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SUMMARY

This paper proposes a control architecture that employs event-triggered control techniques to achieve output
synchronization of a group of heterogeneous linear time-invariant agents. We associate to each agent an
event-triggered output regulation controller and an event-triggered reference generator. The event-triggered
output regulation controller is designed such that the regulated output of the agent approximately tracks
a reference signal provided by the reference generator in the presence of unknown disturbances. The
event-triggered reference generator is responsible for synchronizing its internal state across all agents by
exchanging information through a communication network linking the agents. We first address the output
regulation problem for a single agent where we analyze two event-triggered scenarios. In the first one,
the output and input event detectors operate synchronously, meaning that resets are made at the same
time instants, while in the second one they operate asynchronously and independently of each other. It
is shown that the tracking error is globally bounded for all bounded reference trajectories and all bounded
disturbances. We then merge the results on event-triggered output regulation with previous results on event-
triggered communication protocols for synchronization of the reference generators to demonstrate that the
regulated output of each agent converges to and remains in a neighborhood of the desired reference trajectory
and that the closed-loop system does not exhibit Zeno solutions. Several examples are provided to illustrate
the advantages and issues of every component of the proposed control architecture.

KEY WORDS: multi-agent systems; sampled-data systems; output regulation; output synchronization;
event-triggered control.

1. INTRODUCTION

A survey of applications of multi-agent systems presented in [1] illustrates how local decentralized
coordination strategies can be employed so that a desired global behavior is observed. A special
class of applications requires the agents to align their states in a well-defined sense, by exchanging
information among them through a communication channel. The most well-known problems in
this class include consensus (see, e.g., [1–7]), synchronization (see, e.g., [8–11]), and regulation of
coupled systems (see, e.g., [12]).

In this paper, we assume that an agent consists of a linear time-invariant (LTI) plant that models
its dynamic behavior, a controller that represents the mechanisms that are employed to make the
agent behave as desired, and a communication protocol that establishes when information should
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be broadcast to other agents. We address the synchronization problem for groups of heterogeneous
agents, where by heterogeneous we mean that the plants that model the dynamic behavior of each
agent are in general different. The goal is to derive decentralized control laws and communication
protocols capable of making desired state variables of each agent converge to the same reference
trajectory.

The single agent version of the synchronization problem reduces to a classical problem in control
theory known as linear output regulation, which has been thoroughly studied (a comprehensive
exposition of this topic may be found in, e.g., [13,14]). The problem addressed in output regulation
consists in finding a feedback controller capable of internally stabilizing a given LTI plant such
that its output converges to a desired reference trajectory in the presence of external disturbances.
The reference trajectory and the disturbances are modeled as the outputs of systems whose modes
(that are known) identify the class of signals under consideration and whose initial conditions (that
are arbitrary) represent the degrees of freedom inside this class. In linear output synchronization of
multi-agent systems, we are given a set of distinct agents but a common reference model. Even if
each agent converges to its own reference trajectory, due to different initial conditions the agents
are not guaranteed to follow the same reference trajectory. In order to correct this misalignment, the
agents need to communicate with each other.

Due to the digital nature of the control devices and communication network, an additional
constraint on the controller design is the fact that local feedback and communications can only
occur at discrete time instants. Thus, we employ sampled-data control and coordination laws, by
introducing sample and hold devices in key places. The standard approach would be to apply control
action and to broadcast information periodically. However, in recent years a different strategy as
received attention due to a flurry of theoretical developments. Known as event-triggered control, in
this new approach sampling of the output, updates of the control input, and broadcasts of information
are only executed when deemed necessary according to some triggering conditions, often dependent
on the state trajectory of each agent.

In the single plant case, an event-triggered controller operates as follows. An event detector is
responsible for testing if a triggering condition (basically, a function of the state of the plant) is true
or false. If true, then a sampling event is triggered. The advantage of this approach versus a periodic
sampling strategy is that the control input is only modified when some relevant change of the state
of the plant occurs and this typically leads to a reduction of the number of samples required to
achieve desired control objectives. For more details regarding event-triggered control, the interested
reader is referred to [15–22] for the single plant case and to [23–25] for the case of multiple plants.
It is important to point out that in event-triggered control, triggering conditions must be constantly
monitored, which may be infeasible for some applications. To circumvent this issue, self-triggered
control strategies have been developed where instead of continuously testing a triggering condition,
an event scheduler computes when the next event should occur by using information available at the
current time instant (see, e.g., [26–30]).

In a multi-agent scenario where agents have to communicate with each other, the event-triggered
strategy is even more relevant since the communication medium is often shared by all agents,
meaning that if each agent tried to transmit too often, successful communications would become
impossible. Hence, by resorting to event-triggered control techniques, a communication protocol
that avoids redundant broadcasts of information is sought. Examples of the use of event-triggered
control techniques in a multi-agent scenario may be found in [31–33], where event-triggered
solutions for the consensus problem are presented.

In this paper, we address the problem of event-triggered output synchronization (note that the
consensus problem is a particular type of synchronization problem where the reference trajectory
is constant). The control architecture proposed is inspired by and brings together the work reported
in [10] for output synchronization of heterogeneous LTI systems in continuous-time, in [34] for
output synchronization with event-triggered communications, and in [35] for event-triggered output
feedback stabilization of LTI plants. An overview of the proposed control architecture is illustrated
in Figure 1. It consists of two components: an event-triggered output regulation controller and an
event-triggered reference generator.
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Figure 1. Overview of the proposed control architecture for event-triggered output synchronization from the
point of view of agent i.

The event-triggered output regulation controller is responsible for driving the plant through
its control input ūi such that its regulated output zi (approximately) follows a desired reference
trajectory. The regulation controller has to accomplish this having only access to the measured
output of the plant yi and in the presence of an unknown disturbance wi. The desired reference
trajectory is related with the signal ζ̂i provided by the reference generator. The regulation controller
is also responsible for deciding when the measured output or the control input of the plant should
be sampled or updated, respectively, such that the tracking error remains bounded. The structure of
the output regulation controller is based on classical work on output regulation for LTI plants and
its event-triggering mechanism is inspired by the work presented in [35].

The event-triggered reference generator has an internal state ζi that must evolve in such a way
that its trajectory is (approximately) the same across all agents. To accomplish this, the agents need
to broadcast to the network from time to time their current internal state and do so according to
an event-triggered communication protocol. The structure of the reference generator is borrowed
from [10] except that, instead of allowing continuous communication links among agents, here
communication is restricted to be discrete in time, which is more suitable for real-world applications.
The communication protocol that establishes when a broadcast of the current state of the reference
generator should be carried out is borrowed from [32], where it was originally proposed in the
context of event-triggered average consensus.

A similar control architecture was considered in preliminary work reported in [33] except that
only event-triggered communications were considered (output regulation was still performed in
continuous-time). In this paper, we have replaced the continuous-time output regulation controller
by an event-triggered output regulation controller, for which we proposed both synchronous and
asynchronous solutions for the implementation of the output and input event detectors.

The structure of the output regulation controller used in this paper is based on classical work on
output regulation for LTI plants and its event-triggering mechanism is inspired by the work presented
in [34] for event-triggered output feedback stabilization of LTI plants. In this paper, we present
an event-triggered output regulation controller that extends the results of [34] and that guarantees
bounded tracking error for all bounded reference trajectories and exogenous disturbances. Moreover,
we use a less conservative technique to derive the event conditions, thereby deriving a triggering
mechanism that yields larger average sampling intervals while guaranteeing the same stability
conditions.

Related work on event-triggered output regulation is reported in [20] where the authors use
an approach that includes both periodic and event-triggered control techniques (this approach is
sometimes referred to as periodic event-triggered control; see, e.g., [19]). In this setup, the output
of the plant is sampled periodically with a sampling period known in advance and the output event
detector is placed between the sampler and the controller. The event detector decides whether or not
to transmit the current sampled measurement to the controller based on an event-triggering condition
tested at every sampling instant. A similar input event detector is placed between the controller and
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the plant. An advantage of this approach is that a minimum time between event times (equal to the
sampling period) is guaranteed a priori. Note that in [20], synchronous operation of both the output
and input event detection blocks is required (they use the same base sampling period), while in this
paper we propose a totally asynchronous solution, where input and output event detectors operate
independently of each other.

In summary, the contributions of this paper are twofold:

1. for the single plant case, we present an event-triggered output regulation controller that
extends the results of [35] on event-triggered output feedback stabilization and that guarantees
bounded tracking error for all bounded reference trajectories and exogenous disturbances;

2. we offer a solution for the event-triggered output synchronization problem for heterogeneous
multi-agent systems with fixed network topology that guarantees bounded synchronization
errors, obtained by combining the results in the first contribution and the results reported
in [34].

The paper is organized as follows. The problem of output synchronization of multi-agent
systems is introduced in Section 2, where we review some previous work on the subject and
present the architecture of our proposed solution. In Section 3, we address for a single agent
the problem of event-triggered output regulation. The proposed output regulation controller is
developed and its stability properties are established. Examples are also provided that illustrate
several implementation scenarios. In Section 4, we merge the results on output regulation with an
event-triggered communication protocol from previous work, to prove that the regulated output of
each agent converges to and remains in a neighborhood of the desired reference trajectory and that
the closed-loop system does not exhibit Zeno solutions. A multi-agent example is also presented. In
Section 5, we summarize the main results. To improve readability, auxiliary material and the proofs
of all results have been placed in the Appendix (Section A and Section B, respectively).

Notation The symbols R, R+, C, and C̄+ stand for the sets of real numbers, nonnegative real
numbers, complex numbers, and closed right half plane, respectively. If {ak}k≥0 and {bk}k≥0 are
two strictly increasing sequences with elements in R, then their union is a sequence {ck}k≥0 defined
as the set of unique elements in {ak}k≥0 and {bk}k≥0 reordered to satisfy ck < ck+1 for all k ≥ 0.
We denote this by writing {ck}k≥0 = {ak}k≥0 ∪ {bk}k≥0. For z ∈ C, <{z} and ={z} denote its
real and imaginary parts, respectively. For a signal x : R+ → Rn, if the limit from below at time
t ∈ R+ exists, then it is defined as x−(t) = lims↑t x(s). If t is understood from context, we simply
write x and x− to stand for x(t) and x−(t), respectively. The notation ‖x‖L∞ denotes the L∞ norm
of a signal x : [t0,+∞)→ Rn, defined as supt≥t0 ‖x(t)‖ where ‖ · ‖ stands for the usual Euclidean
norm. A vector of dimension nwhose entries are all equal to one is denoted by 1n. Given a collection
of vectors {x1, . . . , xN} where xi ∈ Rni , the vector obtained by stacking all xi column-wise is
represented by z = (x1, . . . , xN ) =

[
x>1 . . . x>N

]> ∈ Rm, with m =
∑N

i=1 ni. The symbols In
and 0n denote the identity matrix and the zero matrix of dimension n× n, respectively. For a square
matrix X , eX denotes its matrix exponential, ‖X‖ denotes its spectral norm (defined as its largest
singular value), and σ(X) denotes its spectrum (the set of eigenvalues of X). A symmetric block
matrix M defined as M =

[
A B
B> C

]
is sometimes represented as M =

[
A B
∗ C
]
. If A and B are two

matrices, then diag(A,B) =
[
A 0
0 B

]
. A positive (resp. negative) definite matrix Q is denoted by

Q � 0 (resp. Q ≺ 0). The symbol ⊗ denotes the Kronecker product.

2. OUTPUT SYNCHRONIZATION OF MULTI-AGENT SYSTEMS

The multi-agent system that we consider in this paper is composed of N heterogeneous agents. The
dynamic behavior of each agent is modeled as an LTI plant with state vector xpi ∈ Rn

p
i and initial
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state xpi (t
i
0) that satisfies, for all t ≥ ti0,

ẋpi (t) = Api x
p
i (t) +Bpi ūi(t) +Bwi wi(t) (1a)

yi(t) = Cpi x
p
i (t) + Cwi wi(t) (1b)

zi(t) = Epi x
p
i (t) (1c)

where ūi ∈ Rnui is the control input, wi ∈ Rnwi is an exogenous disturbance, yi ∈ Rn
y
i is the

measured output, and zi ∈ Rr is the regulated output. Matrices Api , Bpi , Bwi , Cpi , Cwi , and Epi are of
appropriate dimensions. Without loss of generality, we take ti0 = 0. We assume that the disturbance
wi is generated by an exogenous system with state wi ∈ Rnwi that satisfies, for all t ≥ 0,

ẇi(t) = Awi wi(t), (2)

where wi(0) is an unknown initial state.
The objective is to find conditions that guarantee the existence of a control architecture capable

of making the synchronization errors zi(t)− zj(t) small in some sense. Namely, the signal zi(t) of
each agent must converge to the same reference trajectory, represented by a reference model with
internal state ζ0 ∈ Rm that satisfies, for all t ≥ 0,

ζ̇0 = Arζ0 (3a)
zr = Erζ0, (3b)

where Ar ∈ Rm×m and Er ∈ Rr×m. The reference signal that the regulated output zi of each agent
should track is represented by zr. The convergence to the reference trajectory must be distributed
in the sense that, since ζ0 is not made available by one node of the network (there is no reference
agent), the reference generators must exchange information among them in order to compensate for
different initial conditions. Moreover, each agent is only allowed to exchange information with a
subset of other agents as defined by the topology of the communication network that is modeled by
a graph G†, which is assumed fixed over time. Each agent is represented by a vertex and an edge
(j, i) in the communication graph G means that agent i receives information from agent j.

2.1. Previous work

The problem of output synchronization of multi-agent systems when there exist continuous
communication links among agents is addressed in [10]. The authors consider N heterogeneous
agents each one with dynamics modeled as in (1) except that no disturbances are considered (that
is, Bwi = 0 and Cwi = 0 for all i ∈ {1, . . . , N}). In [10], the following assumptions are made:

1. the pair (Api , B
p
i ) is stabilizable;

2. the pairs (Api , C
p
i ) and (Api , E

p
i ) are detectable;

3. there exist m ∈ N, m ≥ 2 and matrices Ar ∈ Rm×m, Er ∈ Rr×m, Πi ∈ Rn
p
i×m, and Γi ∈

Rnui ×m for i ∈ {1, . . . , N} such that σ(Ar) ⊂ C̄+, the pair (Ar, Er) is observable, and

ΠiAr = ApiΠi +Bpi Γi (4)
Er = Epi Πi (5)

for all i ∈ {1, . . . , N}.

These assumptions guarantee that it is possible to change the dynamics of each agent through
feedback such that all agents synchronize to the same reference model represented by the pair
(Ar, Er).

To achieve synchronization, two control components are associated with each agent, the first of
which is the reference generator. The reference generator of agent i has an internal state denoted by

†See Section A.1 for a brief review of graph theory.
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ζi ∈ Rm that satisfies, for all t ≥ 0,

ζ̇i = Arζi + vi (6)

where vi is a control input. Note that the reference generator of each agent has a copy of the reference
model. In general, the reference generators of different agents will not generate the same trajectory
due to different initial conditions ζi(0) ∈ Rm. To compensate for this initial mismatch, the control
input vi is defined as

vi =

N∑
j=1

aij(ζj − ζi), (7)

with aij denoting the entries of the adjacency matrix associated with the communication graph G.
As we will see, this type of decentralized control law asymptotically synchronizes the reference
generators of all agents. For the particular case of m = 1 and Ar = 0, (6)-(7) represent the classical
consensus problem for which it is known that if G is a rooted graph, then there exists c ∈ R such
that, for all i ∈ {1, . . . , N}, ζi tends asymptotically to c (see, e.g., [3, 36]).

The second control component is an output regulation controller composed of a Luenberger state
observer whose internal state is represented by xci ∈ Rn

p
i and whose dynamics are given by

ẋci = Api x
c
i +Bpi ui + Li(C

p
i x

c
i − yi), (8)

where Li ∈ Rn
p
i×n

y
i is a gain matrix to be designed, and a control law defined as

ui = Kp
i (xci −Πiζi) + Γiζi = Kp

i x
c
i +Kr

i ζi, (9)

where Kp
i ∈ Rnui ×n

p
i is a matrix gain to be designed and Kr

i = Γi −Kp
i Πi. Since we are assuming

continuous control, we have that ūi = ui.
With the setup described above, the authors in [10] show that the closed-loop system achieves

output synchronization asymptotically.

Theorem 1 ( [10, Theorem 5]‡)
If the graph G is rooted and, for all i ∈ {1, . . . , N}, Ki and Li are such that Api +BpiKi and
Api + LiC

p
i are Hurwitz, respectively, then, for all i ∈ {1, . . . , N} and all initial conditions xpi (0) ∈

Rn
p
i , xci (0) ∈ Rn

p
i , and ζi(0) ∈ Rm, there exist κ ≥ 1 and λ > 0 such that

‖zi(t)− EreArt(β> ⊗ Im)ζ(0)‖ ≤ κe−λt‖zi(0)− Er(β> ⊗ Im)ζ(0)‖ (10)

for all t ≥ 0, where ζ(0) = (ζ1(0), . . . , ζN (0)) and β is defined in Lemma 6 (Section A.1).

In the next section, we describe a control architecture that introduces event-triggered mechanisms
in the communication links between agents and in the local output regulation controller, for which
we prove boundedness of the tracking errors rather than asymptotic convergence to zero.

2.2. Proposed control architecture

Consider Figure 2 where the proposed control architecture for agent i is represented. It consists of a
reference generator, an output regulation controller, and three event detectors. The setup is based on
the one described in Section 2.1, except for the event detectors introduced and some additional state
variables included in the reference generator. In what follows, we describe in detail the changes
introduced.

The internal state of the output regulation controller denoted by xci represents an estimate of the
state of the plant xpi and of the exogenous disturbance wi. The output regulation controller is a

‡Theorem 5 in [10] is actually more general since it proves asymptotic synchronization for time-varying graph topologies
provided they are uniformly connected.
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Figure 2. Proposed control architecture from the point of view of agent i. Note that this control system is
distributed since all event detection blocks depend only on local signals available to agent i.

modified version of (8) and (9), where xci ∈ Rnci with nci = npi + nwi , satisfies, for all t ≥ 0,

ẋci (t) = Acix
c
i (t) +Bci ūi(t) + Li(C

c
i x
c
i (t)− ȳi(t)) (11a)

ui(t) = Kc
i x
c
i (t) +Kr

i ζ̂i(t). (11b)

The matrices involved in (11) are defined later in Section 3.2. The input and output event detectors
operate independently of each other and continuously test their corresponding event triggering
conditions. If the output event detector’s triggering condition is violated, the signal ȳi is set to the
current value of the output of plant yi. Otherwise, ȳi remains constant. If the input event detector’s
triggering condition is violated, the signal ūi is set to the current value of the output of the regulation
controller ui. Otherwise, ūi remains constant. Thus, the signals ȳi and ūi satisfy, for all k ≥ 0,

ȳi(t) = yi(t
y,i
k ),∀t ∈ [ty,ik , ty,ik+1) (12a)

ūi(t) = ui(t
u,i
k ),∀t ∈ [tu,ik , tu,ik+1), (12b)

where {ty,ik }k≥0 and {tu,ik }k≥0 are strictly increasing sequences that correspond to time instants
when the output of the plant is sampled and to time instants when the control input is updated,
respectively. Without loss of generality, we will assume henceforth that ty,i0 = tu,i0 = 0 for all
i ∈ {1, . . . , N}. The sequences of sampling and update times are generated according to

ty,ik+1 = inf{t > ty,ik : fyi (yi(t), ȳi(t), τ̄
y
i (t)) is true} (13a)

tu,ik+1 = inf{t > tu,ik : fui (ζ̂i(t), x
c
i (t), ui(t), ūi(t), τ̄

u
i (t)) is true}, (13b)

where f
y
i and fui are functions that take values in the set {true,false}. The additional state

variables τ̄yi and τ̄ui represent timers that are used to keep track of the time elapsed since the last
event time. Their dynamics may be written in the form of an impulsive system§ as{

˙̄τyi = 1, t ∈ [ty,ik , ty,ik+1), (14a)

τ̄yi = 0, t = ty,ik , (14b){
˙̄τui = 1, t ∈ [tu,ik , tu,ik+1), (15a)

τ̄ui = 0, t = tu,ik . (15b)

The output and input event detectors continuously evaluate f
y
i and fui , respectively, until they

become true meaning that a violation of the corresponding event condition has occurred and that a

§See Section A.2 for a definition of impulsive system and a list of references on the subject.
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new sampling or update time must be triggered. Thus, for all k ≥ 0, we have that{
f
y
i (yi(t

y,i
k ), ȳi(t

y,i
k ), τ̄yi (ty,ik )) is false (16a)

fui (ζ̂i(t
y,i
k ), xci (t

y,i
k ), ui(t

y,i
k ), ūi(t

y,i
k ), τ̄ui (ty,ik )) is false. (16b)

If one can show that the sequences {ty,ik }k≥0 and {tu,ik }k≥0 do not have any accumulation points,
then, for all t ≥ 0, it will follow that{

f
y
i (yi(t), ȳi(t), τ̄

y
i (t)) is false (17a)

fui (ζ̂i(t), x
c
i (t), ui(t), ūi(t), τ̄

u
i (t)) is false. (17b)

This means that functions fyi and fui are selected such that they are true for state configurations that
are undesirable and that are avoided by triggering an event and executing the corresponding action
(sampling the output or updating the control input). In Section 3, we address the single agent case to
demonstrate how to select the controller matrices in (11) and the event functions fyi and fui in (13),
such that the tracking error zi − Er ζ̂i is bounded.

The other main component of the control architecture presented in Figure 2 is the reference
generator, whose internal state is described by three elements: ζi, ζ̂i, and ζ̂ij with j ∈ N−i .

The state ζi must evolve in such a way that its trajectory is (approximately) the same across all
agents. The current value of ζi is broadcast to the out-neighbors of agent i whenever a given event-
triggering condition (essentially a function of ζi and ζ̂i) is violated. The sequence of time instants
where this violation occurs is referred to as sequence of broadcast times of agent i and is denoted
by {bik}k≥0 (where bi0 = 0).

The state variable ζ̂i evolves according to the reference model between broadcast times of plant i
and is reset to the current value of ζi when a broadcast occurs. The dynamics of ζ̂i may be written
in the form of an impulsive system as{

˙̂
ζi = Ar ζ̂i, t ∈ [bik, b

i
k+1), (18a)

ζ̂i = ζ−i , t = bik (18b)

The state ζ̂i is fed to the output regulation controller so that it can drive the regulated output of the
plant zi towards Er ζ̂i.

The additional states ζ̂ij represent local replicas of the state ζj of agent i’s in-neighbors. The
dynamics of ζ̂ij are similar to those of ζ̂i except that when an in-neighbor of agent i, say j ∈ N−i ,
broadcasts the current value of ζj , this value is used to reset the value of ζ̂ij , as modeled by the
impulsive system { ˙̂

ζij = Ar ζ̂
i
j , t ∈ [bjk, b

j
k+1), (19a)

ζ̂ij = ζ−j , t = bjk . (19b)

The dynamics of ζi are as in (6) where, to avoid the need for continuous communication links
among agents, instead of (7) vi is defined as

vi =

N∑
j=1

aij(ζ̂
i
j − ζ̂i). (20)

Without loss of generality, suppose that, for all i, j ∈ {1, . . . , N}, ζ̂ij is initialized with the value
ζj(0). Since ζ̂j and ζ̂ij have the same dynamics (compare (18) with i = j and (19)), we have that
ζ̂ij(t) = ζ̂j(t) for all t ≥ 0. Therefore, for analysis purposes, only the state variable ζ̂j is required
and we may rewrite (20) as

vi =

N∑
j=1

aij(ζ̂j − ζ̂i). (21)
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Note that if the broadcasted information were to arrive at each out-neighbor of agent i at different
times due to, e.g., transmission delays, then the previous simplification would not be possible.

Finally, the sequence of broadcast times of agent i is generated according to

bik+1 = inf{t > bik : |ζ̂i(t)− ζi(t)| ≥ c(t)}, (22)

where c(t) represents a non-negative time-varying threshold defined as c(t) = c0 + c1e
−αt, with

c0, c1, α ≥ 0. The threshold starts at a value of c0 + c1 and then decreases monotonically, reaching c0
asymptotically. Note that after a broadcast by agent i, we have that |ζ̂i(bik)− ζi(bik)| = 0. Assuming
{bik}k≥0 does not have any accumulation points, the triggering condition in (22) ensures that
|ζ̂i(t)− ζi(t)| < c(t) for all t ≥ 0. For reasons that will become clear in Section 4, after a broadcast
is executed, a reset in the output and input event detectors of agent i has to be made.

Regarding the reference generator component, namely the subsystem formed by (6), (18), (19),
and (21), the following is shown in [34].

Theorem 2 ( [34, Theorem 3 and Lemma 3])
Let δ(t) = ζ(t)− 1N ⊗ ζ0(t) for all t ≥ 0 where ζ0(0) = (β> ⊗ Im)ζ(0). If G is a rooted graph and

<{λ+ µ} < 0 for all λ ∈ σ(Ar) and µ ∈ σ(L)\{0}, (23)

then, for all initial conditions ζ(0) ∈ RNm, there exist 0 < δ̄∞ ≤ δ̄ such that, for all t ≥ 0,

‖δ(t)‖ ≤ δ̄ and lim
t→+∞

‖δ(t)‖ ≤ δ̄∞. (24)

Moreover, if c0 > 0, then there exists θmin > 0 such that bik+1 − bik ≥ θmin for all k ≥ 0 and all
i ∈ {1, . . . , N}.

Theorem 2 shows that the internal state of the reference generator of all agents converges to a
neighborhood of the solution of (3) with initial condition ζ0(0) = (β> ⊗ Im)ζ(0), where the radius
of the neighborhood is bounded by δ̄ and asymptotically bounded by δ̄∞.

In the next section, we start by addressing the output regulation problem for a single agent and
leave the problem of synchronizing multiple agents for Section 4.

3. EVENT-TRIGGERED OUTPUT REGULATION

As discussed in Section 2, one of the components required to achieve output synchronization is an
event-triggered output regulation controller that can guarantee boundedness of the tracking error. In
this section, we propose a solution inspired by the work reported in [35] developed originally for
event-triggered stabilization of LTI plants.

3.1. Problem formulation

In Figure 3 we have isolated the components of the control architecture introduced in Figure 2
that are relevant to the output regulation problem.¶ In this setup, the reference generator has been
replaced by an exosystem with state xr ∈ Rnr and initial state xr(0) that satisfies, for all t ≥ 0,

ẋr = Arxr (25a)
zr = Erxr, (25b)

where Er ∈ Rnz×nr . Thus, the tracking error is defined, for all t ≥ 0, as

er(t) = z(t)− zr(t). (26)

¶In this section, since we are only addressing a single agent, to avoid unnecessary complexity we simplify the notation
by dropping i as a subscript or superscript, depending on the situation, and moving the superscripts to subscripts when
possible (for example, xp

i , yi, and ty,ik become xp, y, and tyk, respectively).
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Output regulation controller
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Figure 3. Control architecture for event-triggered output regulation.

For convenience, the disturbance model and reference model states are collected in ψ = (w, xr) ∈
Rnψ whose dynamics are given by

ψ̇ = Sψ (27)

where S = diag(Aw, Ar). The hold behavior defined by (12) may be equivalently described by the
impulsive systems {

˙̄y = 0, t ∈ [tyk, t
y
k+1), (28a)

ȳ = y−, t = tyk , (28b){
˙̄u = 0, t ∈ [tuk , t

u
k+1), (29a)

ū = u−, t = tuk , (29b)
where ȳ(0) = y(0) and ū(0) = u(0). Errors induced by these hold devices are represented by ỹ =
ȳ − y and ũ = ū− u. For a more compact notation, we introduce the variables µ = (y, u) ∈ Rnµ ,
µ̄ = (ȳ, ū), and µ̃ = µ̄− µ.

To solve the output regulation problem, we consider dynamic controllers of the form

ẋc = Ācxc + B̄cµ+ Ēcµ̃ (30a)
u = C̄cxc + D̄cxr, (30b)

where xc ∈ Rnc is the state of the controller (Āc, B̄c, Ēc, C̄c, and D̄c, are matrices of appropriate
dimensions). In a continuous-time setup, we have µ̃ = 0 and, in this case, we may take Ēc = 0. The
term D̄c may be non-zero in situations where the reference state is known, which is the case here.

With continuous feedback between plant and controller, under some reasonable assumptions,
there exists a controller that achieves asymptotic output regulation, that is, such that

lim
t→+∞

‖er(t)‖ = 0. (31)

With the proposed event-triggered output regulation controller, instead of asymptotic output
regulation, we will prove boundedness of the tracking error where the bound depends on the
magnitude of the reference state and of the exogenous disturbance. Namely, that, for all initial
conditions, the tracking error is bounded for all t ≥ 0 and satisfies

lim
t→+∞

‖er(t)‖ ≤ ρ‖ψ‖L∞ (32)

for some constant ρ > 0. Also, since the sampling and update intervals are not constant over time,
we have to guarantee that no Zeno solutions occur. For (32) to be well defined, the state variable ψ
has to satisfy ‖ψ‖L∞ <∞, which restricts the eigenvalue structure of the matricesAw andAr. They
are only allowed to have eigenvalues in the imaginary axis and each eigenvalue must have algebraic
multiplicity equal to its geometric multiplicity, which is equivalent to the following assumption.
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Assumption 1. Matrices Aw and Ar are skew-symmetric.

3.2. Proposed event-triggered output regulation controller

To derive the proposed event-triggered output regulation controller, we require the following
standard assumptions of the output regulation problem in continuous-time.

Assumption 2. The pair (Ap, Bp) is stabilizable.

Assumption 3. The pair (Ap, Ep) and (Ac, Cc) are detectable, where

Ac =

[
Ap Bw
0 Aw

]
and Cc =

[
Cp Cw

]
. (33)

Assumptions 2 and 3 are necessary to guarantee the existence of a stabilizing feedback law and
of an asymptotic observer in continuous-time.

Assumption 4 (Regulator equations). There exist matrices Π ∈ Rnp×nψ and Γ ∈ Rny×nψ such that

ΠS = ApΠ +BpΓ +
[
Bw 0

]
(34a)[

0 Er
]

= EpΠ, (34b)

or, equivalently, that

ΠwAw = ApΠw +BpΓw +Bw (35a)
ΠrAr = ApΠr +BpΓr (35b)

0 = EpΠw (35c)
Er = EpΠr, (35d)

where Π =
[
Πw Πr

]
and Γ =

[
Γw Γr

]
.

This assumption guarantees that tracking of the desired reference model is possible for the given
plant. Further details on the regulator equations may be found in [13, Chapter 1] and [14, Chapter 2],
including additional assumptions that guarantee that (34) has an unique solution pair (Π,Γ).

To solve the output regulation problem, an observer based dynamic controller is proposed with
internal state xc ∈ Rnc , with nc = np + nw, and dynamics given by

ẋc = Acxc +Bcū+ L(Ccxc − ȳ) (36a)
u = Kcxc +Krxr (36b)

where

Bc =

[
Bp
0

]
and Kc =

[
Kp Kw

]
. (37)

The state xc represents an estimate of both the state of the plant xp and of the disturbance w. The
gain matrices Kp and L are such that Ap +BpKp and Ac + LCc are Hurwitz. The remaining gain
matrices are defined as

Kw = Γw −KpΠw (38)
Kr = Γr −KpΠr. (39)

The controller in (36) may be written as in (30) where

Āc = Ac + LCc, B̄c = Ēc =

[
−LCc
Bc

]
, C̄c = Kc, and D̄c = Kr. (40)
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3.3. Synchronous event detector

Instead of addressing directly the problem with asynchronous event mechanisms as in (13), we will
first consider the synchronous case where the output of the plant and the control input are sampled
and updated, respectively, at the same time instant. In this case, we have tyk = tuk = tk for all k ≥ 0
and we refer to {tk}k≥0 as the sequence of sampling times, which are generated according to

tk+1 = inf{t > tk : f(y(t), ȳ(t), xr(t), x
c(t), u(t), ū(t), τ̄(t)) is true} (41)

where f is a function to be defined and the timer variable τ̄ can be either τ̄y or τ̄y, since they are
identical in the synchronous case. The hold behavior defined by (12) is, in the synchronous case,
described by the impulsive system{

˙̄µ = 0, t ∈ [tk, tk+1), (42a)
µ̄ = µ−, t = tk , (42b)

where µ̄(0) = µ(0).
To determine the function f in (41), we need to analyze the error dynamics associated with the

closed-loop system. Consider a change of coordinates defined as

x̃p = xp −Π

[
w
xr

]
, x̃c = xc −

[
xp
w

]
, (43)

and let x̃ = (x̃p, x̃c) ∈ Rnx̃ denote the error state. Merging (1), (2), (25), (36), and (42), the closed-
loop dynamics may be written in compact form as an impulsive system with state ξ = (x̃, ψ, µ̃) and
initial state ξ(0) = (x̃(0), x̃c(0), 0), that satisfies, for all t ≥ 0,{

ξ̇ = Āξ, t ∈ [tk, tk+1), (44a)
ξ = diag(Inx̃+nψ , 0nµ)ξ−, t = tk, (44b)

where

Ā =

[
F G
−HF −HG

]
, F =

[
A0 0
0 S

]
, A0 =

[
Ap +BpKp BKc

0 Ac + LCc

]
, (45a)

G =

[
G0

0

]
, G0 =

[
0 Bp
−L 0

]
, H =

[
Cp 0 CpΠ +

[
Cw 0

]
Kp Kc Γ

]
. (45b)

In particular, we may extract from (44) the dynamics of x̃. For all t ≥ 0, x̃ satisfies{
˙̃x = A0x̃+G0µ̃, t ∈ [tk, tk+1), (46a)
x̃ = x̃−, t = tk . (46b)

Given Q � 0, since both Ap +BpKp and Ac + LCc are Hurwitz, there exists P � 0 be such that

A>0 P + PA0 +Q = 0. (47)

Consider the function V : Rnx̃ → R+ defined as

V (x̃) = x̃>Px̃. (48)

Using (46) and (47), the time derivative of V satisfies, for all t ∈ [tk, tk+1),

V̇ = 2x̃>P (A0x̃+G0µ̃) (49)

= −x̃>Qx̃+ 2x̃>PG0µ̃ (50)

= −(1− σ)x̃>Qx̃+ γ2ψ>ψ + ξ>M0ξ (51)
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where σ ∈ (0, 1) and

M0 =

−σQ 0 PG0

0 −γ2Inψ 0
∗ 0 0

 . (52)

If the controller is able to guarantee that, for all t ≥ 0,

ξ>M0ξ ≤ 0, (53)

then, for all t ≥ 0,

V̇ ≤ −(1− σ)x̃>Qx̃+ γ2ψ>ψ. (54)

Inequality (54) is important since it can be used to establish some of the stability properties of the
closed-loop system.

Lemma 1
Suppose (53) is satisfied for all t ≥ 0 and that the closed-loop system does not exhibit Zeno
solutions. Then, for all initial conditions xp(0) ∈ Rnp , xc(0) ∈ Rnc , and ψ(0) ∈ Rnψ :

1. the error system (46) is ISS‖ from input ψ to state x̃;
2. the tracking error satisfies

lim
t→+∞

‖er(t)‖ ≤ ρ‖ψ‖L∞ (55)

where ρ = γ√
λ

∥∥ĒP−1/2
∥∥, with λ = (1− σ) λmin(Q)

λmax(P ) and Ē =
[
Ep 0

]
∈ Rnz×(np+nc).

Remark 1. Note that for the special case where ψ ≡ 0 (⇔ ψ(0) = 0 and S = 0), the output
regulation problem becomes a stabilization problem and Lemma 1 (namely, the ISS property)
implies that the closed-loop system is asymptotically stable.

Remark 2. The definition of ρ in Lemma 1 shows that an arbitrarily small tracking error can be
achieved by reducing γ (and therefore ρ) but, in general, this will lead to an increase in the average
sampling rate.

At this point, to guarantee that (53) holds for all t ≥ 0, one could envision a tentative triggering
mechanism defined as

tk+1 = inf{t > tk : ξ>M0ξ ≥ 0}. (56)

In this case, we have the following lemma.

Lemma 2
If {tk}k≥0 is generated by (56), then (53) holds for all t ≥ 0 and there exists τmin > 0 such that
the sampling intervals τk = tk+1 − tk satisfy τk ≥ τmin for all k ≥ 0. Moreover, the largest possible
value for τmin is

τ∗min = inf{s > 0 : h(s) = 0} (57)

where the function h : R+ → R is defined as

h(s) = λmax

{[
I
0

]>
eĀ
>sM0e

Ās

[
I
0

]}
. (58)

‖See Section A.3 for the definition of ISS.
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The problem with the triggering mechanism in (56) is that xp and w are not fully known (only
partial observation is available through y) and therefore the triggering condition cannot be enforced
by a controller that has only access to y, xc, xr, ỹ, and ũ. Note that it can, nonetheless, be fulfilled
by a periodic controller operating with a sampling period equal to τmin, that is, if tk+1 = tk + τmin,
then (53) holds for all t ≥ 0. To overcome the fact that xp and w are not fully known, we follow
the approach used in [35] that exploits the stability properties guaranteed by τmin with an event
condition stricter than (53) but that depends only on signals available to the controller. The new
event-triggering mechanism generates {tk}k≥0 according to

tk+1 = min{t ≥ tk : τ̄(t) ≥ τmin ∧ φ>(t)Mφ(t) ≥ 0}, (59)

where φ = (y, xr, xc, µ̃) represents all the variables that are available to the output regulation
controller, τmin is selected such that 0 < τmin ≤ τ∗min, and M is a symmetric matrix to be defined.
The first event condition in (59) guarantees that a minimum time interval of τmin has to elapse
between consecutive sampling instants. In the second event condition of (59), the matrix M is
chosen such that, for all ξ ∈ Rnξ ,

ξ>M0ξ ≤ φ>Mφ (60)

(note that φ can be obtained from ξ, that is, φ = V ξ for some matrix V ).

Lemma 3
If {tk}k≥0 is generated by (59), then (53) holds for all t ≥ 0.

In what follows, we show how to find a symmetric matrix M such that (60) holds. To make
explicit the dependance of ξ>M0ξ on known and unknown state variables, we perform a coordinate
change. Let η = (xp, w, xr, xc, µ̃). Note that ξ = Tη where the matrix T is defined as

T =


[
Inp −Πw

]
−Πr 0 0

−Inc 0 Inc 0[
0 Inw

]
0 0 0

0 Inr 0 0
0 0 0 Inµ

 . (61)

Furthermore, for Cc defined in (33), there exists C⊥c ∈ R(nc−ny)×nc such that C⊥c C>c = 0 and
C⊥c (C⊥c )> = Inc−ny . Let xu ∈ Rnc−ny be such that[

xu
y

]
=

[
C⊥c
Cc

] [
xp
w

]
. (62)

The variable xu belongs to the subspace of Rnc that cannot be directly measured. Let

Ẑc = diag(Zc, Inr+nc+nµ) (63)

where

Zc =

[
C⊥c
Cc

]−1

(64)

(the matrix Zc exists because Cc is assumed full row-rank). Then, we have that ξ = Tη = T Ẑcη̂
where η̂ = (xu, y, xr, xc, µ̃) = (xu, φ). Using this coordinate change, we obtain that

ξ>M0ξ = η̂>M̂0η̂ (65)

where M̂0 = (T Ẑc)
>M0T Ẑc. Note that, apart from xu, all other elements of η̂ are available to

the controller. To eliminate the dependance of η̂>M̂0η̂ on xu we resort to the Schur complement
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technique (described in Section A.4), which yields

η̂>M̂0η̂ ≤ φ>Mφ, (66)

where M is the Schur complement of the appropriate sub-matrix of M̂0.∗∗

With all the elements of the proposed event-triggered output regulation controller well defined,
we are now ready to characterize its stability properties.

Theorem 3
Suppose Assumptions 1-4 are satisfied and consider the closed-loop system formed by the plant
(1), the disturbance model (2), the reference system (25), the hold device (42), the output regulation
controller (36), and the event mechanism (59). Then, for all initial conditions xp(0) ∈ Rnp , xc(0) ∈
Rnc , and ψ(0) ∈ Rnψ :

1. the closed-loop system does not exhibit Zeno solutions;
2. the error system (46) is ISS from input ψ to state x̃;
3. the tracking error satisfies

lim
t→+∞

‖er(t)‖ ≤ ρ‖ψ‖L∞ (67)

where ρ is defined in Lemma 1.

As mentioned previously, the triggering mechanism in (59) is inspired by the work reported
in [35] for output-feedback stabilization of LTI systems. Here, we have extended the results in [35]
to the output regulation case. Moreover, we use a less conservative technique to derive the stricter
condition (namely the Schur complement technique), thereby deriving a triggering mechanism that
yields larger average sampling intervals while guaranteeing the same stability conditions (as shown
in Example 1 of Section 3.6).

3.4. Asynchronous event detectors

In this section, we introduce the asynchronous operation of the output and input event detectors, by
replacing (42) and (41) with (12) and (13), respectively. Asynchronous event-triggered mechanisms
have been considered in [19,35,37–39]. Here, we follow the approach outlined in [35,38] to derive
the event functions fy and fu of the asynchronous event-triggering mechanism in (13) from the
event function f obtained for the synchronous case.

First, we partition the matrices G and H in (45) as

G =

[
Gy Gu
0 0

]
and H =

[
Hy

Hu

]
, (68)

where

Gy =

[
0
−L

]
, Gu =

[
Bp
0

]
, Hy =

[
Cp 0 CpΠ +

[
Cw 0

]]
, and Hu =

[
Kp Kc Γ

]
. (69)

As pointed out in [35], given θu, θy ≥ 0 such that θu + θy = 1, (53) holds if

ξ>y

−θyσQ 0 PGy
0 −θyγ2Inψ 0
∗ 0 0

 ξy ≤ 0 ∧ ξ>u

−θuσQ 0 PGu
0 −θuγ2Inψ 0
∗ 0 0

 ξu ≤ 0, (70)

where ξy = (x̃, ψ, ỹ) and ξu = (x̃, ψ, ũ). Unlike the previous section where we used the Schur
complement technique on inequalities of this kind to eliminate the dependence on unknown

∗∗See Section B.4 for a proof that the Schur complement technique may be applied to the matrix M̂0.



16 J. ALMEIDA ET AL.

variables, in the case of asynchronous event mechanisms, the method used for variable elimination
is more conservative. Instead of the conditions in (70), we consider stricter conditions. Namely, we
have that (70) holds if

− ‖ξ̂‖
(
θy min{σλmin(Q), γ2}‖ξ̂‖ − 2‖PGy‖‖ỹ‖

)
≤ 0 (71)

∧ − ‖ξ̂‖
(
θu min{σλmin(Q), γ2}‖ξ̂‖ − 2‖PGu‖‖ũ‖

)
≤ 0 (72)

where ξ̂ = (x̃, ψ), which in turn is equivalent to

‖ỹ‖ − wy‖ξ̂‖ ≤ 0 ∧ ‖ũ‖ − wu‖ξ̂‖ ≤ 0 (73)

where wy = θy min{σλmin(Q), γ2}/(2‖PGy‖) and wu = θu min{σλmin(Q), γ2}/(2‖PGu‖). Let
the sampling and update intervals be defined, for all k ≥ 0, as τyk = tyk+1 − t

y
k and τuk = tuk+1 − tuk ,

respectively. Unlike Section 3.3 where the minimum sampling interval could be computed exactly,
for the case of asynchronous event mechanisms, only lower bounds on the minimum sampling and
update intervals possible under condition (73) are provided.

Lemma 4
For w, a, b, c ∈ R+, let smin(w, a, b, c) denote the smallest time instant s > 0 such that ν(s) = w
where ν(t) satisfies ν(0) = 0 and, for all t ≥ 0,

ν̇ = (c+ ν)(a+ bν). (74)

Suppose the sequences {tyk}k≥0 and {tuk}k≥0 are such that (73) holds for all t ≥ 0. Then, for all
k ≥ 0, τyk ≥ τ

y
min and τuk ≥ τumin where

τymin = smin(wy, ‖F‖+ wu‖Gu‖, ‖Gy‖, ‖Hy‖) (75a)
τumin = smin(wu, ‖F‖+ wy‖Gy‖, ‖Gu‖, ‖Hu‖). (75b)

Remark 3. The reason we did not apply the Schur complement technique to the matrices in (70) is
that we do not have at this time a result similar to Lemma 4 for computing minimum sampling
and update intervals when two triggering conditions based on generic quadratic forms operate
asynchronously.

Again, a tentative triggering mechanism would be

tyk+1 = min{t ≥ tyk : ‖ỹ(t)‖ − wy‖ξ̂(t)‖ ≥ 0} (76a)

tuk+1 = min{t ≥ tuk : ‖ũ(t)‖ − wu‖ξ̂(t)‖ ≥ 0}, (76b)

but, as can be seen, the conditions in (76) cannot be readily implemented by the output and input
event detectors since they depend on variables that are not available to either one. To eliminate
this dependence, we proceed as follows. Let ηy = (xu, y, xr, xc) and ηu = (xp, w, xr, xc), which
represent the variables made available to the output and input event detectors, respectively. We
have that ξ̂ = Tyηy and ξ̂ = Tuηu where Ty and Tu are appropriate sub-matrices of TẐc and T ,
respectively. Note that Ty and Tu are invertible and therefore T>y Ty and T>u Tu are positive definite.
Since any principal sub-matrix of a positive definite matrix is positive definite, we may apply the
Schur complement technique to the matrices T>y Ty and T>u Tu to obtain symmetric matrices M̂y and
M̂u, respectively, such that, for all ξ̂ ∈ Rnp+nc+nψ ,

ξ̂>ξ̂ ≥ y>M̂yy (77a)

ξ̂>ξ̂ ≥
[
xr
xc

]>
M̂u

[
xr
xc

]
. (77b)
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We conclude that (73) holds if

ỹ>ỹ − w2
y

(
y>M̂yy

)
≤ 0 ∧ ũ>ũ− w2

u

([
xr
xc

]>
M̂u

[
xr
xc

])
≤ 0. (78)

Let φy = (y, ỹ), φu = (xr, xc, ũ), My = diag(−w2
yM̂y, Iny ), and Mu = diag(−w2

uM̂u, Inu). Then,
the sequence of sampling and update times are generated according to

tyk+1 = min{t ≥ tyk : τy(t) ≥ τymin ∧ φ>y (t)Myφy(t) ≥ 0} (79a)

tuk+1 = min{t ≥ tuk : τu(t) ≥ τumin ∧ φ>u (t)Muφu(t) ≥ 0}, (79b)

where τymin and τumin are defined in (75).

Lemma 5
If {tyk}k≥0 and {tuk}k≥0 are generated by (79), then (53) holds for all t ≥ 0.

Next, we prove the analogous version of Theorem 3 for the setup with asynchronous event
detectors.

Theorem 4
Suppose Assumptions 1-4 are satisfied and consider the closed-loop system formed by the plant
(1), the disturbance model (2), the reference system (25), the hold devices (28) and (29), the
output regulation controller (36), and the event mechanism (79). Then, for all initial conditions
xp(0) ∈ Rnp , xc(0) ∈ Rnc , and ψ(0) ∈ Rnψ :

1. the closed-loop system does not exhibit Zeno solutions;
2. the error system (46) is ISS from input ψ to state x̃;
3. the tracking error satisfies

lim
t→+∞

‖er(t)‖ ≤ ρ‖ψ‖L∞ (80)

where ρ is defined in Lemma 1.

3.5. A connection with threshold triggering

Consider again the synchronous triggering mechanism in (59) analyzed in Section 3.3. If instead of
(53) the controller is able to guarantee that, for all t ∈ [tk, tk+1),

ξ>M0ξ ≤ ε2, (81)

where ε is a positive constant, then, instead of (54), we have that, for all t ≥ 0,

V̇ ≤ −(1− σ)x̃>Qx̃+ γ2ψ>ψ + ε2. (82)

The constant ε is a design parameter that can be used to potentially reduce the average sampling rate
observed by allowing a small violation of the original triggering condition. If the sampling times
are generated by

tk+1 = min{t ≥ tk : τ̄(t) ≥ τmin ∧ ξ>M0ξ ≥ ε2}, (83)

it can be shown that, for all t ≥ 0,

‖x̃(t)‖ ≤ e−
1
2λt

√
λmax(P )

λmin(P )
‖x̃(0)‖+

γ√
λmin(P )λ

‖ψ‖L∞ +
ε√

λmin(P )λ
(84)

= β(t, ‖x̃(0)‖) + ρ0 (‖ψ‖L∞) + ρ1(ε). (85)
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This shows that (46) is input-to-state practically stable (ISpS)†† from ψ to x̃. The bound on the
tracking error then becomes

lim
t→+∞

‖er(t)‖ ≤ ρ‖ψ‖L∞ +
ε√
λ

∥∥∥ĒP−1/2
∥∥∥ , (86)

where ρ is defined in Theorem 3. One could derive an expression similar to (57) to compute the
minimum sampling interval for a given ε > 0 but it would require a bound on ‖ψ(t)‖. It is simpler
to use τmin = τ∗min as defined in (57), instead of computing the actual minimum sampling interval
for ε > 0, since τ∗min is already a lower bound on the minimum sampling interval achievable with
ε > 0.

The inclusion of ε allows us to illustrate a relationship between threshold triggering and the
triggering conditions obtained by applying the procedure used in Section 3.3 to eliminate variables
from the triggering condition in (56). We define threshold triggering as enforcing, for all t ∈
[tk, tk+1), the condition

‖µ̃‖ ≤ ε̂ (87)

for some constant ε̂ > 0. This is a typical event-triggering condition designed to keep the error
induced by sampling bounded. See [18, 40, 41] for some examples of this sort of triggering
mechanism. If we eliminate x̃, w, xr, and xc from the triggering condition in (81) using the Schur
complement technique, we are left with a condition on the error µ̃ of the form

µ̃>M̃µ̃ ≤ ε2. (88)

Using the fact that µ̃>M̃µ̃ ≤ λmax(M̃)‖µ̃‖2, we conclude that (87) with

ε̂ =
ε√

λmax(M̃)
(89)

implies (88), which in turn implies (81). This shows that if the sampling times are generated by

tk+1 = min{t ≥ tk : τ̄(t) ≥ τmin ∧ ‖µ̃(t)‖ ≥ ε̂}, (90)

then (81) will hold for all t ≥ 0. However, given that the same stability properties are guaranteed,
the sampling rate with (90) will be higher than necessary since (87) is stricter than (81).

3.6. Examples

In this section, we present three examples that illustrate the implementation of the proposed event-
triggered output regulation controller and support the claims made in the previous sections.

Example 1 In this example, we consider a stabilization problem where the goal is to drive
the state of the plant to the origin. The reference trajectory is thus identically zero and there
are no disturbances present. In this case, the error state becomes simply x̃ = (xp, xc − xp) since
the observer only has to estimate xp. We compare the triggering methods presented in [35]
with synchronous and asynchronous event detectors (referred to in [35] as Architecture II and
Architecture III, respectively), with the triggering methods proposed in the Section 3.3 and
Section 3.4.

In the case of stabilization, the asynchronous triggering method presented in (79) is essentially
the same as [35, Arch. III]. One difference is that, to derive the triggering conditions, instead of
using the inequalities in (77), in [35] the authors use

x̃>x̃ ≥ 1

‖Cp‖
y>y and x̃>x̃ ≥ 1

2
x>c xc (91)

††See Section A.3 for the definition of ISpS.
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Table I. Statistics regarding the sequences of event times in Example 1.

Triggering Sampled Computed Observed
method variable minimum (ms) minimum (ms) average (ms) maximum (ms)

[35, Arch. II]
(xc, y) 0.576 0.576 3.98 11.6

θ1 = 1, θ2 = 0
(59) (xc, y) 3.74 6.24 28.6 221

[35, Arch. III] xc 1.02 1.02 4.07 20.5
θ1 = 0.5, θ2 = 0.5 y 0.477 0.477 1.55 8.85

(79) u 1.02 1.02 10.9 147
θy = 0.5, θu = 0.5 y 0.477 0.477 1.54 73.4

(note that ξ̂ = x̃). However, this is irrelevant for this example since M̂u = 1
2I2 and M̂y =

(CpC
>
p )−1 = 1, and therefore (77) reduces to (91). A second difference is that in [35, Arch. III]

the input event detector holds the value of xc instead of the value of u.
As in [35], the plant and controller gain matrices are

Ap =

[
2 3
1 3

]
, Bp =

[
0
1

]
, Cp =

[
1 0

]
,Kp =

[
−15 −10

]
, L =

[
−10
−14

]
, Q = I4. (92)

We set γ = 0 and select σ = 0.95, which yields a desired rate of decay of λ = 4.26× 10−3. The
initial conditions are xp(0) =

[
2 3

]>
and xc(0) =

[
0 0

]>
. Regarding triggering parameters,

Arch. II and Arch. III in [35] require two positive scalar parameters θ1 and θ2 that satisfy θ1 + θ2 =
1. The values selected in this example are (θ1, θ2) = (1, 0) for Arch. II and (θ1, θ2) = (0.5, 0.5)
for Arch. III. For our asynchronous triggering method, we select (θu, θy) = (0.5, 0.5) to match the
choice made for the Arch. III method.

Simulation results are presented in Figure 4. Figure 4a shows the evolution of the Lyapunov
function V (t), which tends to zero in all cases as expected. The sequences of sampling intervals
obtained for the synchronous cases are plotted in Figure 4b, while the sequences of sampling
and update intervals obtained for the asynchronous cases are plotted in Figure 4c and Figure 4d.
Statistics regarding the sequences of event times are given in Table I.

In the synchronous case, note that the minimum sampling interval given by (57) is τ∗min =
3.74 ms, which is already very close to the observed average sampling interval of 3.98 ms obtained
using [35, Arch. II]. The observed average sampling interval with (59) is 28.57 ms that is more than
seven times greater than the one obtained with [35, Arch. II], while guaranteeing the same rate of
decay. We can see in Figure 4a that, while the event-triggered controller is designed to enforce a
rate of decay of λ, the actual rate of decay is higher.

In the asynchronous case, [35, Arch. III] and (79) produce similar results in the evolution of V (t)
and in the statistics of the sampling and update sequences, although the input event detector of (79)
operating on u achieves a larger average update interval then the event detector of [35, Arch. III]
operating on xc.

Example 2 Consider the same plant of Example 1 and suppose the regulated output is equal to
the measured output, that is, Ep = Cp. Also, an exogenous disturbance is included whose model is
described by

Aw =

0 −1 0
1 0 0
0 0 0

 , Bw = Bp
[
1 0 2

]
, Cw =

[
0 1 −1

]
, (93)

with initial condition w(0) =
[
0.1 0 1

]>
. This generates an input disturbance of the form

0.1 cos(t) + 2 and an output disturbance of the form 0.1 sin(t)− 1. The reference system is
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Figure 4. Simulation results for Example 1. (a) Evolution of the Lyapunov function V . (b) Sequences of
sampling intervals {τk}k≥0 generated by [35, Arch. II] and (59) (the dashed lines represent the minimum
sampling intervals defined in [35, Theorem 1] and (57)). (c) Sequences of sampling and update intervals
{τyk }k≥0 and {τxck }k≥0 generated by [35, Arch. III] (the dashed lines represent the minimum sampling and
update intervals defined in [35, Theorem 3]). (d) Sequences of sampling and update intervals {τyk }k≥0 and
{τuk }k≥0 generated by (79) (the dashed lines represent the minimum sampling and update intervals defined

in (75)).

described by

Ar =


0 −1 1 0
1 0 0 1
0 0 0 − 1

3
0 0 1

3 0

 , Er =
[
1 0 1 0

]
, (94)

with initial condition xr(0) =
[
0 0 0 1

]>
. This generates a periodic signal with two harmonic

components, namely zr(t) = 3
2

(
cos(t)− cos

(
t
3

))
− sin

(
t
3

)
.

The controller gain Kp is obtained by solving an LQR control problem with weight matrices
Qp = I2 and Rp = 1, that is, Kp = −R−1

p B>p Pp where Pp is the positive definite solution of the
algebraic Riccati equation

A>p Pp + PpAp − PpBpR−1
p B>p Pp +Qp = 0. (95)

The observer gain L is computed in a similar manner and corresponds to the gain of a steady-state
Kalman filter, that is, L = −PcC>c R−1

c where Pc is the positive definite solution of the algebraic
Riccati equation

AcPc + PcA
>
c − PcC>c R−1

c CcPc +Qc = 0, (96)
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Figure 5. Simulation results for Example 2. (a) Trajectory of the regulated output of the plant z. (b) Sequence
of sampling intervals {τk}k≥0 and theoretical minimum sampling interval τ∗min. (c)-(d) Evolution of the
norm of the tracking error er (with a zoom-in on the last 30 seconds of simulation), theoretical bound ρ, and

estimated bound ρsim: (c) triggering method (56); (d) triggering method (59).

with Qc = 100I5 and Rc = 1. The remaining controller gains Kw and Kr are obtained from (38).
The initial conditions are xp(0) =

[
−1 1

]>
and xc(0) = 0. The triggering parameters are

σ = 0.95 and γ = 0.025, yielding a minimum sampling interval of τ∗min = 1.136 ms computed
from (57) and a bound on the tracking error of ρ = 4.699× 10−1 computed from Theorem 3. The
simulation results obtained for this example are presented in Figure 5. In Figure 5a, we have plotted
the regulated output of the plant for each triggering method, which in both cases clearly converges
to a neighborhood of the desired reference signal. The sequences of sampling intervals generated are
shown in Figure 5b. As expected, the triggering method in (59) generates overall lower values for
the sampling intervals when compared with (56), given that it is based on stricter but implementable
triggering conditions. This fact is corroborated by the statistics given in Table II, where we have
collected the minimum, maximum, and average sampling intervals observed in simulation, along
with the computed minimum interval. In Figure 5d, we have plotted the trajectory of the tracking
error and have included its theoretical bound ρ. For both triggering methods, the norm of the tracking
error is well below the theoretical bound. We also include in Table II an estimate of the bound ρ
based on the simulated data that we defined as

ρsim = max
50≤t≤100

‖er(t)‖, (97)

where we try to remove the effect of transients due to initial conditions by ignoring the first 50
seconds of simulation data. We see that ρsim is one order of magnitude smaller than ρ, which seems
to indicate that the expression derived for the latter may be conservative.
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Table II. Statistics on the sequence of sampling intervals {τk}k≥0, computed over the whole simulation
interval (t ∈ [0, 100]) and after transients (t ∈ [50, 100]), and estimated bound ρsim on the norm of the

tracking error (Example 2).

Computed Observed
Triggering minimum minimum (ms) average (ms) maximum (ms) ρsim

method (ms) [0, 100] [50, 100] [0, 100] [50, 100] [0, 100] [50, 100]

(56) 1.136 6.159 7.770 18.30 22.56 258.7 401.0 4.78×10−2

(59) 1.136 1.753 2.679 5.582 4.866 156.7 21.26 1.61×10−2

Example 3 To illustrate the event-triggered output regulation controller with asynchronous event
detectors, we consider a different plant but with the same reference and disturbance models of
Example 2. The plant matrices are

Ap =

[
0.5 −0.4
0.3 −0.7

]
, Bp =

[
0
1

]
, Cp = Ep =

[
1 0

]
. (98)

The controller gains are selected as described in Example 2 by taking Qp = I2, Rp = 1, Qc = I5,
and Rc = 1. The triggering parameters are Q = I4, σ = 0.95, γ = 1, θy = 0.75, and θu = 0.25,
yielding τymin = 0.965 ms and τumin = 0.8389 ms computed from (75) and a bound on the tracking
error of ρ = 5.558.

The simulation results obtained are presented in Figure 6. Shown in Figures 6a and 6b are the
trajectories of the regulated output and of the tracking error, respectively. It is clear that the controller
with sampling and update times generated by (79) is able to follow the desired reference signal
with a tracking error overall smaller than the one obtained when sampling and update times are
generated according to (76). Consider in the particular the sequence of sampling intervals {τyk }k≥0

generated by (79a) and represented in Figure 6c. Note that the sampling intervals repeatedly
approach and equal the minimum sampling interval τymin. This occurs whenever the output of the
plant y approaches zero (making the term y>y in (79a) close to zero), generating a sequence of ever
decreasing sampling intervals that are eventually equal to τymin before increasing again. The output
event detector thus enters consistently a very conservative sampling regime that, although only
lasts a small period of time, is enough to represent a substantial decrease in the average sampling
interval when compared to the intervals generated by (76a). This decrease in the average sampling
interval is clearly illustrated in Table III. Note that the above phenomena does not seem to occur
for the sequence of update intervals {τuk }k≥0 represented in Figure 6d, possibly due to the fact that
more information is available to the input event detector, namely the reference state xr and the
controller state xc. The sequence {tuk}k≥0 generated by (79b) thus retains approximately the same
characteristics of the sequence generated by (76b).

One possible way of minimizing the decrease in the average sampling interval is to improve
the bound τymin. Comparing the values of {τyk }k≥0 generated by (76a) with τymin, we see that there
appears to be some room for improvement. Another possibility, would be to try to adjust τymin by
modifying the controller gains or the event parameters, but this would lead us to a trial-and-error
approach for which it is hard to predict the outcome. Finally, another option already alluded to in
Section 3.5, is to include an ε term in the event conditions. This strategy was used in [19] when
addressing event-triggered stabilization of LTI plants, to circumvent a similar problem. To illustrate
how the inclusion of ε modifies the closed-loop behavior, we present simulation results for the case
where the sampling and update times are generated according to

tyk+1 = min{t ≥ tyk : φ>y (t)Myφy(t) ≥ ε2} (99a)

tuk+1 = min{t ≥ tuk : φ>u (t)Muφu(t) ≥ 0}, (99b)

where ε = 0.01. Note that, in this case, the stability guarantees are different and the existence of
a minimum sampling interval is not guaranteed (τymin and τumin are not valid any longer), although
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Figure 6. Simulation results for Example 3. (a) Trajectory of the regulated output of the plant z. (b) Evolution
of the norm of the tracking error er(t), theoretical bound ρ, and estimated bound ρsim. (c) Sequence of
sampling intervals {τyk }k≥0 and theoretical bound on the minimum sampling interval τymin. (d) Sequence of

update intervals {τuk }k≥0 and theoretical bound on the minimum update interval τumin.

Table III. Statistics on the sequences of sampling and update intervals ({τyk }k≥0 and {τuk }k≥0, respectively)
and estimated bound on the norm of the tracking error ρsim (Example 3).

Triggering Event Computed Observed
ρsimmethod detector minimum (ms) minimum (ms) average (ms) maximum (ms)

(76) output 0.965 21.87 43.18 617.8 5.95×10−2
input 0.839 4.589 44.71 659.8

(79) output 0.965 0.965 5.243 477.5 3.64×10−2
input 0.839 2.164 40.01 798.7

(99) output — 4.922 14.57 448.5 3.57×10−2
input — 2.164 39.95 797.3

one can envision a modification of the results in [19] to prove this fact. The simulation results are
presented in Figure 6. We see that the tracking error is essentially the same as the one obtained with
(79) but {τyk }k≥0 avoids the periods of small sampling intervals, which leads to a larger average
sampling interval, as made clear in Table III.

This example shows that in spite of the theoretical results guaranteeing certain stability properties,
from an implementation perspective, there are some issues that deserve further attention. A possible
avenue of research is to consider an hybrid triggering mechanism that combines the lower bounds
on the minimum intervals used in (79) with the ε-technique employed in (99) and discussed in
Section 3.5.
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4. EVENT-TRIGGERED OUTPUT SYNCHRONIZATION

In this section, we combine the results of Section 3 with Theorem 2 to demonstrate that the proposed
control architecture, described in Section 2.2 and depicted in Figure 2, solves the problem of event-
triggered output synchronization of agents with heterogeneous LTI dynamics.

We assume that each agent satisfies Assumptions 1-4 of Section 3, so that the local output
regulation controller and corresponding event detectors may operate as described in that same
section. Keep in mind that the reference state xr is replaced by ζ̂i provided by the reference
generator. As for the reference generators, they operate as described in Section 2.2 where the
communication graph G is assumed to be rooted. The requirement that the unstable dynamics of
Ar have to be dominated (that is, (23) must hold), is automatically satisfied since, by Assumption 1,
the eigenvalues of Ar are all imaginary.

The only aspect of the proposed control architecture that has to be discussed at this point, is
the need to reset the output and input event detectors after a broadcast of agent i has occurred.
Formally, this means that extra reset conditions are added to the corresponding event detectors
(namely in (14)-(15) and (28)-(29)) such that when t = bik, we set ȳi = yi, τ̄

y
i = 0, ūi = ui, and

τ̄ui = 0. Sampling and updates times are still generated by (79), keeping in mind that ty,ik and tu,ik
represent time instants where fyi or fui are true, and do not include sampling or update times made
due to a broadcast triggered by the reference generator (in other words, originated by the extra reset
conditions introduced).

The reason for these extra reset conditions is related with the computation of the minimum
sampling and update intervals of the output and input event detectors. There were two possibilities
for the reference state provided by the reference generator to the output regulation controller: ζi or
ζ̂i. The state ζi is continuous for all t ≥ 0 but predicting its evolution is difficult since its dynamics
depend on state variables that change whenever new information arrives from neighboring agents
(cf. (6) and (21)). On the other hand, ζ̂i follows the reference model dynamics between broadcast
times of agent i but exhibits discontinuities at the broadcast times (cf. (18)). We decided to use
ζ̂i as the reference state because of its simpler dynamics, and to avoid the discontinuity issue, we
introduced the above mentioned extra reset conditions (otherwise, we would not have a guarantee
that the minimum sampling and update intervals even existed). Had we used ζi as the reference
state, deriving expressions for the minimum intervals could still be possible although they would be
more involved and probably more conservative.

With all the elements of the proposed control architecture well defined, we are now ready to state
our main result.

Theorem 5
If each agent satisfies Assumptions 1-4 and the communication graph G is rooted, then there exist
d > 0 such that

‖zi(t)− EreArt(β> ⊗ Im)ζ(0)‖ ≤ d (100)

for all t ≥ 0 and all i ∈ {1, . . . , N}. Moreover, the closed-loop system does not exhibit Zeno
solutions.

Note that Theorem 5 also holds if the event detectors operate synchronously as described in
Section 3.3.

4.1. Multi-agent example

In this section, we illustrate the proposed event-triggered output synchronization controller on a
group of N = 6 agents. The matrices associated with the dynamics of each agent are given in
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Table IV. Parameters associated with the dynamics and the disturbances of each agent.

i Σi xpi (0) Awi wi0

1


0 1 0 0 0

0 0 1 0 0

2 −4 2 1 1

1 0 0 0

1 0 0


[

0.1000
0.0905
0.0810

]
0 1

2


0 1 0 0 0 0 0

0 0 1 0 0 0 0

3 −2 1 1 1 0 0

1 0 0 0 1 −1

1 0 0


[

0.0714
0.0619
0.0524

] [
0 −1 0
1 0 0
0 0 0

] [
1
0
1

]

3


0 1 0 0 0 0 0

0 0 1 0 0 0 0

−1 2 −3 1 1 0 0

0 1 0 0 1 −1

1 0 0


[

0.0429
0.0333
0.0238

] [
0 −1 0
1 0 0
0 0 0

] [
0
1
−1

]

4



1 1 0 0 1 0 1 0 0 0

0 1 1 0 0 0 0 0 0 0

1 0 1 0 0 1 0 1 0 0

1 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0

0 0 1 0


 0.0143

0.0048
−0.0048
−0.0143




0 − 1
2 0 0

1
2 0 0 0

0 0 0 − 1
3

0 0 1
3 0


1

0
1
0



5



0 1 0 0 0 0 0

0 0 0 0 1 1 0

0 0 0 1 0 0 0

2 0 0 0 1 1 0

1 0 1 0 0 1
2

0 0 1 1


−0.0238
−0.0333
−0.0429
−0.0524

 [
0 −2
2 0

] [
1
0

]

6



0 1 −1 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0

1 0 −2 0 0 1 0 1 0

0 0 0 0 0 0 1 −2 0

0 0 0 1 0 0 2

0 0 0 0 1 0 −1

1 0 0 0 0




−0.0619
−0.0714
−0.0810
−0.0905
−0.1000

 [
0 0
0 0

] [
1
1

]

Table IV using the notation

Σi =


Api Bpi Bwi

Cpi Cwi

Epi

 . (101)

The disturbance models of each agent are also given in Table IV. The reference model is the
same fourth-order oscillator of Example 2 in Section 3.6. The controller gain matrices Ki and Li
are computed also as described in Example 2, with the weights matrices given in Table V. The
remaining gain matrices Kw

i and Kr
i are obtained from (38). Also included in Table V are the

values selected for the parameters γi and σi of each agent. The initial conditions for xpi (0) are given
in Table IV, xci (0) = 0 for i ∈ {1, . . . , N}, and ζ(0) = ζ̂(0) = g/‖g‖ where g ∈ RmN has entries
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Table V. Weight matrices for controller design and parameters γi and σi associated with each agent.

i Qip, R
i
p, Q

i
c, R

i
c σi, γi

1 In1
p
, In1

u
, In1

c
, In1

y
0.95, 0.25

2 In2
p
, In2

u
, 10In2

c
, In2

y
0.95, 0.5

3 In3
p
, In3

u
, In3

c
, In3

y
0.95, 0.25

4 In4
p
, In4

u
, 10In4

c
, In4

y
0.95, 0.25

5 In5
x
, In5

u
, 100In5

c
, In5

y
0.95, 0.1

6 In6
p
, In6

u
, 10In6

c
, In6

y
0.95, 0.1

Table VI. Statistics regarding the sequence of broadcast and sampling intervals ({bik+1 − b
i
k}k≥0 and

{sik+1 − s
i
k}k≥0, respectively).

Agent Event Observed minimum Observed average Observed maximum
i detector interval interval interval

1 broadcast 0.574 s 4.184 s 37.86 s
sampling 0.598 ms 13.46 ms 266.3 ms

2 broadcast 0.393 s 3.232 s 19.50 s
sampling 0.716 ms 15.73 ms 361.3 ms

3 broadcast 0.546 s 3.066 s 11.98 s
sampling 1.058 ms 9.32 ms 375.4 ms

4 broadcast 0.369 s 1.769 s 10.27 s
sampling 0.149 ms 6.08 ms 233.1 ms

5 broadcast 0.390 s 1.946 s 9.64 s
sampling 0.046 ms 14.19 ms 262.4 ms

6 broadcast 0.505 s 2.652 s 12.84 s
sampling 0.036 ms 16.42 ms 541.9 ms

gj = (2j −mN − 1)/(mN − 1) for j ∈ {1, . . . ,mN}. The triggering parameters for the threshold
function are c0 = 0.001, c1 = 0.499, and α = 0.25. The communication graph G is represented in
Figure 8 (see Section A.1).

In Section 3.6, we have made the case in Example 3 that the asynchronous triggering mechanisms
have implementation issues that result from a rather restrictive design procedure. For this reason, in
the simulations performed in this section, we consider that the output and input event detectors
operate synchronously as described in Section 3.3, for which the design procedure is less
conservative. In this example, the (complete) sequence of sampling times of agent i is denoted
by {sik}k≥0 and is defined as {sik}k≥0 = {tik}k≥0 ∪ {bik}k≥0.

The trajectories of zi for i ∈ {1, . . . , N} are shown in Figure 7a, where it can be seen that the
agents approximately synchronize their regulated outputs. This is supported by Figure 7b where the
trajectory of maxi zi −mini zi is represented that measures the maximum misalignment possible
among the regulated output of all pairs of agents. Assuming transients due to initial conditions
have subsided after 50 s, a numerical bound on the asymptotic misalignment is given by the
maximum misalignment observed on the interval [50, 100], which in this case is 3.879× 10−2. The
sequences of sampling and broadcast intervals of agent i = 4 are shown in Figure 7c and Figure 7d,
respectively. In Figure 7c, we have highlighted the sampling intervals that immediately precede
a broadcast and that typically represent the lowest sampling intervals observed. In Table VI, we
present, for each agent, the minimum, maximum, and average sampling and broadcast intervals
observed in simulation.
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Figure 7. Simulation results for the event-triggered output synchronization controller with synchronous
output and input event detectors. (a) Trajectory of zi for each agent (on the southeast corner of the plot
is a zoom on the last 40 s). (b) Trajectory of maxi zi −mini zi that measures the maximum misalignment
possible among all pairs of agents. The dashed line represents the maximum misalignment observed on the
interval [50, 100], which is equal to 3.879× 10−2. (c) Sequence of sampling intervals of agent i = 4 where
the dashed line represents the minimum sampling interval τ imin. Highlighted in red are the sampling intervals
that immediately precede a broadcast and that typically represent the lowest sampling intervals observed.

(d) Sequence of broadcast intervals of agent i = 4.

5. CONCLUSION

In this paper we have proposed and analyzed a control architecture designed to achieve output
synchronization of multi-agent systems using event-triggered output regulation controllers and
event-triggered communication protocols.

We started by addressing the output regulation problem for a single agent where we considered
two scenarios. In the first one, the output and input event detectors operated synchronously, while in
second one they operated asynchronously. The event-triggered mechanisms proposed were inspired
by the results in [35] on event-triggered output feedback stabilization. They employ simultaneously
a time-triggered event condition and a state dependent one. It is shown that the proposed triggering
methods achieve globally bounded tracking error for all bounded reference trajectories and all
bounded disturbances. Examples are provided that illustrate the advantages and issues of the
proposed triggering methods.

By merging the above mentioned results on output regulation with previous work on
synchronization of reference generators, we proved that the regulated output of each agent converges
to and remains in a neighborhood of a desired reference trajectory and that Zeno solutions are
avoided. A multi-agent example was provided illustrating these facts.
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Further results for nonlinear systems with quantization have been recently reported in [42], which
reinforces the fact that event-triggered control techniques are becoming more wide spread.
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A. AUXILIARY MATERIAL

A.1. Graph theory review

For an in-depth presentation of the subject, the reader is referred for example to [43] for a comprehensive
textbook on the matter and to [2, 44, 45] for specific results regarding algebraic graph theory.

A (directed) graph G = G(V, E) consists of a finite set V = {1, 2, . . . , N} of N vertices and a finite set
E ⊆ V × V of m ordered pairs of vertices (i, j) named edges (in this paper, self-edges (i, i) are not allowed).
An undirected graph is defined as a graph where (i, j) ∈ E if and only if (j, i) ∈ E . If (i, j) ∈ E , then we say
that vertex i is an in-neighbor of vertex j and that j is an out-neighbor of vertex i. The set of in-neighbors
and of out-neighbors of vertex i are defined as N−i = {j ∈ V : (j, i) ∈ E} and N+

i = {j ∈ V : (i, j) ∈ E},
respectively. In an undirected graph, both sets are equal and simply referred to as neighbors of vertex i. A
path in G from vertex i to vertex j is a sequence of distinct edges of the form {(i, i1), (i1, i2), . . . , (ik, j)}.
A vertex i is a root of a graph G if there exists a path in G from vertex i to every other vertex in G. If G has
at least one root, we say that it is a rooted graph. If a graph G is undirected and rooted, then it is said to be
connected (in this case, all vertices are roots).

The adjacency matrix of a graph, denoted A = [aij ] ∈ RN×N , is a square matrix with rows and columns
indexed by the vertices and whose entries satisfy

aij =

{
1, (j, i) ∈ E ,
0, otherwise.

(102)

The in-degree matrixD of a graph is a diagonal matrix where the i, i-entry is equal to the in-degree of vertex
i (cardinality of N−i ). The Laplacian of a graph L = [lij ] ∈ RN×N is defined as

lij =

{∑N
k=1 aik, i = j,

−aij , otherwise,
(103)

that is equivalent to saying that L = D −A. Next, we enumerate some important properties of the Laplacian.

Lemma 6
Let L denote the Laplacian of a graph G. Then, the following properties hold:

1. L1N = 0;
2. ∃β ∈ RN , β>1N = 1 : β>L = 0;
3. σ(L) = {0, λ2, . . . , λN} with <{λi} > 0 for all non-zero eigenvalues;
4. G is a rooted graph if and only if 0 is a simple eigenvalue of L (this implies that <{λi} > 0 for

i = 2, . . . , N );

Furthermore, if G is undirected, then:

5. L is symmetric and β = 1
N 1N ;

6. λi ≥ 0 for i = 2, . . . , N ;
7. G is connected if and only if 0 is a simple eigenvalue of L (this implies that λi > 0 for i = 2, . . . , N ).

To illustrate the aforementioned concepts, consider as an example the graph depicted in Figure 8 with
vertex set V = {1, 2, 3, 4, 5, 6} and edge set E = {(1, 3); (2, 1); (2, 4); (3, 2); (3, 5); (4, 5); (5, 6); (6, 4)}. The
adjacency and Laplacian matrices associated with the graph are

A =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 0

 and L =


1 −1 0 0 0 0
0 1 −1 0 0 0
−1 0 1 0 0 0
0 −1 0 2 0 −1
0 0 −1 0 2 0
0 0 0 0 −1 1

 , (104)
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6

Figure 8. A graph with 6 vertices and 8 edges. Consider, for example, vertex 5. Its set of in-neighbors is
N−5 = {3, 4} and its set of out-neighbors isN+

5 = {6}. Vertices 1, 2, and 3 are all roots because there exists
a directed path from them to every other vertex in the graph.

respectively. The spectrum of the Laplacian is σ(L) = {0, 0.5344, 1.5000± i0.8660, 2.2328± i0.7926} and
β = ( 1

3 ,
1
3 ,

1
3 , 0, 0, 0).

A.2. Linear impulsive systems

Impulsive systems combine continuous evolution (typically modeled by ordinary differential equations) with
instantaneous state jumps (also referred to as resets or impulses). Stability properties of such systems have
been extensively investigated in the literature (see, e.g., [46, 47]).

We define a linear impulsive system as a system with state x ∈ Rn and initial state x(t0) = x0, for some
initial time t0 ∈ R, that satisfies, for all t ≥ t0,{

ẋ(t) = Ax(t), t ∈ [tk, tk+1), k ∈ {0, 1, . . .}, (105a)

x(t) = Jx−(t), t = tk, k ∈ {1, 2, . . .}, (105b)

where {tk}k≥0 = {t0, t1, t2, . . .} is a strictly increasing sequence of impulse times in (t0,∞).‡‡ The
sequence of impulse times is assumed to be either finite ({t0, t1, . . . , tK}) or infinite and unbounded
(limk→∞ tk = +∞). In particular, we exclude the possibility of {tk}k≥0 having any accumulation point,
often referred to as Zeno solutions. An accumulation point of a sequence {tk}k≥0 with elements in R is a
point t∗ ∈ R if for every neighborhood U of t∗, the set U ∩ {tk}k≥0 contains infinitely many points. The
following facts are used to excluded the occurrence of sequences with such points.

1. A sequence {tk}k≥0 does not have any accumulation points if there exists τmin > 0 such that
tk+1 − tk ≥ τmin for all k ≥ 0.

2. A sequence obtained from a finite union of sequences without accumulation points, does not have
accumulation points.

A.3. Definition of ISS and ISpS

The following definitions are borrowed from [48, Chapter 4] and [49]. Consider the system

ẋ = f(t, x, u) (106)

where f : [0,∞)×Rn ×Rm → Rn is piecewise continuous in t and locally Lipschitz in x and u. The input
u(t) is a piecewise continuous, bounded function of t for all t ≥ 0. A continuous function α : [0,∞)→
[0,∞) is said to belong to class K∞ if it is strictly increasing, α(0) = 0, and α(r)→∞ as r →∞. A
continuous function β : [0,∞)× [0,∞)→ [0,∞) is said to belong to class KL if, for fixed s, the mapping
β(r, s) belongs to class K∞ with respect to r and, for fixed r, the mapping β(r, s) is decreasing with respect
to s and β(r, s)→ 0 as s→∞.

The system (106) is said to be input-to-state stable (ISS) if there exist a class KL function β and a class
K∞ function ρ such that for any initial state x(t0) and any bounded input u(t), the solution x(t) exists for
all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + ρ

(
sup

t0≤τ≤t
‖u(τ)‖

)
. (107)

The system (106) is said to be input-to-state practically stable (ISpS) if there exist a class KL function β, a
class K∞ function ρ, and a constant c ≥ 0 such that for any initial state x(t0) and any bounded input u(t),

‡‡We include t0 in the sequence of impulse times to simplify the notation.
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the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + ρ

(
sup

t0≤τ≤t
‖u(τ)‖

)
+ c. (108)

The difference between ISS and ISpS is that the latter allows a non-zero constant c.

A.4. Schur complement

The following is adapted from [50, Appendix A.5.5]. Let x = (x1, x2) where x1 ∈ Rn1 and x2 ∈ Rn2 . Given

a symmetric matrix U ∈ R(n1+n2)×(n1+n2), let U =

[
A B
∗ C

]
be a partition compatible with the partition

of x. If A ≺ 0, then

x>Ux ≤ max
x1∈Rn1

x>Ux = x>2 (C −B>A−1B)x2, (109)

where C −B>A−1B is the Schur complement of A. If A � 0, then x>Ux ≥ x>2 (C −B>A−1B)x2.

B. PROOFS

B.1. Proof of Lemma 1

From (44), we have that x̃ and ψ are continuous for all t ≥ 0. Since (53) holds for all t ≥ 0, V̇ given in (51)
satisfies (54) for all t ≥ 0.

Using (48) in (54), we obtain that

V̇ (x̃(t)) ≤ −λV (x̃(t)) + γ2‖ψ(t)‖2, (110)

for all t ≥ 0. Integrating (110) from 0 to t yields

V (x̃(t)) ≤ e−λtV (x̃(0)) +

∫ t

0

γ2e−λ(t−s)‖ψ(s)‖2ds (111)

≤ e−λtV (x̃(0)) + γ2‖ψ‖2L∞

∫ t

0

e−λ(t−s)ds (112)

≤ e−λtV (x̃(0)) +
γ2

λ
‖ψ‖2L∞ . (113)

Using the fact that λmin(P )‖x̃‖2 ≤ V (x̃) ≤ λmax(P )‖x̃‖2, we have that

‖x̃(t)‖2 ≤ e−λt
λmax(P )

λmin(P )
‖x̃(0)‖2 +

γ2

λmin(P )λ
‖ψ‖2L∞ , (114)

from which we derive that

‖x̃(t)‖ ≤ e−
1
2λt

√
λmax(P )

λmin(P )
‖x̃(0)‖+

γ√
λmin(P )λ

‖ψ‖L∞ (115)

= β(t, ‖x̃(0)‖) + ρ0 (‖ψ‖L∞) . (116)

This shows that (46) is input-to-state stable (ISS) from ψ to x̃, thus proving 1). Since by assumption Zeno
solutions are avoided, we have that the limit in (55) exists. Then, 2) is obtained by using (35d) and (113),
yielding

lim
t→+∞

‖er(t)‖
(35d)
= lim

t→+∞
‖Ep (xp(t)−Πrxr(t)) ‖ (117)

= lim
t→+∞

‖Ēx̃(t)‖ (118)

≤ lim
t→+∞

∥∥∥ĒP−1/2
∥∥∥√V (x̃(t)) (119)

(113)
≤ γ√

λ

∥∥∥ĒP−1/2
∥∥∥ ‖ψ‖L∞ , (120)

where we used the fact that x̃>Ē>Ēx̃ ≤ λmax(P−
1
2 Ē>ĒP−

1
2 )x̃>P x̃.
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B.2. Proof of Lemma 2

For all k ≥ 0, we have that

ξ>(tk)M0ξ(tk) =

[
x̃(tk)
ψ(tk)

]> [
I
0

]>
M0

[
I
0

] [
x̃(tk)
ψ(tk)

]
(121)

=

[
x̃(tk)
ψ(tk)

]> [−σQ 0

0 −γ2Inψ

] [
x̃(tk)
ψ(tk)

]
< 0, for all

[
x̃(tk)
ψ(tk)

]
6= 0. (122)

This shows that when µ̃ is reset to zero, (53) is always satisfied. Suppose (53) holds for all t ∈ [0, tk).
Then, (122) and the fact that ξ(t) is a continuous function in t imply there exists t∗ > tk such that
ξ(t∗)>M0ξ(t

∗) = 0 and ξ(t)>M0ξ(t) ≤ 0 for all t ∈ [tk, t
∗). From (56), we see that tk+1 is the smallest

possible t∗, which implies that ξ(t)>M0ξ(t) ≤ 0 for all t ∈ [0, tk+1). Proceeding by induction in k, we
conclude that (53) holds for all t ∈ [0, limk→∞ tk). We show that limk→∞ tk = +∞ by proving the
existence of τmin.

Let k be fixed. Then, solving (44) in t yields that, for all t ≥ tk,

ξ(t) = eĀ(t−tk)ξ(tk) = eĀ(t−tk)

[
I
0

] [
x̃(tk)
ψ(tk)

]
. (123)

Thus, we have that, for all t ≥ tk,

ξ>(t)M0ξ(t) =

[
x̃(tk)
ψ(tk)

]> [
I
0

]>
eĀ
>(t−tk)M0e

Ā(t−tk)

[
I
0

] [
x̃(tk)
ψ(tk)

]
(124)

≤ h(t− tk)

∥∥∥∥[x̃(tk)
ψ(tk)

]∥∥∥∥2

(125)

where the function h is defined in (58). Since h is a continuous function of s and

h(0) = λmax

{[
−σQ 0

0 −γ2Inψ

]}
= −min

{
σλmin(Q), γ2

}
< 0, (126)

there exists τmin > 0 such that h(s) < 0 for s ∈ [0, τmin). If we take t∗ = tk + τmin, then ξ>(t∗)M0ξ(t
∗) <

0. Thus, tk+1 > t∗ ⇔ τk > τmin that is satisfied for all k ≥ 0 because the existence of τmin is independent
of k.

Finally, (57) implies that τmin ≤ τ∗min where τ∗min is attainable because there exists an initial condition
such that the sampling interval is precisely τ∗min, namely any initial condition that belongs to the kernel of

[
I
0

]>
eĀ
>τ∗minM0e

Āτ∗min

[
I
0

]
. (127)

B.3. Proof of Lemma 3

The first event condition in (59), guarantees that ξ>(t)M0ξ(t) ≤ 0 for all t ∈ [tk, tk + τmin]. At t =
tk + τmin, one of two situations may happen.

1. If φ>(t)Mφ(t) ≥ 0, then tk+1 = tk + τmin.
2. Otherwise, there exists tk+1 > tk + τmin such that φ>(t)Mφ(t) ≤ 0 for all t ∈ [tk + τmin, tk+1).

Because of (60), we have that

ξ>(t)M0ξ(t) ≤ φ>(t)Mφ(t) ≤ 0 (128)

for all t ∈ [tk + τmin, tk+1).

In any case, we have that ξ>(t)M0ξ(t) ≤ 0 for all t ∈ [tk, tk+1). Note that, by definition, τk ≥ τmin and
thus limk→∞ tk = +∞. Therefore, ξ>(t)M0ξ(t) ≤ 0 for all t ≥ 0.
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B.4. Sub-matrix of M̂0 is negative definite

To check that in (66) the Schur complement technique may be applied to the matrix M̂0, we have to show
that the appropriate sub-matrix of M̂0 is negative definite. First, note that the matrix T in (61) and Ẑc in (63)
are invertible. Therefore, T Ẑc is also invertible and may be written as

T Ẑc =

[
T1Ẑ1 0

0 Inµ

]
. (129)

Using this decomposition, we may write M̂0 as

M̂0 =

[
T1Ẑ1 0

0 Inµ

]>
M0

[
T1Ẑ1 0

0 Inµ

]
=

[
−Q̂ Ĝ
∗ 0nµ

]
(130)

where Q̂ � 0. This shows that the sub-matrix of M̂0 associated with xu is negative-definite and thus we may
apply the Schur complement technique to M̂0 to obtain M .

B.5. Proof of Theorem 3

From the definition of the triggering mechanism in (59), {tk}k≥0 satisfies τk ≥ τmin > 0 for all k ≥ 0,
which implies 1) as stated in Section A.2. Lemma 3 guarantees that (53) holds for all t ≥ 0. Therefore, by
Lemma 1, 2) and 3) hold.

B.6. Proof of Lemma 4

The proof follows along the same arguments used in Lemma 1 of [35]. For t ∈ [tk, tk+1), (44) implies that

˙̂
ξ = F ξ̂ +

[
Gy
0

]
ỹ +

[
Gu
0

]
ũ. (131)

Note that ỹ = −Hy ξ̂ and ũ = −Huξ̂. We want to find τymin > 0 such that

νy(t) =
‖ỹ(t)‖
‖ξ̂(t)‖

≤ wy (132)

holds for all t ∈ [tyk, t
y
k + τymin). To accomplish this we need a bound on the evolution of νy . We have that

ν̇y =
d

dt

(
ỹ>ỹ
ξ̂>ξ̂

) 1
2

(133)

=

(
ξ̂>ξ̂
ỹ>ỹ

) 1
2 (ỹ> ˙̃y)(ξ̂>ξ̂)− (ỹ>ỹ)(ξ̂> ˙̂

ξ)

(ξ̂>ξ̂)2
(134)

≤ ‖ξ̂‖‖ỹ‖

(
‖Hy‖‖ỹ‖‖ξ̂‖2 + ‖ỹ‖2‖ξ̂‖

‖ξ̂‖4

)
‖ ˙̂
ξ‖ (135)

≤
(
‖Hy‖+

‖ỹ‖
‖ξ̂‖

)
‖F‖‖ξ̂‖+ ‖Gy‖‖ỹ‖+ ‖Gu‖‖ũ‖

‖ξ̂‖
(136)

= (‖Hy‖+ νy)(‖F‖+ ‖Gy‖νy + ‖Gu‖νu) (137)

where νu = ‖ũ‖/‖ξ̂‖. By assumption, we have that {tuk}k≥0 is such that νu(t) ≤ wu holds for all t ≥ 0.
Therefore,

ν̇y ≤ (‖Hy‖+ νy)(‖F‖+ ‖Gy‖νy + ‖Gu‖wu) (138)

and νy(tyk) = 0. Using the comparison principle (see, e.g., [48]), we conclude that the solution ν of (74) with
a = ‖F‖+ ‖Gu‖wu, b = ‖Gy‖, and c = ‖Hy‖ satisfies νy(tyk + s) ≤ ν(s) for all s ≥ 0. Therefore, the time
it takes for νy to grow from νy(tyk) = 0 to wy is greater than or equal to τymin. The same approach may be
applied to νu to arrive at the same conclusion regarding τumin.
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B.7. Proof of Lemma 5

Suppose ‖ũ(t)‖ − wu‖ξ̂(t)‖ ≤ 0 for all t ≥ 0. Then, the first event condition in (79a) guarantees that
‖ỹ(t)‖ − wy‖ξ̂(t)‖ ≤ 0 for all t ∈ [tyk, t

y
k + τymin]. At t = tyk + τymin, one of two situations may happen.

1. If φ>y (tyk + τymin)Myφy(tyk + τymin) ≥ 0, then tyk+1 = tyk + τymin.
2. Otherwise, since φy(t) is a continuous function for t ≥ tyk, there exists tyk+1 > tyk + τymin such that

φ>y (tyk+1)Myφy(tyk+1) = 0 and φ>y (t)Myφy(t) < 0 for all t ∈ [tyk + τymin, t
y
k+1). From (77a) and

(78), we conclude that

φ>y (t)Myφy(t) ≤ 0⇒ ‖ỹ(t)‖ − wy‖ξ̂(t)‖ ≤ 0 (139)

for all t ∈ [tyk + τymin, t
y
k+1).

In any case, we have that ‖ỹ(t)‖ − wy‖ξ̂(t)‖ ≤ 0 for all t ∈ [tyk, t
y
k+1). Note that, by definition, τyk ≥ τ

y
min

and thus limk→∞ tyk = +∞. Therefore, ‖ỹ(t)‖ − wy‖ξ̂(t)‖ ≤ 0 for all t ≥ 0. Proceeding in the same manner
for {tuk}k≥0, leads to the conclusion that ‖ũ(t)‖ − wu‖ξ̂(t)‖ ≤ 0 for all t ≥ 0, which confirms our initial
assumption.

Therefore, (73) holds for all t ≥ 0 and from the chain of implications (73)⇒ (70)⇒ (53), it follows that
(53) holds for all t ≥ 0.

B.8. Proof of Theorem 4

From the definition of the triggering mechanisms in (79), we have that {tyk}k≥0 and {tuk}k≥0 satisfy
τyk ≥ τ

y
min > 0 and τuk ≥ τ

u
min > 0 for all k ≥ 0, respectively. Then, {tk}k≥0 = {tyk}k≥0 ∪ {tuk}k≥0 does

not have accumulation points (see Section A.2), which proves 1). Lemma 5 implies that (54) holds for all
t ≥ 0. Therefore, by Lemma 1, 2) and 3) hold.

B.9. Proof of Theorem 5

Consider the signal ζ0(t) defined in (3). Using the initial condition ζ0(0) = (β> ⊗ Im)ζ(0) and solving (3a)
in t, yields ζ0(t) = eArt(β> ⊗ Im)ζ(0) for all t ≥ 0. Therefore, (100) may be rewritten as ‖zi − Erζ0‖ ≤ d.
Next, note that

zi − Erζ0 = Epi

(
x̃pi + Πr,iζ̂i + Πwi wi

)
− Erζ0 (140)

= Epi x̃r,i + Er

(
ζ̂i − ζ0

)
(141)

= Ēix̃i + Er

(
ζ̂i − ζ0

)
, (142)

where Ēi =
[
Epi 0

]
∈ Rr×(npi+nci ). We will show that each of the terms in (142) is bounded, thereby

showing that there exists d > 0 such that (100) holds.
First, note that ζ̂i − ζ0 may be written as ζ̂i − ζ0 = (ζi − ζ0) + (ζ̂i − ζi). The signal ζi − ζ0 is bounded

because it satisfies ‖ζi − ζ0‖ ≤ ‖δ‖ ≤ δ̄, which follows from (24). The signal ζ̂i − ζi is equal to ei that is
bounded by the definition of the triggering condition in (22). Therefore, ζ̂i − ζ0 is bounded.

Regarding the term Ēix̃, by Theorem 4, we have that x̃i is ISS with respect to wi and ζ̂i. The disturbance
wi is bounded since Awi is skew-symmetric by Assumption 1. The signal ζ̂i is bounded because ζ̂i − ζ0 is
bounded (as shown above) and ζ0 is bounded (since Ari is skew-symmetric by Assumption 1). We conclude
that x̃i is bounded that, together with the previous argument, proves that (100) holds.

Next, we show that the closed-loop system does not exhibit Zeno solutions. Note that {ty,ik }k≥0,
{tu,ik }k≥0, and {bik}k≥0 to not have accumulation points because they satisfy τy,ik ≥ τymin, τu,ik ≥ τumin,
and bik+1 − b

i
k ≥ θmin, respectively. Let {sik}k≥0 = {bik}k≥0 ∪ {t

y,i
k }k≥0 ∪ {t

u,i
k }k≥0 denote the sequence

of all event times of agent i. Then, the sequence of all event times occurring in the closed-loop system is
defined as

{sk}k≥0 =

N⋃
i=1

{sik}k≥0 =

N⋃
i=1

{bik}k≥0 ∪ {t
y,i
k }k≥0 ∪ {t

u,i
k }k≥0, (143)
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which does not have accumulation points since it is the finite union of sequences without accumulation
points.
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