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Abstract

This paper addresses the problem of reaching consensus among a group of
agents that evolve in continuous-time and exchange information at discrete-
time instants, referred to as update times. Each agent has its own sequence
of update times and therefore the agents are not required to keep synchro-
nized clocks among them. At each update time, an agent receives from a
subset of the other agents their state, as determined by the communication
topology that may be time-varying. Due to transmission delays, the infor-
mation may be received by an agent with latency. In our proposed solution,
the state of each agent is augmented with an extra state variable that is
updated instantaneously at update times. Between updates, the original
state and the extra variable both evolve in a continuous fashion. It is shown
that consensus is reached asymptotically by reducing the original problem
involving continuous-time variables and asynchronous communications to a
discrete-time equivalent and using known results for discrete-time consensus.
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1. Introduction

The analysis of how groups of agents may exhibit complex global be-
haviors that emerge from simple local rules is a topic of research that has
attracted considerable attention in recent years in many scientific fields that
range from biology to space exploration. Among a multitude of problems
that arise in this context, one that is easy to formulate and of practical inter-
est is the consensus or agreement problem. This problem usually arises when
a group of agents perform a task that requires coordination among them such
as in rendezvous maneuvers, formation control of autonomous vehicles [1, 2],
and distributed parallel computation over computer networks [3]. A funda-
mental part of such tasks relies on the agents being able to agree on some
common knowledge that is not available a priori and that may need to be
recomputed over time upon request or when the operating conditions change.
Sharing of information through some form of communication channel is thus
crucial to the successful completion of the task at hand and brings about
such issues as switching network topologies and transmission delays.

Conditions under which consensus is reached asymptotically have been
studied extensively in the literature by adopting different mathematical se-
tups. In some cases, the state variables of each agent evolve in continuous-
time (the state trajectory is a continuous curve) [4, 5, 6, 7, 8, 9], while in
other cases they evolve in discrete-time (the state trajectory is a sequence of
values) [10, 4, 5, 7, 11, 12, 13, 14, 15, 16, 17, 18]. Also relevant is whether
the communication topology is fixed over time or if it is allowed to change,
that is, if the information available to a given agent always comes from the
same subset of agents or if this subset is allowed to change over time. Most of
the literature has focused on the second, more challenging, case (in the list
of references provided above, only [4] considers fixed topologies). Because
the network topology is time-varying it may happen that it is disconnected
so often that consensus is impossible to reach. Therefore, some connectivity
assumptions on the sequence of graph topologies have to be made. Another
issue that has to be taken into account are transmission delays. Since each
agent has to send and receive data, consensus protocols will have to work
with outdated information and thus be robust against time delays. Such
issues are addressed in [10, 4, 6, 11, 12, 13, 8, 14, 15, 16, 18, 17, 9]. The
above mentioned references cover thoroughly the case when the agents have
first order dynamics. Results for higher-order dynamics may be found in
[1, 2, 19, 20, 21, 22] and references therein.

2



In this paper, we consider agents with first order dynamics, that is, each
agent’s state is represented by a scalar. While some applications may require
continuous state variables, continuous communication links among agents
are hard to achieve in practice, where transmission of data naturally occurs
in small bursts over short periods of time. In this paper, we take this com-
munication constraint into account and consider a setup where the agents’
state variables are continuous but information from neighboring agents is
only available at discrete time instants that will henceforth be referred to as
update times. Each agent has its own sequence of update times and there-
fore the agents are not required to keep synchronized clocks among them.
Furthermore, these update times are not assumed to be uniformly spaced in
time.

In our proposed solution, an extra state variable is introduced for each
agent that evolves in continuous-time and is allowed to have discontinuities,
unlike the primary state variable that is continuous for all time. Between up-
date times, both the original state and the extra variable evolve continuously
according to some specified dynamics. At update times, the original state
variable keep their current values, while the extra variable is updated by
forming a convex combination of state values received from other agents. To
analyse the resulting system, we start by constructing a discrete-time equiv-
alent of the continuous-time system. We then prove that the latter reaches
consensus asymptotically, in the presence of switching topologies and time
delays, by resorting to a well known results on discrete-time consensus.

It is interesting to remark that in [16] (see also [15]), a solution is proposed
for a problem similar to the one addressed in this paper that also involves
augmenting the state of each agent with an additional state variable, referred
to as a way-point. Between update times, the original state of each agent
changes continuously from its current value to the corresponding way-point,
as determined by a pre-specified continuous function. At update times, the
way-points are updated according to a averaging protocol with fixed weights.
In our setup, for greater flexibility in the design of the consensus control law,
we allow for time-varying weights; we further address explicitly the situation
where the information received by one agent from the other agents may be
outdated due to transmission delays (not considered in [16]).

An alternative strategy that does not require extra state variables is pro-
posed in [23], where the authors consider a setup identical to ours (time-
varying weights in the discrete updates, switching topologies, and time de-
lays). Compared with [23], as noted above, our strategy has extra degrees
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of freedom in the form of weights in the continuous dynamics that yield fur-
ther controller tuning parameters (see Remark 1 in Section 3.1 for further
details). Furthermore, our approach exploits an interesting connection be-
tween a continuous-time consensus problem with discrete-time asynchronous
communications and a related purely discrete-time one.

The paper is organized as follows. In Section 2, we begin by presenting
a brief summary of basic concepts from graph theory that are important
to understand the modeling of an inter-agent communication graph and its
properties. The discrete-time consensus problem is then introduced and con-
ditions required for asymptotic consensus are provided. In Section 3, a formal
statement of the problem addressed in this paper is given along with a de-
scription of our proposed solution, related assumptions, and the convergence
analysis. The main result of the paper asserts that our solution reaches con-
sensus asymptotically under the stated assumptions. In Section 4, an illus-
trative example with numerical simulations is presented. Finally, concluding
remarks are given in Section 5.

2. Discrete-time consensus

In this section we introduce a well-known discrete-time consensus problem
and a related convergence result that will be crucial in proving convergence of
our proposed consensus algorithm later, in Section 3. We begin by reviewing
some key concepts from graph theory that play an important role in what
follows. See [24] for an in-depth presentation of this subject.

2.1. Directed graphs

A directed graph or digraph G = G(V,E) consists of a finite set V =
{1, 2, . . . , n} of n vertices and a finite set E ⊆ V × V of m ordered pairs of
vertices (i, j) named arcs. If (i, j) belongs to E then we say that i is adjacent
to j. A path in G from i to j is a sequence of distinct vertices starting with
i and ending with j such that consecutive vertices are adjacent. A vertex i
is a root if there exists a path in G from vertex i to every other vertex in G.
If a graph has at least one root, we say that it is a rooted graph. Given a
collection of graphs {Gk = (V,Ek)}Bk=1 of length B with the same vertex set,
the union of these graphs (union graph) is defined as

B⋃
k=1

Gk = G1 ∪ G2 ∪ · · · ∪ GB = (V,E1 ∪ E2 ∪ · · · ∪ EB). (1)
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2.2. Problem formulation and known results

Consider a set of N agents, labeled 1 through N , each one with its own
scalar state variable xi ∈ R. Each agent updates its state variable according
to the equation

xi(k + 1) =
N∑
j=1

aij(k)xj(k − τij(k)), (2)

where aij(k) are nonnegative coefficients, and τij(k) are nonnegative integer
time delays. Let A(k) denote the matrix whose entries are aij(k). Given
p, q ∈ Z such that p ≤ q, let 〈p, q〉 = {m ∈ Z : p ≤ m ≤ q}. We say
that consensus is reached asymptotically if, for every xi(0) ∈ R, there exists
x∗ ∈ [mini∈〈1,N〉 xi(0),maxi∈〈1,N〉 xi(0)] such that, for all i ∈ 〈1, N〉,

lim
k→+∞

xi(k) = x∗. (3)

The value of x∗ depends on the agents’ initial conditions but also on the evo-
lution of the coefficients and on the sequence of delays. Naturally, consensus
cannot be reached for arbitrary sequences of the coefficients or the delays.

In what follows, we introduce and discuss some standard assumptions
that guarantee asymptotic consensus.

Assumption 1 (Nontrivial convex interaction). There exists a positive con-
stant α < 1 (strength of interaction) such that, for all i, j ∈ 〈1, N〉 and all
k ≥ 0, A(k) satisfies:

1. aii(k) ≥ α;

2. aij(k) ∈ {0} ∪ [α, 1);

3.
∑N

j=1 aij(k) = 1.

Item 1 of Assumption 1 states that xi(k) must be used in every iter-
ation, while state variables from other agents may not be used as their
availability is not ensured at every time step (item 2). Item 3 and the
fact that all coefficients are nonnegative implies that the combination of
state variables is always a convex one. This implies that at every time step
xi(k) ∈ [mini∈〈1,N〉 xi(0),maxi∈〈1,N〉 xi(0)].

Assumption 2 (Bounded discrete-time delays). There exists a positive in-
teger τ such that for all i, j ∈ 〈1, N〉 and all k ≥ 0:

1. τii(k) = 0;
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2. 0 ≤ τij(k) ≤ τ .

3. 0 ≤ k − τij(k);

Assumption 2 essentially states that each agent has always access to its
current state (item 1) and that the time delays are non-negative and upper
bounded by some constant (item 2). Item 3 is introduced so that the initial
condition is given by x(0). For convenience, if aij(k) = 0 then τij(k) = k.

The communication topology at each iteration can be described in terms
of a directed graph A(k) = (〈1, N〉, E(k)), where (j, i) ∈ E(k) if and only
if aij(k) > 0. That is, the structure of the directed graph A(k) and that of
matrix A(k) are linked. We thus say that graph A(k) is induced by A(k).

Assumption 3 (Periodically rooted digraph). For any sequence of directed
graphs {A(k)}+∞

k=0, there exists a positive constant B such that the union
graph over any interval of length B is a rooted graph, that is, for all k0 ≥ 0,

k0+B−1⋃
k=k0

A(k) (4)

has at least one root.

Although the sequence of graphs may not be point-wise rooted, Assump-
tion 3 guarantees that its union over a bounded time interval is a rooted
graph. Given the previous setup, we have the following result.

Theorem 1. Under Assumptions 1, 2, and 3, the discrete-time iterations
described by (2) reach consensus asymptotically.

This theorem can be proved using several techniques including those in,
e.g., [7, 12, 14].

3. Continuous-time consensus with discrete-time updates

In this section, we start by introducing the problem of continuous-time
consensus with discrete-time updates. We then present our proposed solution
and introduce our main assumptions. Finally, we analyze the convergence
properties of our solution using the results of the previous section.

Consider again N agents each one with its own state variable xi ∈ R as
before, except that now, instead of being discrete in time, the state variables
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must be continuous in time. Each agent has its own initial condition xi(t
i
0)

and satisfies, for all t ≥ ti0,

ẋi = ui (5)

where ui is a control input to be specified. To avoid unnecessary com-
plexity, we assume that ti0 = t0 for all i ∈ 〈1, N〉. We say that consen-
sus is reached asymptotically if, for every xi(t0) ∈ R, there exists x∗ ∈
[mini∈〈1,N〉 xi(t0),maxi∈〈1,N〉 xi(t0)] such that for all i ∈ 〈1, N〉

lim
t→+∞

xi(t) = x∗. (6)

Naturally, to reach consensus agents must exchange information among
them. Since continuous communication links among agents are hard to
achieve in practice, we consider the case where the information exchange
among agents occurs only at update times. Each agent has its own set of
update times that are represented by an increasing sequence of time instants
Ti = {tik}+∞

k=0 with i ∈ 〈1, N〉. At each update time tik, agent i receives in-
formation about its neighboring agents, a subset of all the agents that, in
general, changes over time. Suppose that at time tk agent i has access to the
state of agent j, that is, xj(t

i
k) is available to agent i to use as it sees fit. The

neighborhood of agent i is thus defined as

Ni(tik) = {j ∈ 〈1, N〉 : xj(t
i
k) is available to agent i at time t = tik}. (7)

Furthermore, the information available to agent i may be received with la-
tency due to a number of factors that include measurement and computation
times and transmission delays. This latency is modeled a time delay. Let
agent j be a neighbor of agent i. Due to latency, at time t = tik, instead
of having access to the current state of the neighboring agent xj(t

i
k), the

information available to agent i is xj(t
i
k − γij(t

i
k)) where γij(t

i
k) ≥ 0 is a

time delay. At this stage, agent i is allowed to perform some computations
that must lead to consensus. Note that we are working in an asynchronous
setup as each agent has is own set of update times and there are no syn-
chronized clocks among agents. In this setup, each agent performs its own
computations independently of the other agents.

The consensus problem addressed in this paper is formally stated as fol-
lows.
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Problem 1. Given N identical agents described by the model (5), each with
its own sequence of update times Ti, find a distributed control strategy such
that consensus is reached asymptotically under time-varying neighborhoods
and time-varying delays.

In the above, by distributed control strategies we mean strategies that
only require access the agent’s own state information and to information
received from neighboring agents. The conditions under which we derive a
distributed control law yielding consensus are given later.

3.1. Proposed solution

We begin by introducing an additional state variable Xi ∈ R, one for each
agent, that may have discontinuities at update times, unlike xi that must be
continuous for all time. The additional variable Xi represents a value that
xi should track.

Between two update times of agent i, say tik and tik+1, the only information
it has available is its own, that is, agent i only has access to the values of xi
and Xi. During this time interval, the evolution of xi and Xi is dictated by

ẋi(t) = −bi(tik)
(
xi(t)−Xi(t)

)
(8)

Ẋi(t) = ci(t
i
k)
(
xi(t)−Xi(t)

)
(9)

where bi(t
i
k) > 0 and ci(t

i
k) ≥ 0. This type of dynamics leads to a decrease

of the absolute difference between xi and Xi.
At each update time tik, with k ≥ 1, agent i receives the state variables

of its neighboring agents. The value of Xi is updated using the information
received that may be outdated, while xi remains unchanged. Formally, we
have the update equations

xi(t
i
k) = xi(t

i−
k ) (10)

Xi(t
i
k) = dii(t

i
k)Xi(t

i−
k ) +

∑
j∈Ni(tik)

dij(t
i
k)xj(t

i
k − γij(tik)) (11)

where x(t−) = lims→0− x(t + s). We use the convention that if γij(t
i
k) = 0,

then tik − γij(tik) = ti−k .

Remark 1. The strategy proposed in [23] can be written for agent i as

ẋi(t) =

{
0, Ni(tik) = ∅∑

j∈Ni(tik) aij(t
i
k) (xj(t

i
k − γij(tik))− xi(t)) , otherwise

. (12)
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This type of dynamics may be written in our setup by making bi(t
i
k) = 1

and ci(t
i
k) = 0 in (8)-(9), and dij(t

i
k) = aij(t

i
k) in (11) and dii(t

i
k) = 0. If

Ni(tik) = ∅, then bi(t
i
k) = 0. For our proof strategy to work, the weights bi

and dii must be positive (if this does not hold then Assumption 1 will not be
satisfied; see the proof of Theorem 2 for more details). Although, we cannot
claim that the results in [23] are a particular case of ours, note the existence
of extra degrees of freedom in the form of weights bi and ci in (8)-(9) that
are not present in (12).

3.2. Main assumptions

For the proposed strategy to work, some assumptions are required. These
are introduced in the sequel. Given each sequence of individual update times
Ti, our strategy for a consensus proof requires us to construct a “larger”
sequence of update times T formed by merging every individual sequence Ti,
that is,

T = {tk}+∞
k=0 =

N⋃
i=1

Ti. (13)

Merging every sequence of update times requires repeated update times to be
deleted and the sequence reordered so that the update times are in increasing
order. We begin by considering the following property that we would like T
to satisfy.

Property 1 (Bounded communication intervals). Given an increasing se-
quence of time instants {sk}+∞

k=0, there exist positive constants δ and δ such
that 0 < δ ≤ sk+1 − sk ≤ δ < +∞ holds for all k ≥ 0.

It turns out that even if each Ti satisfies Property 1, T may not inherit
this property as shown by the following counterexample.

Counterexample. Let N = 2. Given δ > 0, let

T1 = {t10 = 0; t11 = t10 + 2δ; t1k+1 = t1k + δ, for k ≥ 1} (14)

and

T2 = {t20 = 0; t21 = t20 +
3

2
δ; t2k+1 = t2k +

(
1 +

1

2k+1

)
δ, for k ≥ 1}. (15)
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Note that δ ≤ t1k+1 − t1k ≤ 2δ and δ ≤ t2k+1 − t2k ≤ 3
2
δ for all k ≥ 0. Hence,

both T1 and T2 satisfy Property 1. Let

T = T1 ∪ T2 = {tk}+∞
k=0 = {0, t21, t11, t22, t12, . . .}. (16)

Since

t1k − t2k =
1

2k+1
→ 0, (17)

there exists no δ > 0 such that tk+1 − tk ≥ δ for all k ≥ 0. Hence, T does
not satisfy Property 1.

Since, in our proof of convergence, the existence of a lower bound δ in
Property 1 for the sequence T is crucial, we consider the following assump-
tion.

Assumption 4 (Quantized communication intervals). Given ∆ > 0 and
M ∈ N, each sequence of update times Ti with i ∈ 〈1, N〉 is such that, for all
k ≥ 0,

tik+1 − tik ∈ {q∆ : q ∈ 〈1,M〉}. (18)

Assumption 4 states that the update intervals of each agent are quan-
tized, that is, they must be integer multiples (up to a maximum of M) of
a fundamental update interval ∆. If Assumption 4 is satisfied, then T sat-
isfies Property 11. Assumption 4 is not very restrictive as one may take M
arbitrarily large to approximate any bounded interval with arbitrarily high
accuracy.

Given T , we now extend the coefficients in (8)-(9) and (10)-(11), that
were only defined at update times of each individual agent, to be defined
over the whole union sequence. For all i ∈ 〈1, N〉 and all tk ∈ T , let

bi(tk) = bi(t
i
p) (19)

ci(tk) = ci(t
i
p) (20)

1This statement is a particular case of Lemma 2 to be introduced later in the text
(Section 3.4).
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where p = max{r ≥ 0 : tir ≤ tk}. For all i, j ∈ 〈1, N〉 and all tk ∈ T , let

dii(tk) =

{
dii(t

i
p), if tk = tip ∈ Ti

1, otherwise
(21)

dij(tk) =

{
dij(t

i
p), if tk = tip ∈ Ti

0, otherwise
. (22)

Assumption 5. There exist b, b, c, c > 0 such that, for all i ∈ 〈1, N〉 and all
k ≥ 0, bi(tk) ∈ [b, b] and ci(tk) ∈ {0} ∪ [c, c].

Let Dk = D(tk) denote the matrix whose entries are dij(tk). We assume
that the sequence {Dk}+∞

k=0 satisfies Assumption 1 with strength of interaction
β ∈ (0, 1).

To each time instant, tk, we associate a directed graph Gk = G(tk) =
(V,Ek) with V = 〈1, N〉 and Ek ⊆ V × V defined as Ek = {(j, i) : dij(tk) >
0, i, j ∈ 〈1, N〉}. Each graph Gk is induced by the matrix Dk and captures the
information available to each agent at time tk. We assume that the sequence
of graphs {Gk}+∞

k=0 satisfies Assumption 3.
As previously mentioned, the information received by each agent may be

outdated due to a number of factors. The latencies are modeled as time
delays γij introduced in (11). Similar to what was done for the coefficients
dij, we extend the time delays so that they are defined for all tk ∈ T , by
letting

γij(tk) =

{
γij(t

i
p), if tk = tip ∈ Ti

0, otherwise
(23)

for all i, j ∈ 〈1, N〉. The time delays are assumed to satisfy the following:

Assumption 6 (Quantized time delays). Given ∆d > 0 and Md ∈ N, the
sequence of delays is such that, for all k ≥ 0 and all 1 ≤ i, j ≤ N :

1. γii(t
i
k) = 0;

2. γij(t
i
k) ∈ {q∆d : q ∈ 〈0,Md〉};

3. t0 ≤ tik − γij(tik).
The reason for considering quantized delays (item 2) stems, as previously

mentioned, from the need to guarantee the existence of a lower bound δ in
Property 1 for the sequence T .
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3.3. State augmentation

Let the state of the whole system formed by the N agents be represented
by

z(t) =
[
x1(t) X1(t) · · · xN(t) XN(t)

]>
, (24)

with initial state z(t0) ∈ R2N . The dynamics of either variable (xi or Xi) may
depend on the values of other state variables. This dependence is represented
by a graph, an interaction graph, with vertex set V = 〈1, 2N〉 (one vertex for
each variable). Odd vertices are associated to xi variables while even vertices
are associated to Xi variables.

The continuous dynamics (8)-(9) can be written in terms of the aug-
mented state variable z as

ż(t) = L(tk)z(t) (25)

for all t ∈ [tk, tk+1), where

L(tk) = diag(L1(tk), L2(tk), . . . , LN(tk)) (26)

with

Li(tk) =

[−bi(tk) bi(tk)
ci(tk) −ci(tk)

]
. (27)

For all δ ≥ 0, b > 0, and c ≥ 0, let

Ψ(δ, b, c) =
1

b+ c

[
c+ bf(δ, b, c) b(1− f(δ, b, c))
c(1− f(δ, b, c)) b+ cf(δ, b, c)

]
(28)

where f(δ, b, c) = e−(b+c)δ. For all k ≥ 0, (25) implies that

z(t−k+1) = Φ(tk+1, tk)z(tk), (29)

where, for all t ≥ s,

Φ(t, s) = diag(Φ1(t, s),Φ2(t, s), . . . ,ΦN(t, s)) (30)

with

Φi(t, s) = exp{Li(tk)(t− s)} = Ψ(t− s, bi(tk), ci(tk)). (31)
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Figure 1: Interaction graph, denoted by Hk, among state variables for t ∈ [tk, tk+1) and
induced by matrix Φ(tk+1, tk). Numbers in brackets represent the vertex in V associated to
each state variable. Edges departing from xi and entering Xi are only present if ci(tk) > 0.

Let F = (V , F ) where

F = {(2i, 2i− 1) : i ∈ V } ∪ {(i, i) : i ∈ V }. (32)

The graph induced by Φ(tk+1, tk) is denoted by Hk = (V ,Hk), where

Hk = F ∪ {(2i− 1, 2i) : i ∈ V ∧ ci(tk) > 0}, (33)

as depicted in Figure 1.
At each update time tk, with k ≥ 1, using the aggregated state, we can

write the update equations (10)-(11) as

zi(tk) =
2N∑
j=1

rij(tk)zj(tk − σij(tk)), (34)

where, for all i, j ∈ V ,

rij(tk) =


1, if i = j = 2p− 1

dpp(tk), if i = j = 2p

dpq(tk), if i = 2p and j = 2q − 1

0, otherwise

(35)

and

σij(tk) =

{
γpq(tk), if i = 2p and j = 2q − 1

0, otherwise
. (36)

Let Rk = R(tk) denote the matrix whose entries are rij(tk). The graph
induced by Rk is denoted by Gk = (V ,Ek), where

Ek = {(2i− 1, 2j) : (i, j) ∈ Ek ∧ i 6= j} ∪ {(i, i) : i ∈ V }, (37)

with Gk = (V,Ek) denoting the graph induced by the matrix Dk. See Figure 2
for a graphical illustration of the relation between Gk and Gk.
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(a) Information flow among agents
u, i, and v according to Gk.

xu
[2u−1]

// Xi
[2i]

��
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[2i−1]
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��
Xv
[2v]

(b) Interaction graph among state vari-
ables in Gk.

Figure 2: Relation between Gk and Gk. Agent i has one incoming arc from u and one
outgoing arc to v in Gk, that give rise to the arcs (2u− 1, 2i) and (2i− 1, 2v), respectively,
in Gk. Only self-arcs associated with i are represented.

3.4. Main result

The following result establishes that the strategy described in Section 3.1
under the assumptions presented in Section 3.2 solves Problem 1.

Theorem 2. Consider the dynamical system with state z driven by equations
(25) and (34). If

1. Assumptions 4, 5, and 6 are satisfied;

2. the sequence of matrices {Dk}+∞
k=0 satisfies Assumption 1; and,

3. the sequence of directed graphs {Gk}+∞
k=0 satisfies Assumption 3;

then z reaches consensus asymptotically.

The proof of the theorem consists of constructing an equivalent discrete-
time description of the system, applying Theorem 1 to this system, and
concluding that consensus is reached asymptotically. To illustrate the proof
strategy, consider the case without time delays. Let y(p) ∈ R2N be a new
discrete-time state variable introduced for analysis purposes only and defined
as y(p) = z(tp/2) for p = 0, 2, 4, . . ., and y(p) = z(t−(p+1)/2) for p = 1, 3, 5, . . ..
We can further write

y(p+ 1) = A(p)y(p), (38)

where the matrix A(p) is defined as

A(p) =

{
Φ(t p

2
+1, t p

2
), if p = 0, 2, 4, . . .

R p+1
2
, if p = 1, 3, 5, . . .

. (39)

The diagram in Figure 3 depicts the sequence of iterations that variable
y undergoes. If T satisfies Property 1 then, for all k ≥ 0, the entries of
Φ(tk+1, tk) satisfy Assumption 1 with strength of interaction φ for some φ ∈
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y(0) = z(t0)

Φ(t1,t0)��

y(2) = z(t1)

Φ(t2,t1)��

y(4) = z(t2)

Φ(t3,t2)�� ···

y(1) = z(t−1 )
R1

88

y(3) = z(t−2 )
R2

88

y(5) = z(t−3 )
R3

99

Figure 3: Sequence of iterations performed by the variable y.

(0, 1). Note that Rk satisfies Assumption 1 with strength of interaction β ∈
(0, 1) because the same holds for Dk. Therefore, the entries of A(p) satisfy
Assumption 1 with strength of interaction α = min{φ, β}. Let A(p) denote
the graphs induced by the matrix A(p). For all p0 ≥ 0, we have that

p0+2B−1⋃
p=p0

A(p) =

q0+B−1⋃
q=q0

Hq ∪
k0+B−1⋃
k=k0

Gk (40)

where

(q0, k0) =

{(
p0
2
, p0

2
+ 1
)
, if p0 = 0, 2, 4, . . .(

p0+1
2
, p0+1

2

)
, if p0 = 1, 3, 5, . . .

. (41)

If (40) is a rooted graph, then the sequence of graphs {A(p)}+∞
p=0 is periodi-

cally rooted with period 2B. The following lemma shows that, if the sequence
of directed graphs {Gk}+∞

k=0 is periodically rooted with period B, then (40) is
indeed a rooted graph.

Lemma 1. Given k0, q0 ≥ 0 and B ≥ 1, if
⋃k0+B−1
k=k0

Gk is rooted, then⋃q0+B−1
q=q0

Hq ∪
⋃k0+B−1
k=k0

Gk is also rooted.

Proof. Let r ∈ V be a root of J1 =
⋃k0+B−1
k=k0

Gk. We will show that 2r ∈ V
is a root of J2 =

⋃q0+B−1
q=q0

Hq ∪
⋃k0+B−1
k=k0

Gk, which is equivalent to showing

that there exists a path in J2 from 2r to every other vertex in V . Let v ∈ V
and

V 3 v =

{
v
2
, if v is even

v+1
2
, if v is odd

. (42)

Since r is a root of J1, there exists a path in J1 from r to v for all v ∈ V .
Let {r, u1, u2, . . . , ul, v} be one such path. Note that F ⊆ ⋃q0+B−1

q=q0
Hq. We

will now construct a path in J2 from 2r to v for any v ∈ V , using the facts
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that, for all i, j ∈ 〈1, N〉, all arcs of the form (2ui, 2ui − 1) belong to F , and
that arcs (ui, uj) in Gk map to arcs (2ui − 1, 2uj) in Gk. If v is even, then

{2r, 2r − 1, 2u1, 2u1 − 1, 2u2, 2u2 − 1, . . . , 2ul, 2ul − 1, 2v} (43)

is a path in J2 from 2r to v. If v is odd, then the path becomes (43) with
2v − 1 added at the end.

Thus, in the absence of time delays, Theorem 1 guarantees that y reaches
consensus asymptotically.

To accommodate for time delays in continuous-time, terms of the form
zj(tk−σij(tk)) must correspond to some yj(p−τij(p)), that is, each continuous
delay σij(tk) needs to be translated into an integer delay τij(p). In order
to accomplish this, each instance of tk − σij(tk) is added to the existing
sequence of update times (removing duplicates and reordering if necessary),
thus generating a new time instant that we shall refer to as a delay event.
By reordering the resulting sequence, we get an extended sequence of time
instants T̂ = {t̂k}+∞

k=0 of the form

t0 = t̂m0=0 < t̂1 < t̂2 < · · · < t̂m1−1 < t̂m1 = t1 < t̂m1+1 < · · · (44)

where {mk}+∞
k=0 is a sequence of indices such that t̂mk

= tk for all k ≥ 0. The
delay events are the time instants t̂q with q ≥ 0 such that q 6= mk for all
k ≥ 0. At each delay event, an update is performed that preserves every
value, that is, for all 0 ≤ q 6= mk, we have

z(t̂q) = z(t̂−q ). (45)

Next, we show that the extended sequence T̂ satisfies Property 1.

Lemma 2. If Assumptions 4 and 6 are satisfied, then T̂ =
⋃N
i=1 T̂i satisfies

Property 1.

Proof. First, note that {σij(tk)} satisfies Assumption 6 because {γij(tk)} also
satisfies that same assumption. Clearly, for all k ≥ 0 and all i ∈ 〈1, N〉, we
have t̂k+1 − t̂k ≤ M∆. Thus, let δ = M∆. To prove that a lower bound
for t̂k+1 − t̂k exists, we begin by observing that every element in T̂ can be
written as

t0 + ∆u−∆dv (46)
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where u ∈ Z+
0 and v ∈ 〈0,Md〉. Let t̂k, t̂p ∈ T̂ and assume, without loss of

generality, that t̂k > t̂p. The difference t̂k − t̂p is always equal to or greater
than

δ = min
u1,u2∈Z+

0
v1,v2∈〈0,Md〉

∆u1−∆dv1>∆u2−∆dv2

t0 + ∆u1 −∆dv1 − (t0 + ∆u2 −∆dv2) (47)

= min
e∈Z

f∈〈0,Md〉
∆e+∆df>0

∆e+ ∆df. (48)

Solving (48) for e, yields

δ = min
f∈〈0,Md〉

rem(∆df,∆)>0

min{rem(∆df,∆),∆− rem(∆df,∆)} (49)

where rem(·, ·) is the remainder after division2. Note that δ in (49) always

exists since the minimization is over a finite set. We conclude that T̂ satisfies
Property 1.

A natural question that arises is how many delay events are added to each
interval of the form (tk, tk+1). Let nk denote the number of delay events that
belong to the time interval (tk, tk+1). Assumption 6 implies the time delays
are bounded, and therefore only a finite number of delay events take place
on any time interval (tk, tk+1), as shown by the following lemma.

Lemma 3. The number of delay events on any interval (tk, tk+1) is upper
bounded by

n =

(⌊
Md∆d

δ

⌋
+ 1

)
N(N − 1), (50)

where bxc stands for the largest integer less than or equal to x.

Proof. Fix some k ≥ 0. Only update times equal to or larger than tk+1

can generate delay events that fall in the time interval (tk, tk+1). Since, by
Assumption 6, the delays are upper bounded by Md∆d, there will be an
update time tp satisfying tp ≤ tk+1 + Md∆d < tp+1 such that tp+1 cannot

2For x ∈ R and y ∈ R+, rem(x, y) = x− py where p = bx/yc.
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generate delay events belonging to (tk, tk+1). The number of update times in
the interval [tk+1, tp] is p− k that is bounded by

p− k ≤
⌊
tp − tk+1

δ

⌋
+ 1 ≤

⌊
Md∆d

δ

⌋
+ 1. (51)

where we used the fact that tp − tk+1 ≤ Md∆d. The generation of delay
events is maximized when the time instants tl − γij(tl) are different for all
i, j ∈ 〈1, N〉 with i 6= j and for all l ∈ 〈k + 1, p〉. In this case, each update
time generates N(N − 1) distinct delay events that fall in the time interval
(tk, tk+1). We conclude that the maximum number of delay events in (tk, tk+1)
is less than or equal to n defined in (50). Noting that (50) is independent of
k, the proof is complete.

We are now ready to prove our main result.

Proof of Theorem 2. In order to apply the discrete-time consensus result, we
introduce a new state variable y ∈ R2N , defined as

y(p) =

{
z
(
t̂p/2
)
, if p = 0, 2, 4, . . .

z
(
t̂−(p+1)/2

)
, if p = 1, 3, 5, . . .

. (52)

In the sequel, we will show that this state variable evolves in discrete-time,
according to

yi(p+ 1) =
2N∑
j=1

aij(p)yj(p− τij(p)), (53)

where aij and τij are defined in the sequel. The main idea of the proof is to
show that y, driven by (53), satisfies all conditions necessary for asymptotical
consensus as required by Theorem 1, and that this implies that z also reaches
consensus asymptotically.

Let A(p) denote the matrix whose entries are aij(p) and let A(p) denote
the graph induced by each matrix. Depending on p, matrix A(p) can be Rk,
Φ(t̂k+1, t̂k), or I2N , with induced graphs Gk, Hk, or G0, respectively. Here,
G0 = (V , {(i, i) : i ∈ V }) is a graph with all (and only) self-arcs (induced by
I2N , the identity matrix of dimension 2N). Formally, A(p) is defined as

A(p) =


Φ
(
t̂ p

2
+1, t̂ p

2

)
, if p = 0, 2, 4, . . .

Rk, if p = 1, 3, 5, . . . ∧ p+1
2

= mk

I2N , otherwise

. (54)
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Since T̂ satisfies Property 1, the entries of Φ(tk+1, tk) satisfy Assumption 1
with strength of interaction

φ = min Ψij(δ, b, c) (55)

s. t. i, j ∈ 〈1, 2〉, δ ∈ [δ, δ], b ∈ [b, b], c ∈ [c, c] (56)

where Ψ is defined in (28). Since (55) is an optimization over a compact
set and the four objective functions are positive over that same set, φ always
exists and is positive3. The matrix Rk satisfies Assumption 1 with strength of
interaction β ∈ (0, 1) becauseDk also satisfies that same assumption. Finally,
the identity matrix satisfies Assumption 1 for any strength of interaction in
(0, 1). Therefore, for all p ≥ 0, the entries of A(p) satisfy Assumption 1 with
strength of interaction α = min{φ, β}.

The discrete delays τij in (53) are defined as follows (see also Figure 4). At
each update time tk, with k ≥ 1, in order to compute zi(tk) we need, among
others, the value of zj(tk − σij(tk)). According to (52), this corresponds to
the computation of yi(2mk) because tk = t̂mk

. If σij(tk) = 0, then the value
of zj(tk−σij(tk)) = zj(t

−
k ) is stored in yj(2mk−1) and thus the discrete delay

is τij(2mk − 1) = 0. If σij(tk) > 0, let qij ≥ 0 be such that t̂qij = tk − σij(tk).
Then, zj(tk − σij(tk)) = zj(t̂qij ). In terms of the discrete-time variable y,
we are trying to access yj(2qij) and hence τij(2mk − 1) = 2mk − 1 − 2qij =
2(mk − qij)− 1. Formally, the delays τij(p) are defined, for all i, j ∈ V , as

τij(p) =

{
2(mk − qij(p))− 1, if p = 2mk − 1 and σij(tk) > 0

0, otherwise
(57)

where qij(p) ≥ 0 is such that tk − σij(tk) = t̂qij(p).
Next, we show that {τij(p)}Ni,j=1 satisfies Assumption 2. For p = 2mk−1,

it is easy to see that τii(p) = 0, τij(p) ≥ 1 ≥ 0 and that p ≥ p − 1 ≥
p − τij(p) ≥ 0. All that is left to show is that the delays are bounded.
Suppose σij(tk) > 0 and let r ≥ 0 be such that

tr = t̂mr ≤ tk − σij(tk) = t̂qij < tr+1 = t̂mr+1 ≤ tk = t̂mk
. (58)

Note that the sequence of indices {mk}+∞
k=0 can be obtained through the

recursion mk+1 = mk + nk + 1 starting with m0 = 0 where nk is the number

3If δ was allowed to be zero, then φ = 0 and A(p) would not satisfy Assumption 1, thus
preventing us from resorting to Theorem 1 to prove asymptotic consensus.
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Figure 4: Definition of τij(p) when p = 2mk − 1 and σij(tk) > 0.

of delay events in (tk, tk+1). From this recursion, we have that

mk − qij ≤ mk −mr =
k−1∑
l=r

nl + k − r ≤ (n+ 1)(k − r) (59)

where n is defined in (50). The quantity k − r is equal to the number of
update times in [tr+1, tk] and is bounded by

k − r ≤
⌊
tk − tr+1

δ

⌋
+ 1 ≤

⌊
Md∆d

δ

⌋
+ 1, (60)

where we have used the fact that tk− tr+1 < σij(tk) ≤Md∆d. Replacing (60)
in (59), we obtain

mk − qij ≤ (n+ 1)

(⌊
Md∆d

δ

⌋
+ 1

)
. (61)

Hence, we have that

τij(p) = 2(mk − qij(p))− 1 ≤ 2(n+ 1)

(⌊
Md∆d

δ

⌋
+ 1

)
− 1 = τ . (62)

In what follows, we show that the sequence of graphs {A(p)}+∞
p=0 is peri-

odically rooted with period B = 2(n + 1)B. Any sequence of such graphs
with length 2(n + 1) contains at least one Gk graph. Thus, any sequence of
length B contains at least of B graphs Gk. Using the fact that G ∪G = G for
any graph G, and that G0 ∪ Hk = Hk, the union graph across any sequence

20



of length B is equal to

p0+B−1⋃
p=p0

A(p) =

q0+B′−1⋃
q=q0

Hq ∪
k0+B′−1⋃
k=k0

Gk (63)

where p0 ≥ 0, B′ ≥ B, and (q0, k0) is given by (41). Lemma 1 guarantees
that (63) has at least one root. We conclude that the sequence of graphs is
periodically rooted with period B, thus satisfying Assumption 3.

We conclude by Theorem 1 that y reaches consensus asymptotically.
Therefore, there exists y∗ ∈ R such that

lim
p→+∞

y(p) = y∗12N ⇒ lim
k→+∞

z(tk) = y∗12N (64)

where 12N ∈ R2N is a vector with all entries equal to one. Notice that
z(t) = Φ(t, tk)z(tk) for t ∈ [tk, tk+1). Since T satisfies Property 1, we have
the following two facts: i) the sequence of update times diverges and therefore
t→ +∞ implies that tk → +∞; and, ii) the entries of Φ(t, tk) are bounded for
all k ≥ 0. Using these two observations and the fact that Φ(t, tk)12N = 12N

for all t ≥ tk and all k ≥ 0, we conclude that

lim
t→+∞

z(t) = y∗12N . (65)

4. Illustrative example

In this section we provide an example that illustrates the proposed solu-
tion. Consider N = 5 agents whose initial states are xi(t0) = Xi(t0) = i− 3
with i ∈ V = 〈1, 5〉. Each sequence of time instants is generated by taking
ti0 = 0 and randomly selecting (with a uniform distribution) the update inter-
vals tik+1 − tik from (18) with ∆ = 0.1 and M = 20. The time delays are also
generated randomly according to Assumption 6 with ∆d = 12

34
∆ ≈ 0.0353

and Md = 200. Under this setup, we obtain δ = 1
170
≈ 5.882 × 10−3 and

δ = 2 (according to Lemma 2). The communication among agents occurs as
follows (see also Figure 5), for k ≥ 1:

1. N1(t14k) = {2};
2. N2(t24k+1) = {3} and N2(t24k+3) = {1};
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Figure 5: Union graph with update times associated to each edge. Agents 1, 2, and 3 are
all roots of the graph.

3. N3(t34k+2) = {1};
4. N4(t44k+3) = {2};
5. N5(t54k+1) = {3, 4} and N5(t54k+2) = {2}.

Where unspecified, the neighborhoods are defined as empty. The resulting
sequence of graphs is periodically rooted with period B ≥ 4M = 80 or, in
terms of time, is rooted on every interval of length at least 4M∆ = 8. The
values of the coefficients of the continuous dynamics are, for all k ≥ 0, bi(t

i
k) =

1 and ci(t
i
k) = 0 for i ∈ 〈1, 2〉 and bi(t

i
k) = 4

5
and ci(t

i
k) = 1

5
for i ∈ 〈3, 5〉. In

the discrete updates, for each i ∈ V , ifNi(tik) = ∅, then dii(t
i
k) = 1; otherwise,

dii(tk) is drawn randomly from the interval [α, 1−|Ni(tk)|α] where |X | denote
the number of elements of a given set X . The remaining coefficients are given
by

dij(tk) =

{
1−dii(tk)
|Ni(tk)| , if |Ni(tk)| > 0

0, otherwise
(66)

for all i, j ∈ V with i 6= j. The value of α is set equal to 1
N

= 0.2.
Simulating over the interval [0, 100] yields a total of 487 update times.

Figure 6 depicts the time evolution of the difference between the largest and
the smallest value of all the agents’ states at each time instant that measures
the deviation from consensus. As can be seen, this value can increase over
some intervals of time, but over a large enough interval (related to the period
over which the sequence of graphs is rooted and to the bound on the time
delays) the overall difference decreases and tends to zero. Since this difference
tends to zero, all states tend to the same value as illustrated in Figure 7.
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Figure 7: Time evolution of each agent’s state xi for i ∈ 〈1, N〉.

5. Conclusion

The problem of consensus seeking was analyzed in the context of continuous-
time variables with discrete-time updates. Besides the usual state variable
for which consensus is sought, in our proposed solution an extra state vari-
able is introduced for each agent. Between update times, both the original
state and the extra variable evolve continuously. At update times, the extra
variable is updated using information (possibly outdated) received from other
agents, while the agent’s state keeps the same value. The evolution of the
aggregated state of the system is equivalently described by an appropriately
defined discrete-time system. In this setup, both continuous evolution and
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discrete updates are interpreted as two different types of iterations. Time
delays were incorporated by extending the set of update times and perform-
ing at each new time instant an identity iteration. Convergence to consensus
was then established by resorting to existing discrete-time consensus results.
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