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SUMMARY

This paper addresses the problem of cooperative path-following of networked autonomous surface
vessels with discrete-time periodic communications. The objective is to steer a group of autonomous
vehicles along given spatial paths, while holding a desired inter-vehicle formation pattern. For a given
class of marine vessels, we show how Lyapunov based techniques, graph theory, and results from
networked control systems can be brought together to yield a decentralized control structure where
the dynamics of the cooperating vessels and the constraints imposed by the topology of the inter-vehicle
communication network are explicitly taken into account. Cooperation is achieved by adjusting the
speed of each vessel along its path according to information exchanged periodically on the positions
of a subset of the other vessels, as determined by the communications topology adopted. The closed
loop system that is obtained by putting together the path-following and cooperation strategies takes
an interconnected feedback form where both systems are input-to-state stable (ISS) with respect to
the outputs of each other. Using a small-gain theorem, stability and convergence of the overall system
are guaranteed for adequate choices of the controller gains.

KEY WORDS: cooperative motion control; path-following; autonomous surface vessels; nonlinear
adaptive control; graph theory.

1. INTRODUCTION

There has been growing interest in the development of multiple vehicles for a number of
scientific and commercial mission scenarios. Among a myriad of applications related to
multi-agent systems involving autonomous or unmanned vehicles, we point out the use of
unmanned aerial vehicles (UAVs) for fire detection in forests, autonomous underwater vehicles
(AUVs) for seabed surveying and environmental monitoring, and groups of autonomous
surface vessels (ASVs) for data acquisition at sea or to serve as mobile baseline systems
for underwater target positioning [1]. In all scenarios, cooperation among the vehicles is
essential in order to accomplish mission goals in an efficient and robust manner. In most
cases, cooperation is achieved through the exchange of information among vehicles, implying
that control mechanisms must be designed taking into account such practical constraints as
limited bandwidth and intermittent communication failures.

1.1. Surface vessels as ocean observation tools

Among the different types of autonomous marine vehicles, ASVs are becoming increasingly
important in view of their simplicity of construction and the potential to sample the ocean

This is a pre-print version of the following article:
Almeida, J., Silvestre, C. and Pascoal, A. M. (2011), Cooperative control of multiple surface vessels

with discrete-time periodic communications. International Journal of Robust and Nonlinear Control. doi:
10.1002/rnc.1698,
which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/rnc.1698/abstract.

http://onlinelibrary.wiley.com/doi/10.1002/rnc.1698/abstract


2 J. ALMEIDA ET AL.

Figure 1. The DELFIMx autonomous catamaran.

at an unprecedented scale. Besides obvious scientific applications, they can also be used
in commercial operations such as automatic inspection of rubblemound breakwaters [2],
bathymetry mapping for harbor safety, and remote sea floor sensing in coastal waters for marine
protected area management. An example of an ASV is the DELFIMx catamaran, property of
IST-ISR, that has been extensively used for marine data acquisition and in experiments with
underwater acoustic systems (see Figure 1). The vessel is a major redesign of the DELFIM
Catamaran, developed within the scope of the European MAST-III Asimov project that set
forth the goal of achieving coordinated operation of the INFANTE AUV and the DELFIM
ASV, ensuring fast data communications between the two vehicles by exploiting the vertical
acoustic channel [3].

Both the DELFIM and the DELFIMx are equipped with on-board resident systems for
navigation, guidance, and control, as well as mission control. Navigation is done by fusing
motion data obtained with an attitude and heading reference unit and a DGPS (Differential
Global Positioning System). Transmissions to and from the vehicles are achieved via serial radio
links. The vehicles have a wing shaped, central structure that is lowered during operations at
sea. At the bottom of this structure, a low drag body is installed that can carry acoustic
transducers. For bathymetric operations and sea floor characterization, the wing may be
equipped with a mechanically scanned pencil beam sonar and a sidescan sonar.

The above circle of ideas led researchers to the development of new motion control techniques
designed to coordinate a group of heterogeneous vehicles (in the sense that vehicles have
different dynamics and capabilities) for a wide range of practical applications [4]. Inspired by
this work, the main focus of this paper is on design of a cooperative motion control system for
multiple ASVs. The rest of the section sets the stage for the control design problems that we
address and summarizes our main contributions.

1.2. Cooperative motion control

For our purposes, cooperative motion control is defined as the problem of making a group of
vehicles follow a set of spatial paths while holding a desired geometric formation pattern. A
single vehicle can follow a desired spatial path in essentially two ways. In trajectory-tracking,
a vehicle is required to stay on a time-parameterized reference. In path-following, the goal is
to drive a vehicle to a prescribed path without an explicit temporal constraint.

Many different approaches to the problem of cooperative motion control have been described
in the literature, using a wide range of analytic tools, such as, null-space-based behavioral
control [5], or Lagrange multipliers control techniques [6]. For an extended and detailed
coverage of the subject, the reader is referred to [7]. Quite often, the framework adopted to
tackle the problem of cooperative motion control consists of a “divide and conquer” strategy, in
an attempt to decouple the problems of motion control along each spatial path and cooperation
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Figure 2. Illustration of the cooperative path following (CPF) concept.

along the paths. The first one is solved at a low level for each individual vehicle, while the
second one is addressed at a higher level by taking into account the mission’s objectives and
requires communication among the vehicles. In a realistic scenario, the latter involves dealing
with communication issues such as time delays, intermittent failures, transmission noise, and
bandwidth restrictions.

Related work can be found in [8], where nonlinear cascaded systems theory is used to achieve
straight line path-following for formations of under-actuated vehicles. In the present paper
we consider fully-actuated vehicles but achieve cooperative path-following on generic smooth
paths. Also relevant is the work presented in [9], where experimental results for underwater
vehicles are reported. While the underwater vehicles are modeled as double integrators, the
models that we adopt for surface vessels capture the dynamics of a broad class of vehicles.
In the present paper we also address explicitly the constraints imposed by the inter-vehicle
communications network.

1.3. Cooperative path-following

One particular type of motion control involves steering vehicles to and along desired paths
without specifying a temporal law. This is known as the path-following control problem. As
a contribution to the study of these issues, this paper addresses the problem of cooperative
path-following (CPF) with discrete-time periodic communications, whereby a set of vehicles
is required to follow pre-defined spatial paths while keeping a desired inter-vehicle formation
pattern in time. To illustrate the concept of CPF, consider Figure 2. Initially, the vehicles are
dispersed in space. Each vehicle is then required to converge to and follow a preassigned path
and, while doing so, must position itself relative to the other vehicles in such a way that a
desired spatial configuration is achieved. This problem arises, for example, in the operation of
multiple autonomous underwater vehicles for fast acoustic coverage of the seabed. By imposing
constraints on the inter-vehicle formation pattern, the efficacy of the task can be largely
improved. At this point it is important to remark that the marine environment may pose
formidable challenges to inter-vehicle communications. The problem is specially aggravated
underwater, where the vehicles must communicate in short and small bursts.

Inspired by previous work on the problem of CPF (see, e.g, [10, 11, 12]), in this paper we
adopt Lyapunov-based tools to address explicitly the vehicle dynamics as well as the constraints
imposed by the topology of the inter-vehicle communications network. The latter are tackled
in the framework of graph theory; however, unlike in [10, 11, 12], we consider communication
topologies with unidirectional or directed links: one vehicle sends information to its neighbors
but does not necessarily receive information back. A supporting communications network
provides the vehicles with a medium to exchange information that, because of bandwidth
constraints, cannot be continuous as in [10, 11], and therefore takes place only at discrete
time instants that occur with a fixed frequency. We assume that the transmission delay
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can be neglected and that there are no packet collisions when the vehicles communicate
simultaneously.

Each vehicle is equipped with a controller that makes the vehicle follow a predefined path
(see, e.g, [13, 14]). The speed of each vehicle is then adjusted so that the whole group keeps
a desired formation pattern. Due to the absence of information in the intervals between
transmission times, the control action of each vehicle runs in open loop, based on a simple
model that predicts the evolution of its neighbors (as in Model-Based Networked Control
Systems, [15]). At transmission times, each vehicle sends information through the network
that is used to achieve cooperation and to update the models.

The system that is obtained by putting together the path-following and vehicle cooperation
strategies takes an interconnected form, where both systems are input-to-state stable (ISS)
with respect to the outputs of each other. With the control structure adopted, path-following
(in space) and inter-vehicle cooperation (in time) become essentially decoupled. In fact, both
control subsystems are designed separately, ignoring the signals interconnecting them, and then
asymptotical stability of the closed loop system is analyzed and guaranteed using a small-gain
theorem.

The paper is organized as follows. In Section 2, the dynamic model of the autonomous
vehicles considered is introduced, along with key concepts from graph theory that are required
to formally state the CPF problem. Section 3 is devoted to the derivation of a solution to the
CPF problem. A general structure is proposed that consists of a path-following controller and a
cooperation controller operating under periodic communications. In Section 4, an illustrative
example is given where simulation results are presented. Finally, Section 5 contains some
concluding remarks and directions for future research.

2. PROBLEM FORMULATION

The aim of this section is to formulate the problem of CPF rigorously. We will start by
describing the dynamic model of the autonomous vehicles considered. Also, because more than
one vehicle is involved, there is the need to take explicitly into account the topology of the
underlying communication network. This can be done in the framework of graph theory, which
has become the tool par excellence to model communication constraints in multiple vehicle
mission scenarios. For this reason, we will review some key concepts and properties of graph
theory (see, e.g., [16] for an in-depth presentation of this subject). After these preliminaries,
we will be ready to formally state the CPF problem.

2.1. Vehicle modeling

Following standard practice, we model a surface vessel as a rigid body subjected to external
forces and torques. To this effect, we let {I} be an inertial coordinate frame and {B} a body-
fixed coordinate frame with its origin at the center of mass of the vehicle, as represented
in Figure 3. The generalized position of the vessel is η := [x y ψ]>, where x and y are the
coordinates of the origin of {B} in {I} and ψ is the orientation of the vessel (yaw angle) that
parameterizes the matrix

J := J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ,
transforming body coordinates into inertial coordinates. Denote by ν := [u v r]> the
generalized velocity of the vessel relative to {I} expressed in {B}. The following kinematic
relations apply:

η̇ = Jν, (1)

J̇ = rJS, (2)
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Figure 3. Inertial and body-fixed coordinate frames.

where S is the skew-symmetric matrix

S =

0 −1 0
1 0 0
0 0 0

 ; (S> = −S) .

We consider a fully-actuated vessel with simplified dynamic equations of motion of the form
[17]

Mν̇ = τ + f(η,ν), (3)

where M ∈ R3×3 denotes a constant symmetric positive definite mass matrix, τ := [τu τv τr]>

is the generalized control input consisting of forces τu, τv, and torque τr, and f(η,ν) represents
Coriolis, centripetal, and hydrodynamic damping forces and torques acting on the body. For
the special case of surface vessels, M also includes the so-called hydrodynamic added-mass
MA, i.e., M = MRB + MA, where MRB is the rigid-body mass matrix.

2.2. Graph theory

This section contains some key concepts and results in graph theory that play an important
role in what follows. A directed graph or digraph G = G(V, E) consists of a finite set V =
{1, 2, . . . , n} of n vertices and a finite set E of m ordered pairs of vertices (i, j) ∈ E named
arcs. Given an arc (i, j) ∈ E , its first and second elements are called the tail and head of the
arc, respectively. The out-degree of a vertex i is the number of arcs with i as its tail. If (i, j)
belongs to E then we say that i is adjacent to j. A path from i to j is a sequence of distinct
vertices starting with i and ending with j such that consecutive vertices are adjacent. If there
is a path in G from vertex i to vertex j, then j is said to be reachable from i. A vertex i
is globally reachable if it is reachable from every other vertex in G. The adjacency matrix
of a digraph, denoted A, is a square matrix with rows and columns indexed by the vertices,
such that the i, j-entry of A is 1 if (i, j) ∈ E and 0 otherwise. The out-degree matrix D of a
digraph is a diagonal matrix where the i, i-entry is equal to the out-degree of vertex i, that is,
D = diag(A1) where 1 = [1]n×1 is a vector of ones.

The Laplacian of a digraph is defined as L = D−A. By definition, the Laplacian satisfies
L1 = 0, and therefore 0 is an eigenvalue of L with 1 being its associated right eigenvector.
In [18], it is shown that a digraph has at least one globally reachable vertex if and only if
zero is a simple eigenvalue of L (all other eigenvalues have positive real parts). This implies
that rank L = n− 1 for a graph with at least one globally reachable vertex. Hence, there exist
matrices F ∈ Rn×(n−1) and G ∈ R(n−1)×n such that L = FG, where rank F = rank G = n− 1,
and G1 = 0.
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Figure 4. Illustration of path-following from the point-of-view of vessel i. By changing the control
input τ i, the vessel should converge to a “virtual” vessel that moves along the preassigned path.

2.3. Problem statement

Consider a set of n ≥ 2 autonomous surface vessels and a set of n spatial paths

{ηdi(γi) := [xdi(γi) ydi(γi) ψdi(γi)]> ∈ R3 : i = 1, 2, . . . , n},
where each path ηdi is parameterized by a continuous variable γi ∈ R and consists of a desired
position specified by xdi and ydi and a desired yaw angle ψdi. It is common to take γi as the arc
length of the ith path. However, it may be necessary to reparameterize the path, as explained
below. The path-following part of the CPF problem consists of driving each ith vessel to its
assigned path ηdi. See Figure 4 for a graphical illustration.

To formalize the notion of cooperation, we start by introducing a measure of the degree of
cooperation of a fleet of vehicles. As in [11], this is done by reparameterizing each path ηdi(γi)
in terms of a conveniently defined variable ξi such that cooperation is said to be achieved
along the paths if and only if ξ1 = ξ2 = . . . = ξn. At this point, we formally define the “along-
path” distances between vehicle i and j as ξi,j = ξi − ξj . Then, cooperation is achieved if and
only if ξi,j = 0 for all i, j ∈ {1, 2, . . . , n}. Formally, let the reparameterization of the path be
represented by γi = γi(ξi) and define Ri(ξi) := ∂γi/∂ξi, which is assumed to be positive and
bounded for all ξi. Clearly, the dynamics of ξi and γi are related by

γ̇i = Ri(ξi)ξ̇i . (4)

This paper considers the case where Ri(ξi) is constant. While restrictive, it still allows us
to consider paths where there is no need for reparameterization (that is, ξi = γi) or the
parameterization amounts to a constant scaling. The latter happens, for example, when
considering cooperation along concentric circumferences as depicted in Figure 5. If γi represents
the arc length of the corresponding circumference, then ξi is obtained by dividing γi by the
corresponding circumference’s radius. Thus, ξi is equal to the angular position of vessel i along
the circumference.

Suppose one vessel, henceforth referred to as vessel L, is elected as the “leader” and let
the corresponding path ηdL be parameterized by γL = ξL. For this vessel, RL = 1. Let υL be
the desired constant speed assigned to the leader in advance, that is ξ̇L = υL in steady-state,
known to all vessels. From (4), it follows that the desired “along-path” speeds for the vessels
are υdi := RiυL. It is important to point out that L can always be taken as a “virtual” vehicle
that is added to the set of “real” vehicles as an expedient to simplify the cooperation strategy.

So far, the problem of cooperation has been reduced to that of aligning, in an appropriate
sense, the cooperation states ξi. To go from this in-line configuration to a more complex one, we
introduce appropriate offsets in the desired positions of the vessels relative to the mean point
of the formation as defined with respect to the paths. To this effect, let ξ := [ξi]n×1 and define
the formation mean point and offsets as ξ̄ := 1

n1>ξ and δ := ξ − ξ̄1, respectively. Notice that
1>δ = 0. Let φ ∈ Rn represent a desired constant formation pattern that verifies 1>φ = 0.
The problem of cooperation with pattern tracking is reduced to that of making (δ − φ)→ 0
as t→ +∞. See Figure 6 for a possible spatial configuration.
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Figure 5. Cooperation along concentric circumferences. The γi variables represent the arc length
of the corresponding circumference while the ξi variables are the angular position relative to the
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Figure 6. Example of spatial configuration: wedge formation, φ = (−1, 2,−1).

From a graph theoretical point of view, each vessel is represented by a vertex and a
communication link between two vessels is represented by an arc. The communication links
are assumed unidirectional, thereby inducing a directed graph. We consider time-invariant
communication topologies and assume that the induced graph has at least one globally
reachable vertex. The flow of information in an arc is directed from its head to its tail. The
set of neighbors of vertex i is represented by Ni and contains all vertices j such that (i, j) ∈ E .
In other words, it is the group of vessels from which vessel i receives information.

For design purposes, we will take each ξ̇i as a control input in the cooperation dynamics (4).
In order to satisfy the constraints imposed by the topology of the communication network, the
control law for vessel i must be decentralized, i.e, it may only depend on local states and/or
on information exchange with its neighbors as specified by Ni.

To summarize, the cooperative path-following problem is formally stated next.

Problem (Cooperative Path-Following)
Consider a set of n vessels with equations of motion defined by (1)-(3). Let ηdi(γi) ∈ R3

be desired paths parameterized by continuous variables γi ∈ R and let υL ∈ R be a desired
reference speed assignment. Assume each ηdi(γi) is sufficiently smooth and its derivatives with
respect to γi are bounded. Let the desired multiple vehicle formation pattern be defined by
φ ∈ Rn. Then, design control laws for τ i and a decentralized feedback law for ξ̇ such that:

1. all closed-loop signals are bounded (stability);
2. the position of each vessel converges to the corresponding desired path, that is,
‖ηi(t)− ηdi(γi(t))‖ → 0 as t→ +∞ (path-following); and,

3. the desired formation pattern is acquired and all vessels travel at the desired along-path
speed, that is, δ − φ→ 0 and γ̇i → υdi for all i ∈ {1, 2, . . . , n} as t→ +∞ (cooperation).
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Notice that the cooperation part of the CPF problem that we posed is closely related to
agreement problems (see, e.g., [19]). In our case, all vehicles must agree on a common value
that is the mean point of the formation pattern.

3. CONTROLLER DESIGN

In this section, we start by presenting the general structure of the proposed CPF controller.
It consists of a path-following controller and a cooperation controller operating under
periodic communications. Both control subsystems are designed separately, ignoring the signals
interconnecting them; asymptotic stability of the closed loop system is proven exploiting
concepts from input-to-state stability and a small-gain theorem (see, e.g, [20, 21]) concepts
that are briefly reviewed in the following subsection.

3.1. Small-gain theorem

Let x denote the state of a system described by

ẋ = f(x,u). (5)

We will use the following simplified notion of input-to-state stability. System (5) is said
to be input-to-state stable (ISS), with respect to state x and input u, if there exist positive
constants κ, λ, and σ such that, for any initial condition x(t0) and any bounded input u, the
solution x(t) exists and satisfies

‖x(t)‖ ≤ κe−λ(t−t0)‖x(t0)‖+ σ‖u‖[t0,t]
for all t ≥ t0, where

‖u‖[t0,t] := sup
s∈[t0,t]

‖u(s)‖.

Now, consider the interconnected system

ẋ1 = f1(x1,x2), (6)
ẋ2 = f2(x1,x2). (7)

Suppose subsystem (6) is ISS with respect to state x1 and input x2, with constants κ1, λ1,
and σ1. Further assume that subsystem (7) is also ISS with respect to state x2 and input x1,
with constants κ2, λ2, and σ2. The following is a simplified presentation of the ISS small-gain
theorem in [20, 21].

Theorem 1 (Small-gain)
If the positive constants σ1 and σ2 satisfy

σ1σ2 < 1

then the interconnected system (6)-(7), with state x = [x>1 x
>
2 ]>, is globally asymptotically

stable.

3.2. Control structure

In this section we propose a control structure for the CPF problem that builds on the
work in [10] and is illustrated in Figure 7 for the ith vessel. The structure proposed is the
interconnection of two subsystems: the path-following (PF) subsystem and the cooperation
control (CC) subsystem.

The PF subsystem is formed by the vessel itself and a state feedback controller designed to
guide it to the desired path. The PF controller drives the vehicle through its command input
τ i using a control law that depends on the vehicle’s position ηi and velocity νi, and on signals
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Figure 7. Proposed control structure for CPF from the point-of-view of vessel i.

provided by the CC subsystem. It also provides the CC subsystem with a feedback signal ζi
to be defined later.

The CC subsystem handles all the communications with neighboring vessels and provides
the PF subsystem with the parameterizing variable γi, the desired along-path speed υdi, and
the signal υ̃i to be defined in the sequel. The exchange of information occurs at discrete-time
instants {tk = hk + t0 : k ∈ N}, that will henceforth be referred to as update times, where h is
the communication period in seconds. At these update times, a certain information variable
χi, to be defined later, is sent by vessel i to its adjacent vehicles and information variables
χj : j ∈ Ni from its neighbors are received. These information variables constitute the only
data that must be exchanged among vessels to achieve cooperation. We consider dynamic
equations for γi of the form

γ̇i = υdi + υ̃i + ζi (8)

where υdi := RiυL is the desired speed for vessel i, υ̃i is a control signal to be chosen in order
to solve the cooperation problem (as a function of χi and χj : j ∈ Ni), and ζi is a signal from
the PF subsystem that will be treated as an external input.

The PF subsystem will be shown to be ISS with respect to state xPi (which represents the
state of the PF subsystem of vessel i) and input υ̃i. The CC subsystem will be shown to be
ISS with respect to state xCi (which represents the state of the CC subsystem of vessel i) and
input ζi.

A sampled-data based approach to the problem of cooperative path-following was proposed
in [12], where the variables parameterizing the paths (γi) evolve in a discrete fashion, and
therefore the cooperation control problem is posed in discrete-time. However, the authors only
considered communication topologies with bidirectional links.

3.3. Path-following

Central to the development of CPF strategies is the derivation of appropriate path-following
control laws for each vehicle. In this section we present a path-following controller for an
autonomous surface vessel described by the equations of motions introduced in Section 2.1,
the structure of which bears affinity with those proposed in [13, 14]. The controller is local to
each vehicle and therefore the index i will be omitted for the sake of clarity.

Let the position error in the body-fixed frame be denoted as z1 := J>(η − ηd). The goal of
the path-following controller is to drive z1 to zero. Applying backstepping design procedures
(see, e.g, [22]), the Lyapunov function

V :=
1
2
z>1 z1 +

1
2
z>2 Mz2, (9)

yields the feedback control law

τ = −z1 −K2z2 − f + M(αt +αγ γ̇), (10)
ζ = −wµ, (11)
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where

z2 := ν −α,
µ := −(ηγd)>Jz1,

α := J>ηγdυd −K1z1,

αγ := K1J>η
γ
d + J>ηγ

2

d υd,

αt := −K1(ν − rSz1)− rSJ>ηγdυd + J>ηγd υ̇d,

ηγ
p

d = ∂pηd/∂γ
p with p = 1, 2, and K1,K2, w are controller gains. Using (10) and (11) as

feedback laws, the time derivative of (9) along the solutions of (1)-(3) becomes

V̇ = −z>1 K1z1 − z>2 K2z2 − wµ2 + µυ̃. (12)

The closed loop system with υ̃ as input has an important property stated in the next lemma.

Lemma 1
The PF subsystem described is ISS with respect to state xP = [z>1 z

>
2 ]> ∈ R6 and input υ̃,

that is,
‖xP (t)‖ ≤ κP e−λP (t−t0)‖xP (t0)‖+ σP |υ̃|[t0,t]

for some positive constants κP , λP , and σP . Moreover, σP can be made arbitrary small by
increasing the PF gains K1 and K2.

Proof
Let ki = λmin(Ki) for i = 1, 2. Using the fact that the desired path is bounded, |µ| ≤ β1‖z1‖
for some positive constant β1. Hence (12) can be upper bounded by

V̇ ≤ −k1‖z1‖2 − k2‖z2‖2 − wµ2 + |µ||υ̃|
≤ −(k1 + wβ2

1)‖z1‖2 − k2‖z2‖2 + β1‖z1‖|υ̃|.
Let k̃1 = k1 + wβ2

1 . Applying Young’s inequality∗ to the term ‖z1‖|υ̃|, we get

V̇ ≤ −k̃1‖z1‖2 − k2‖z2‖2 + β1

( 1
4δ
‖z1‖2 + δ|υ̃|2

)
= −

(
k̃1 − β1

4δ

)
‖z1‖2 − k2‖z2‖2 + β1δ|υ̃|2.

Let δ = β1

2k̃1
and σ = β1δ. Then,

V̇ ≤ −1
2
k̃1‖z1‖2 − k2‖z2‖2 + σ|υ̃|2

≤ −α‖xP ‖2 + σ|υ̃|2

where α = min{ 1
2 k̃1, k2}. Using the fact that

α1‖xP ‖2 ≤ V (xP ) ≤ α2‖xP ‖2

with α1 = 1
2 min{1, λmin(M)} and α2 = 1

2 max{1, λmax(M)}, straightforward computations
allow for the conclusion that

‖xP (t)‖ ≤ κP e−λP (t−t0)‖xP (t0)‖+ σP |υ̃|[t0,t],
with

κP =
√
α2

α1
, λP =

α

2α2
, and σP =

√
α2σ

α1α
.

Therefore, the PF subsystem is ISS with respect to state xP and input υ̃. Note that if k1 and
k2 are both increased, then α will increase and σ will decrease, thus decreasing σP .

∗One of several possible formulations states that given a, b ∈ R and δ > 0 then ab ≤ 1
4δ
a2 + δb2.
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3.4. Cooperation control

We now focus our attention on the cooperative aspect of the CPF problem. Rewriting (8) in
terms of ξ̇i and using a control law for υ̃i adapted from [11], we obtain the following controller
that solves the cooperation problem under continuous communications:

ξ̇i = υL +R−1
i (υ̃i + ζi), (13)

υ̃i = −kci
∑
j∈Ni

(ξi − φi − ξj + φj), (14)

where kci > 0 is an adjustable control gain and φi are the components of the desired formation
pattern represented by φ. Notice that the information required by vessel i about its neighbors
is χj := ξj − φj , that we refer to as information state, and not the cooperation state ξj itself.
The control law (13) can be rewritten as

χ̇i = υL +R−1
i (υ̃i + ζi), (15)

υ̃i = −kcidiχi + kci
∑
j∈Ni

χj , (16)

where di is the number of neighbors of vessel i (out-degree of vertex i) and kci = 0 if di = 0.
When using periodic communications, the vessel i does not receive {χj : j ∈ Ni} between
update times, so it needs to model their evolution in that interval. Let χ̂ij represent a local
“replica” of each χj as seen by vessel i, that we refer to as predictor state. Analyzing (15), we
see that if a steady-state condition is achieved, then χ̇i = υL for all i. This suggests that the
dynamics of χj can be predicted as ˙̂χij = υL, thus yielding the controller

υ̃i = −kcidiχi + kci
∑
j∈Ni

χ̂ij , (17)

˙̂χij = υL, for each j ∈ Ni . (18)

However, this is not sufficient to achieve cooperation due to initial conditions that do not match
the desired formation pattern. To overcome this problem, a reset is made to the predictor states
when information is exchanged. We therefore add the following condition to the controller:

χ̂ij(tk) = χij(t
−
k ), for all j ∈ Ni, (19)

where the notation x(t−) stands for the left limit or limit from below, i.e., x(t−) = lims↗t x(s).
Because all χ̂ij are initialized with the same value χj(t0), and because we assume there is
absolute synchronization with respect to update times, vehicles that model the same predictor
state have equal values, i.e, χ̂i1j = χ̂i2j for all i1, i2, and j. Therefore, we do not need to refer
to χ̂i1j and χ̂i2j as different states, we simply refer to them as χ̂j .

Defining χ̂ := ξ − φ = [χ̂i]n×1, ζ := [ζi]n×1, the diagonal matrices Kc := diag[kci]n×n, and
C := diag[R−1

i ]n×n, equations (17)-(19) can be written in vector form as

χ̇ = υL1 + C(−KcDχ+ KcAχ̂+ ζ), (20)
˙̂χ = υL1, (21)

χ̂(tk) = χ(t−k ) . (22)

The cooperation error is defined as

θ := G(ξ − φ) = Gχ ∈ Rn−1,

where G is obtained from the decomposition of the Laplacian discussed in Section 2.2. Since
G1 = 0, using the definitions of formation mean point and offsets of Section 2.3 yields

G(ξ − φ) = G(δ + ξ̄1− φ) = G(δ − φ) .
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Because 1>δ = 1>φ = 0, δ − φ is normal to the null space of G. We conclude that θ = 0 if
and only if (δ − φ) = 0. Let

χ̃ := χ− χ̂ ∈ Rn

represent the predictor state error. If χ̃ = 0, then the information states are coherent, i.e, the
predictor states equal the actual states. Considering (20)-(22), the error dynamics for θ and
χ̃ are given by

˙̃χ = −CKcFθ −CKcAχ̃+ Cζ,

θ̇ = −GCKcFθ −GCKcAχ̃+ GCζ,

where we used the fact that Lχ = FGχ = Fθ. Defining the aggregated state variable xC :=
[θ> χ̃>]>, the above error dynamics can be written as{

ẋC = ΛxC + Bζ, t ∈ [tk, tk+1) (23)
xC(t) = (θ(t−),0), t = tk (24)

where

Λ :=
[−GCKcF −GCKcA
−CKcF −CKcA

]
, (25)

B :=
[
GC
C

]
. (26)

The dynamic system (23)-(24) is a linear impulsive system.
We now introduce some definitions and notation. We denote an open disk in the complex

plane as D(c, r) := {x ∈ C : |x− c| < r} with center c ∈ C and radius r > 0. Similarly, a closed
disk is denoted as D(c, r) := {x ∈ C : |x− c| ≤ r}. The set of distinct eigenvalues or spectrum
of a matrix X is represented by σ(X). A matrix X is called a convergent matrix if all its
eigenvalues are strictly inside the unit circle, i.e., if σ(X) ⊆ D(0, 1).

Theorem 2
The system described by (23)-(24) is ISS with respect to state xC and input ζ if

Φ :=
[
In−1 0

0 0

]
eΛh (27)

is a convergent matrix.

Before proving the theorem, some lemmas must be introduced. The following lemma shows
that Λ is similar to a diagonal matrix.

Lemma 2
Consider the matrix Λ defined in (25). Let P,∆ ∈ R(2n−1)×(2n−1) be defined as

∆ :=
[−CKcD 0n×(n−1)

0(n−1)×n 0n−1

]
, P :=

[
G In−1 −GD+F
In −D+F

]
,

where D+ = diag(d+
1 , . . . , d

+
n ) stands for the pseudoinverse of D, with

d+
i :=

{
d−1
i , if di > 0
0, if di = 0

for i = 1, 2, . . . , n. Then, P is nonsingular with inverse given by

P−1 =
[
D+F In−1 −D+(D−A)
In−1 −G

]
and Λ = P∆P−1.
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Proof
From PP−1 = P−1P = I2n−1 it follows that P is nonsingular with inverse P−1.
Straightforward computations yield

P∆P−1 =
[−GCKcDD+F −GCKcD(In −D+(D−A))
−CKcDD+F −CKcD(In −D+(D−A))

]
.

It is easy to show that

CKcD(In −D+(D−A)) = CKcD−CKcDD+(D−A)

= CKcD−CKcDD+D + CKcA

= CKcA,

where we used the facts that DD+D = D, DD+A = A and CKcDD+ = CKc. Therefore,

P∆P−1 =
[−GCKcF −GCKcA
−CKcF −CKcA

]
= Λ .

The following lemma gives conditions that guarantee that matrix Φ is a convergent matrix.

Lemma 3
For any communication graph with at least one globally reachable vertex, the matrix Φ defined
in (27) is a convergent matrix.

Proof
Note that by making the partition

eΛh =
[
E11 E12

E21 E22

]
,

with E11 ∈ R(n−1)×(n−1), the matrix Φ takes the simple form

Φ =
[
E11 E12

0 0

]
. (28)

Therefore, n of the eigenvalues of Φ are zero while the remaining correspond to the eigenvalues
of E11. Hence, the proof is reduced to showing that E11 is a convergent matrix.

First, a closed-form expression for E11 is derived using the fact that, by Lemma 2, Λ is
similar to a diagonal matrix, thus making it easy to compute the matrix exponential

eΛh = Pe∆hP−1 = P
[
e−CKcDh 0n×(n−1)

0(n−1)×n In−1

]
P−1 .

The closed-form expression for E11 is therefore

E11 = In−1 −G
(
In − e−CKcDh

)
D+F .

Next rewrite E11 as
E11 = In−1 −GQD+F, (29)

by defining Q := In − e−CKcDh = diag[qi]n×n, where qi = 1− e−cikcidih ∈ [0, 1). The spec-
trum of E11 is given by

σ(E11) = 1− σ(GQD+F) . (30)

The spectrum of GQD+F can alternatively be characterized as (see, e.g, [23])

σ(GQD+F) = σ(QD+FG)\{0} = σ(QD+L)\{0} .
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Let X = QD+L. This matrix can be viewed as the Laplacian of a weighted digraph where the
weight of an arc (i, j) ∈ E is equal to qid+

i . Applying Gerschgorin circle theorem (see, e.g., [23])
to matrix X, we have that all its eigenvalues will be contained in the union of the Gerschgorin
disks

σ(QD+L) ⊆
n⋃
i=1

D(xii, ri)

where xii = qid
+
i lii = qi and

ri =
n∑
j=1
j 6=i

|xij | =
n∑
j=1
j 6=i

qid
+
i |lij | = qid

+
i

n∑
j=1
j 6=i

|lij | = qi .

All of the above disks are contained in the enclosing disk

D(xii, ri) ⊆ D(q, q) ⊆ D(1, 1) ∪ {0}

for all 1 ≤ i ≤ n, where q = maxi qi < 1. Because the digraph associated to L has at least
one globally reachable vertex, the same happens to the digraph associated to X. As stated in
Section 2.2, the Laplacian of a digraph with at least one globally reachable vertex has a simple
eigenvalue at zero. Thus, X has a simple eigenvalue at zero. Therefore, σ(GQD+F) ⊆ D(1, 1)
and using (30) we conclude that σ(E11) ⊆ D(0, 1). Thus, E11 is convergent.

We are now ready to prove our main result.

Proof of Theorem 2
The time response of the impulsive system (23)-(24) is given by

xC(t) = eΛ(t−tk)ΦkxC(t0) + gζ(t) +
k−1∑
p=0

ΦpVgζ(tk−p) (31)

for all t ∈ [tk, tk+1) and k ≥ 0, where

gζ(t) =
∫ t

tk(t)

eΛ(t−s)Bζ(s) ds (32)

for all t ≥ t0 and k(t) =
⌊
t−t0
h

⌋
, and

V :=
[
In−1 0

0 0

]
.

Let ρ = 1
2λmax(Λ + Λ>) denote the log-norm of Λ (see, e.g., [24]) and b = ‖B‖ denote the

induced Euclidean norm of B. Then, the norm of (32) can be upper bounded by

‖gζ(t)‖ ≤
∫ t

tk

‖eΛ(t−s)‖‖B‖‖ζ(s)‖ ds ≤ b
∫ t

tk

eρ(t−s)‖ζ(s)‖ ds

≤ b‖ζ‖[tk,t]
∫ t

tk

eρ(t−s) ds =
b

ρ

(
eρ(t−tk) − 1

)
‖ζ‖[tk,t]

≤ b

ρ

(
eρh − 1

) ‖ζ‖[tk,t] .
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υ̃n
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Figure 8. Interconnected system formed by n PF subsystems and the CC subsystem.

By Lemma 3, Φ is a convergent matrix and therefore there exist c0 > 0 and α < 1 such that
‖Φp‖ ≤ c0αp for all p ≥ 0. Hence, the terms depending on ζ in (31) can be upper bounded by

‖gζ(t) +
k−1∑
p=0

ΦpVgζ(tk−p)‖ ≤ ‖gζ(t)‖+
k−1∑
p=0

‖Φp‖‖V‖‖gζ(tk−p)‖

≤ b

ρ

(
eρh − 1

)(‖ζ‖[tk,t] +
k−1∑
p=0

c0α
p‖ζ‖[tk−p−1,tk−p]

)

≤ b

ρ

(
eρh − 1

)(‖ζ‖[tk,t] + c0‖ζ‖[t0,tk]

k−1∑
p=0

αp

)

≤ b

ρ

(
eρh − 1

)(
1 +

c0
1− α

)
‖ζ‖[t0,t],

where we used the fact that ‖V‖ = 1, and that

k−1∑
p=0

αp =
1− αk
1− α ≤

1
1− α, for |α| < 1 .

Let

σC =
b

ρ

(
eρh − 1

)(
1 +

c0
1− α

)
. (33)

Upper bounding the norm of (31), we conclude that

‖xC(t)‖ ≤ κCe−λC(t−t0)‖xC(t0)‖+ σC‖ζ‖[t0,t] .

for some positive constants κC and λC .

3.5. System interconnection

The control structure proposed in Section 3.2, together with the control laws developed in
Sections 3.3 and 3.4, form the interconnected system shown in Figure 8. The next theorem
shows that the resulting interconnected controller solves the CPF problem presented in
Section 2.3.

Theorem 3
The overall system formed by the interconnection of the n PF subsystems and the CC
subsystem is globally asymptotically stable for an adequate choice of controller gains.
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Proof
First, we show that the collection of PF subsystems is ISS with respect to state xP :=
[x>P1 x

>
P2 · · · x>Pn]> ∈ R6n and input xC . Let υ̃ := [υ̃i]n×1. We have that

‖xP (t)‖ ≤
n∑
i=1

‖xPi(t)‖

≤
n∑
i=1

κPie
−λP i(t−t0)‖xPi(t0)‖+ σPi sup

s∈[t0,t]

|υ̃i(s)|

≤
( n∑
i=1

κPie
−λP i(t−t0)

)
‖xP (t0)‖+

( n∑
i=1

σPi

)
sup

s∈[t0,t]

‖υ̃(s)‖

≤ κP e−λP (t−t0)‖xP (t0)‖+ σP sup
s∈[t0,t]

‖υ̃(s)‖

where κP =
∑n
i=1 κPi, λP = min1≤i≤n λPi, and σP =

∑n
i=1 σPi. Moreover, υ̃ and xC are

related as follows

υ̃ = −KcDχ+ KcAχ̂

= −KcFθ −KcAχ̃

= −Kc

[
F A

]
xC .

Using the bound
‖υ̃‖ ≤ σmax

(
Kc

[
F A

])‖xC‖,
yields

‖xP (t)‖ ≤ κP e−λP (t−t0)‖xP (t0)‖+ σ̃P ‖xC‖[t0,t]
where σ̃P = σmax

(
Kc

[
F A

])
σP .

Next, we show that the CC subsystem is ISS with respect to state xC and input xP . From
Theorem 2, we know that

‖xC(t)‖ ≤ κCe−λC(t−t0)‖xC(t0)‖+ σC‖ζ‖[t0,t].
Resorting to the following bounds

‖ζi‖ ≤ wiβ1i‖z1i‖ ≤ wiβ1i‖xPi‖ ⇒ ‖ζ‖ ≤ w̄β̄1‖xP ‖
where w̄ = max1≤i≤n wi and β̄1 = max1≤i≤n β1i, we conclude that

‖xC(t)‖ ≤ κCe−λC(t−t0)‖xC(t0)‖+ σ̃C‖xP ‖[t0,t]
where σ̃C = w̄β̄1σC .

Applying a small-gain theorem (Theorem 1) to the collection of PF subsystems to the CC
subsystem, we get that a sufficient condition for asymptotical stability of the interconnected
system is

σ̃P σ̃C < 1 . (34)

Since σP can be made arbitrary small by increasing the PF gains (K1 and K2), this condition
can always be satisfied.

Remark
The reason why we choose to increase the PF gains K1 and K2 in the proof of Theorem 3
instead of decreasing h, is that σ̃C cannot be made arbitrarily small by decreasing h, since
σC in (33) as a function of h has a minimum value. Therefore, if the PF gains are fixed,
asymptotical stability may not be possible to guarantee using the reasoning of Theorem 3.



COOPERATIVE CONTROL OF MULTIPLE VESSELS 17

Table I. Physical parameters of the vessels.

Type of parameter Symbol Vessel 1 Vessel 2 Vessel 3 Units

Mass∗ mu 500 515 485 kg
mv 1000 990 1010 kg

Moment of inertia∗ Ir 700 735 700 kg m2

Hydrodynamic damping Xu −1 −1.1 −0.9 kg s−1

X|u|u −25 −22.5 −27.5 kg m−1

Yv −10 −9 −11 kg s−1

Y|v|v −200 −220 −180 kg m−1

Nr −0.5 −0.45 −0.55 kg m2 s−1

N|r|r −1500 −1650 −1350 kg m2

*added mass terms included.

60º

15 m

Figure 9. Communication range for each vessel: every other vessel inside the gray area will receive
data.

4. ILLUSTRATIVE EXAMPLE

We consider a group of three ASVs whose kinematic and dynamic equations of motion can be
written as in (1)-(3), with

M = diag(mu,mv, Ir), and f(η,ν) =

Xu +X|u|u|u| −mvr 0
mur Yv + Y|v|v|v| 0

0 0 Nr +N|r|r|r|

ν .
In the simulations presented, the physical parameters are given in Table I. The communication
range of each vessel is the circular sector illustrated in Figure 9.

The initial time is t0 = 0 s and the simulation is run for Tsim = 200 s. The initial conditions
of each vessel are η1(t0) = (5 m, 20 m, π/3 rad), η2(t0) = (−10 m, 10 m,−π/4 rad), η3(t0) =
(0 m,−15 m,−2π/3 rad), ui(t0) = vi(t0) = 0 m s−1 and ri(t0) = 0 rad s−1 for i = 1, 2, 3. The
initial condition for γ is chosen so that for vessel i, γi yields the closest point on the
corresponding path, which gives γ(t0) = (5,−10, 0) [m]. The reference speed is set to υL =
1 s−1. A scaling is performed during the arcs to ensure that all the vessels reach the second set
of straight lines at the same time. This is done by setting R1,3 = π

2 and R2 = 1 during that
section of the path (Ri = 1 everywhere else).

The PF gains are the same for all vessels: K1 = 40I3 and K2 = 200I3. The CC gains are
Kc = 0.79D+C−1 and W = 10−3C−1, where the entries of C depend on whether the vehicle
is moving along a straight line or a circumference’s arc. The gains were selected in order to
verify condition (34) over all possible network topologies that have a globally reachable vertex
and with a communication period of h = 1 s.

Figure 10 illustrates the trajectories made by the vessels. The vessels start by converging to
a set of straight lines 25 m from each other. As we will see, this disconnects the vessels from
one another. They are then brought closer together along straight lines that are 5 m apart.
Along these straight lines, first an “inline” formation pattern characterized by φ0 = (0, 0, 0) is
acquired. At t = tφ1 = 70 s, the formation pattern is changed into the “slanted” configuration
represented by φ1 = (10, 0,−10). At t = tφ2 = 110 s, the vessels return to the original inline
pattern and at t = tφ3 = 140 s the pattern changes into a mirrored version of the slanted
formation (φ3 = (−10, 0, 10)).
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Figure 10. Trajectory of each vessel in the 2D-plane.
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Figure 11. Time evolution of the path-following position errors.
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Figure 12. Time evolution of the along-path distances.

Figure 11 shows the time evolution of the position errors of each vessel, given by
‖pi(t)− pdi(γi(t))‖, where pi(t) = (xi(t), yi(t)) and pdi(t) = (xdi(γi(t)), ydi(γi(t))). The peaks
at t = tφi are due to changes in the spatial configuration, while others spikes stem from the
fact that the path is not differentiable when changing from straight line to arcs and vice-
versa. Figure 12 presents the time evolution of the along-path distances. As can be seen, the
evolution of ξi,j agrees with the initial inline formation φ0 and after t = tφ1 changes into the
leader-following formation defined by φ1, returning to the original pattern after t = tφ2.

Due to the way the paths are designed, as well as the changes in formation patterns, the
network graph changes over time. The time evolution of the network links is illustrated in
Figure 13. Several network topologies are present and only some of them have at least one
globally reachable vertex.

Although the gains are designed to ensure stability for h = 1 s, simulations were carried
out at higher communication periods. Let xcl = [x>P x

>
C ]> denote the state of interconnected

system shown in Figure 8. Figure 14 depicts the time evolution of its norm. During time
intervals where connectivity is preserved the system remains stable with errors converging
to zero, and in the absence of connectivity the vessels will do cooperation in smaller groups
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Figure 13. Time evolution of the links between vessels and snapshots of the underlying graph at certain
time instants. Arrows signal flow of information.
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Figure 14. Time evolution of the closed-loop state’s norm for different values of h without any input
saturation.

and/or path-following as if the other vessels did not exist. Figure 14 also shows that during
time intervals where connectivity exists, the rate of convergence decreases when h increases.

To assess the effect of saturation of the control input in the overall performance of the
closed-loop system, we performed simulations where the propulsion system of each vessel has
the following limitations: given τmax ≥ 0,

|τui| ≤ τmax(N) |τvi| ≤ 1
5
τmax(N) |τri| ≤ 3τmax(Nm)

for i = 1, 2, 3. To measure the variation in performance, let the root mean squared (RMS)
value of xcl be defined as

RMS{xcl} =

√
1

Tsim − t0

∫ Tsim

t0

x>cl(t)xcl(t) dt,

and let Tconn denote the total amount of time where there is at least one globally reachable
vertex in the induced communication graph. Plotted in Figure 15 are the values of RMS and
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Figure 15. Variation of RMS{xcl} and Tconn for different values of τmax with communication period
h = 1 s. The red and black dotted lines represent the RMS and Tconn values obtained without

saturation.
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(b) τmax = 100.

Figure 16. Variation of RMS{xcl} and Tconn for different values of the communication period h and
two different values of input saturation. The red and black dotted lines represent the RMS and Tconn

values obtained with h = 1 s in each case.

Tconn for different values of τmax. As expected, when τmax decreases, performance worsens and
connectivity is kept for less and less time. For τmax = 102 the performance is quite degraded but
Tconn is only slightly less than the one obtained without any saturation in the inputs, showing
that some degree of saturation is well tolerated. When τmax goes below 102, the propulsion
system is so limited that the vehicles cannot perform the required path-following maneuvers.
When this happens, performance and connectivity cannot be increased by decreasing the
communication period h.

As before, we now compare the variation in performance and connectivity with a fixed
saturation limit τmax and varying communication period h. Shown in Figure 16(a)-(b) are
the values of RMS and Tconn for different values of h when there is no input saturation and
when τmax = 100, respectively. Decreasing the communication period h does not affect RMS
performance or total connectivity time significantly, but its increase eventually leads to a loss
of connectivity (that is, a decrease of Tconn).
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5. CONCLUSION

We addressed the problem of cooperative path-following for a group of fully-actuated surface
vessels that exchange messages among each other at periodic intervals. Each vessel must follow
a pre-assigned path while keeping a desired spatial configuration relative to the other vessels.
Lyapunov and model-based control techniques together with concepts from graph theory
are employed to characterize the stability properties of the proposed decentralized control
structure formed by an interconnection of two subsystems: path-following and cooperation
control. Both subsystems are shown to be input-to-state stable with respect to each other,
and therefore, resorting to a small-gain theorem, asymptotical stability of the overall system
is guaranteed for large enough path-following controller gains, as long as the graph induced
by the communication network has at least one globally reachable vertex. An illustrative
example with extensive simulation results performed under limited communication range,
varying network topologies, and actuator saturation show that the proposed control system
tolerates well nonlinear effects not taken into account during the design phase.
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