t) = ζ(t)−1N ⊗a(t). The norm of δ(t) is a measure
of the mismatch among the state variables ζi of each agent,
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at time t. From (14a) and (16), it follows that, for all t ∈
[bk, bk+1),

δ̇ = (IN ⊗Ar)ζ − (L ⊗ Im)(ζ + e)− 1N ⊗ (Ara)

= (IN ⊗Ar)(ζ − 1N ⊗ a)− (L ⊗ Im)(δ + 1N ⊗ a+ e)

= (IN ⊗Ar)δ − (L ⊗ Im)(δ + e). (17)

When t = bk, we have that δ = ζ−1N⊗a = ζ−−1N⊗a− =
δ−. Note also that, using the properties of β, we obtain that,
for all t ≥ 0, (β> ⊗ Im)δ = (β> ⊗ Im)ζ − (β>1N ⊗ a) =
a− 1⊗ a = 0. In summary, δ satisfies{

δ̇ = Zδ − (L ⊗ Im)e, t ∈ [bk, bk+1), (18a)
δ = δ−, t = bk, (18b)

and (β> ⊗ Im)δ(t) = 0 for all t ≥ 0. To derive a bound on
the asymptotic behavior of δ, we need the following lemma.

Lemma 1. Let v ∈ RNm be such that (β> ⊗ Im)v = 0. If
Assumption 1 holds, then there exist κ ≥ 1 and λ > 0 such
that, for all t ≥ 0,

‖eZtv‖ ≤ κe−λt‖v‖. (19)

Proof. Let L be decomposed as in (1). Then, the matrix Z
defined in (15) may be written as

Z =
([
1N V

]
⊗ Im

)
diag(Ar, Ẑ)

([
β W>

]
⊗ Im

)>
,

(20)

where
([
β W>

]
⊗ Im

)>
=
([
1N V

]
⊗ Im

)−1
and

Ẑ = IN−1 ⊗Ar − L̂ ⊗ Im. (21)

It then follows that

eZtv =
([
1N V

]
⊗ Im

)
ediag(Ar,Ẑ)t

([
β W>

]
⊗ Im

)>
v

= (V ⊗ Im) eẐt (W ⊗ Im) v, (22)

where we used the fact that (β> ⊗ Im)v = 0. Notice that
σ(Ẑ) = σ(Ar)− σ(L̂) (see, e.g., [23, Theorem 4.4.5]), hence
(4) implies that Ẑ is Hurwitz. Therefore, there exist κ1 ≥ 1
and λ > 0 such that, for all t ≥ 0,

‖eẐt‖ ≤ κ1e−λt. (23)

Using (22), (23), and the fact that ‖X ⊗ I‖ = ‖X‖ for
any matrix X , we conclude that (19) is satisfied for κ =
κ1‖V ‖‖W‖.

Lemma 1 is an extension of Lemma 2.1 in [18] that is
recovered by considering only undirected connected graphs
and taking Ar = 0 (in this case, we may set κ = 1 and λ =
λ2(L)). Using (18) and Lemma 1, we conclude the following.

Theorem 2 (Theorem 1 for Ar 6= 0 and directed graphs).
If Assumption 1 holds, then, for all initial conditions ζ(0) ∈
RNm and all α < λ, the vector δ satisfies

‖δ(t)‖ ≤ δ̄ = κmax {‖δ(0)‖, c̄} , (24)

for all t ≥ 0, where c̄ =
√
N‖L‖(c0/λ+ c1/(λ− α)) and

lim
t→+∞

‖δ(t)‖ ≤ δ̄∞ =
κ
√
N‖L‖
λ

c0. (25)

Moreover, if c0 > 0, then, for all k ≥ 0 and all i ∈
{1, . . . , N},

bik+1 − bik ≥ θmin =
1

ω
log
(

1 +
ωc0
v̄

)
> 0 (26)

where ω = λmax(Ar+A>r )/2 and v̄ = ‖L‖(δ̄+
√
N(c0+c1)).

Proof. From (18), it follows that, for all t ≥ 0,

δ(t) = eZtδ(0)−
∫ t

0

eZ(t−s)(L ⊗ Im)e(s)ds. (27)

The triggering condition in (13) implies that, for all t ≥ 0,

‖e(t)‖ =

√√√√ N∑
i=1

‖ei(t)‖2 ≤
√
Nc(t). (28)

Taking the norm in (27) and using Lemma 1, yields

‖δ(t)‖ ≤ κe−λt‖δ(0)‖+

∫ t

0

κe−λ(t−s)‖(L ⊗ Im)e(s)‖ds
(28)
≤ κe−λt‖δ(0)‖+

∫ t

0

κe−λ(t−s)‖L‖
√
Nc(s)ds

≤ κe−λt‖δ(0)‖+ κ
√
N‖L‖

(c0
λ

(
1− e−λt

)
+

c1
λ− α

(
e−αt − e−λt

))
. (29)

If Zeno solutions are avoided, then the limit in (25) exists and
δ̄∞ is obtained from (29) by letting t → +∞. The bound in
(24) is obtained by rewriting (29) as

‖δ(t)‖ ≤ κ
{
e−λt(‖δ(0)‖ − c̄) +

√
N‖L‖

(c0
λ

+
c1

λ− αe
−αt
)}

≤ κ{max
{
‖δ(0)‖ − c̄, 0

}
+ c̄}, (30)

and using the fact that max{a− b, 0}+ b = max{a, b}.
To prove that the closed-loop system does not exhibit Zeno

solutions, we show that the time interval between consecutive
broadcasts of any agent is lower bounded by a positive number
(this implies that the sequence {bk}k≥0 cannot have any
accumulation points). Let k ≥ 0 and i ∈ {1, . . . , N} be fixed.
Using the fact that ei(bik) = 0, (12a) implies that

ei(t) = −
∫ t

bik

eAr(t−s)vi(s)ds, (31)

for all t ∈ [bik, b
i
k+1). Applying norms on both sides, we obtain

‖ei(t)‖ ≤
∫ t

bik

‖eAr(t−s)‖‖vi(s)‖ds ≤
∫ t

bik

eω(t−s)‖vi(s)‖ds,
(32)

where we used the fact that ω is such that ‖eArt‖ ≤ eωt for all
t ≥ 0 (see, e.g., [24, Section 2]). Letting v = (v1, . . . , vN ) =
(L ⊗ Im)(ζ + e), we have that

‖vi‖ ≤ ‖v‖ = ‖(L ⊗ Im)(ζ + e)‖ = ‖(L ⊗ Im)(δ + e)‖
≤ ‖L‖(‖δ‖+ ‖e‖) ≤ v̄. (33)

Replacing (33) in (32) yields

‖ei(t)‖ ≤
∫ t

bik

eω(t−s)v̄ds =
v̄

ω

(
eω(t−b

i
k) − 1

)
. (34)
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Hence, a lower bound on the minimum time interval between
any two consecutive broadcast times of agent i is given by the
solution of v̄

(
eωθ − 1

)
= c0ω, whose closed form is given in

(26). Since θmin is independent of both k and i, the lower
bound holds for all k ≥ 0 and i ∈ {1, . . . , N}.

Notice that the asymptotic bound in (25) can be made
arbitrarily small by decreasing c0, albeit at the expense of
making θmin smaller as well. Also, both κ and λ depend on
the weights assigned to each edge. Further study is required
to analyze how to exploit this degree of freedom (weight
assignment) to achieve some desired closed-loop properties.

C. Self-triggered communication protocol

To avoid spending computational resources by constantly
testing if the broadcast condition has been violated, in this
section we propose a self-triggered implementation of the
event-triggered communication protocol defined in (13).

Suppose agent ` executes a broadcast at time t = bk. Let
pj = max{p ≥ 0 : bjp ≤ bk} with j ∈ {1, . . . , N} denote the
index of the last broadcast of agent j (notice that b`p` = bk). At
this point, instead of continuously testing the event condition
defined in (13) to determine the next broadcast time, agent `
computes b`p`+1 using the information available at the current
time instant bk. At the same time, all its out-neighbors have
to recompute their next broadcast times as well to guarantee
that their corresponding event conditions are satisfied. This is
necessary because when ζ̂` is updated, vj(bk) changes for all
j ∈ N+

` thereby altering the trajectory of ζj and ej for t ≥ bk.
In what follows, let i ∈ {`} ∪N+

` . To derive an expression
for the computation of bipi+1 at time t = bk, we start by
solving (12a) in t, yielding

ei(t) = eAr(t−bk)ei(bk)−
∫ t

bk

eAr(t−s)vi(s)ds, (35)

for all t ∈ [bk, bk+1). We have that e`(bk) = 0 but, in general,
ej(bk) 6= 0 for j ∈ N+

` . Given (35), finding a closed-form
solution for the triggering condition ‖ei(bi,∗pi+1)‖ = c(bi,∗pi+1)
is, in general, impossible. Instead of the exact solution, we will
compute bipi+1 such that bipi+1 ≤ bi,∗pi+1 thereby guaranteeing
that ‖ei(bipi+1)‖ ≤ c(bipi+1) is satisfied. The goal is to keep
the gap between bipi+1 and bi,∗pi+1 as small as possible. The self-
triggered implementation is therefore expected to generate a
sequence of broadcast times with an higher average broadcast
rate than the one obtained in the event-triggered case.

To compute bipi+1, we note that the dynamics of ζ̂i given in
(6) imply that, for all t ∈ [bk, bk+1), ζ̂i(t) = eAr(t−bk)ζi(bk).
Thus, (9) may be written as vi(t) = eAr(t−bk)v̄i(bk) where

v̄i(bk) =
N∑
j=1

aij(ζ̂j(bk)− ζ̂i(bk)). (36)

Using this fact in (35) yields

ei(t) = eAr(t−bk)ei(bk)−
∫ t

bk

eAr(t−s)eAr(s−bk)v̄i(bk)ds

= eAr(t−bk)ei(bk)− (t− bk)eAr(t−bk)v̄i(bk), (37)

from which we obtain

‖ei(t)‖ ≤ eω(t−bk) (‖ei(bk)‖+ ‖v̄i(bk)‖(t− bk)) . (38)

The next broadcast time is then defined as bipi+1 = bk + θ∗i
where θ∗i is the positive solution of

eωθ(‖ei(bk)‖+ ‖v̄i(bk)‖θ) = c(bk + θ). (39)

Note that ei(bk) and v̄i(bk) are known to agent i at time
t = bk, thus they may be used to compute the next broadcast
time. Taking c1 = α = ‖ei(bk)‖ = 0 and using the fact
that ‖v̄i(bk)‖ ≤ v̄, a lower bound on the minimum broadcast
interval of each agent is defined as the positive solution of
v̄θeωθ = c0 and denoted by θself

min.
Remark 1. Solving (39) using a generic root finder may be
time consuming. As an alternative, we propose a method that
computes an approximation that is strictly smaller. Note that
(39) may be written as

‖v̄i(bk)‖θ + ‖ei(bk)‖ = c0e
−ωθ + c1e

−αbke−(ω+α)θ, (40)

which is an equation of the form

ax+ b = ce−αx + de−βx (41)

where a, b, c, d, α, β ≥ 0. Let x∗ denote the unique positive
solution of (41) (that exists if b < c + d). An approximation
x1 < x∗ is obtained by exploiting the convexity of the
exponential terms in (41). For fixed x0 ≥ 0 and γ ≥ 0, we
have that e−γx ≥ e−γx0(1− γ(x− x0)) for all x ≥ 0. Using
this fact in (41), x1 is defined as

ax1 + b = c̃(1− α(x1 − x0)) + d̃(1− β(x1 − x0)) (42)

⇔ x1 =
c̃(1 + αx0) + d̃(1 + βx0)− b

c̃α+ d̃β + a
, (43)

where c̃ = ce−αx0 and d̃ = de−βx0 . A better approximation
x1 < x2 < x∗ is obtained by repeating this process, taking
this time x0 = x1. Starting with x0 = 0, this iterative process
generates a strictly increasing sequence {xk}k≥0 that tends to
x∗ from below, that is, for all k ≥ 0, xk < xk+1 < x∗ and
limk→+∞ xk = x∗.

IV. EXAMPLE

In this section, we compare the proposed event-triggered
and self-triggered communication protocols. We consider N =
6 agents with the dynamics of a fourth-order oscillator where

Ar =


0 −1 1 0
1 0 0 1
0 0 0 − 1

3
0 0 1

3 0

 . (44)

The agents exchange information according to the communica-
tion graph shown in Fig. 2a. Since σ(Ar) ⊂ iR, Assumption 1
is satisfied. Selecting all edge weights equal to ρ = 1, we
have that σ(L) = {0, 0.5344, 1.5±i0.8660, 2.2328±i0.7926},
‖L‖ = 2.9364, and β = (1/3, 1/3, 1/3, 0, 0, 0). The value
of λ is obtained by finding P � Im(N−1) and λ > 0

such that Ẑ>P + PẐ + 2λP � 0, where Ẑ is defined in
(21). Then, κ is as defined in the proof of Lemma 1 with
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Fig. 2. Example. (a) Communication graph. (b)-(c) Trajectories of ζi,1 and
sequences of broadcast times for different communication protocols: (b) event-
triggered; (c) self-triggered. (d) Trajectories of ‖δ‖ and its asymptotic bound.

κ1 =
√
λmax(P )/λmin(P ). This yields λ = 0.5344 and

κ = 10.66. The triggering parameters in (10) are c0 = 0.001,
c1 = 0.499, and α = 0.25. The agents initial conditions
are ζ(0) = ζ̂(0) = g/‖g‖ where g ∈ RmN has entries
gj = (2j−mN−1)/(mN−1) for j ∈ {1, . . . ,mN}. Note that
‖ζ(0)‖ = 1 implies ‖δ(0)‖ ≤ ‖IN−1Nβ>‖ =

√
2. According

to Theorem 2, we have δ̄ = 1.347 × 102, v̄ = 3.990 × 102,
δ̄∞ = 1.435× 10−1, and θmin = θself

min = 2.506× 10−6 s.
The simulation results are presented in Fig. 2b-d. The tra-

jectories of ζi,1 when using event-triggered and self-triggered
communication protocols are shown in Fig. 2b and Fig. 2c,
respectively (in the latter case, we solved (39) using two
iterations of the method presented in Remark 1). In both cases,
the difference between the trajectories of any two agents is
within a certain error tolerance, a fact that is corroborated by
the trajectory of ‖δ‖ shown in Fig. 2d. The average sampling
intervals observed were between 1.4416 s and 2.8512 s in the
event-triggered case and between 1.2654 s and 1.6235 s in the
self-triggered case, illustrating the conservativeness introduced
in the derivation of the latter communication protocol.

V. CONCLUSIONS

In this paper, we proposed and analyzed a control archi-
tecture designed to achieve synchronization of a multi-agent
system using event-triggered and self-triggered communica-
tion protocols. The proposed event-triggered communication

protocol extends the work reported in [18] for event-triggered
consensus, by allowing directed communication graphs and
more general agent dynamics. We showed that the proposed
control architecture achieves bounded synchronization errors
and that the closed-system does not exhibit Zeno solutions.
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