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Abstract—Discrete Event Systems (DES) are commonly found
as supervisors in industrial applications, implemented by Pro-
grammable Logic Controllers (PLC). Modeling DESs with IOPT
Petri Nets (IOPT PNs), a class of PNs extended with input-output,
allows translating the models directly to PLC programs when the
PNs are bounded.

Validation is required to assess the PN-based PLC program-
ming tools are error-free. Coverability trees based on the node
dominance concept are proposed to consider just DESs with finite
reachable sets. Operation cycles, and the associated sequences of
transitions, are used to validate the produced code by assessing
whether the PLC code reaches all possible states.

Promising results were obtained in practical validation cases
of the PLC code production, by the exhaustive test of reachable
states determined from the PN representing the industrial process
(DES). Moreover, the proposed methodology showed that it is
possible to anticipate the detection of design problems and study
the effects of restrictions imposed by hardware.

I. INTRODUCTION

Programmable Logic Controllers (PLCs) are the most com-
mon devices for integrating and controlling industrial pro-
cesses. However, despite the widespread usage based on
standard programming languages, it is still time consuming
their direct programming. We focus on a more convenient
way to create PLC programs: high level design with Petri nets
(PNs) followed by an automatic conversion to a PLC language,
namely Structured Text (ST), as shown in Figure 1.

Unbounded PNs imply infinite markings and therefore can-
not be implemented in PLCs. We propose a methodology
based on the reachability and coverability concepts [1] to
determine a PN can be implemented in a PLC.

In addition, we propose methodologies to validate the
conversion as well as to validate the PN design, making use of
the PN properties to automatically generate testing sequences.

More in detail, we propose as a first step determining a PN
has a finite number of possible states. Starting from an initial
state, one may take all possible state transitions, therefore
creating a tree, whose leaves indicate no more possible state
changes (deadlocks) or duplicate states already explored. This
tree can still have an infinite number of nodes. However,
one may use a special symbol indicating infinite countings
to still obtain a finite tree, which can be built in finite time.
One obtains the so-called coverability tree, which immediately
indicates bounded PNs and suggests sequences of state tran-
sitions to visit all possible states. Cassandras and Lafortune’s
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Fig. 1. Automated conversion from high level PN to ST as a faster alternative
to direct PLC programming. Validation is important to assess the conversion
as well as the PN design.

comprehensive introduction to discrete event systems [1] (2nd

edition, 2008, following the seminal book [2]) contains a
detailed description of the coverability tree algorithm that is
the base of our DES/PLC validation proposal.

In the vein of industrial-systems development-tools, Pais,
Barros and Gomes [3] proposed a new PN class based on
Place/Transition nets and well-known concepts from Inter-
preted PN: the IOPT PN class [4]. This PN class provides
support for the specification of input and output events. In [5],
is developed software to convert PNs to a hardware description
language (VHDL) which inspired the creation of a toolchain
converting PNs to PLC programs [6]–[8]. In this work the
toolchain is complemented with testing (validation) tools.

II. BACKGROUND

A. Petri Nets

A Marked PN, C is formally defined as a five-tuple

C = (P, T,A,w, µ0) (1)

where P is the finite set of places defined as P =
(p1, p2, ..., pn), n ∈ N, T is the finite set of transitions
defined as T = (t1, t2, ..., tm),m ∈ N, (A,w) represent
the arcs and µ0 is the initial state of the PN given by
the markings of all the places. A PN state is defined as
µ = [µ(p1), µ(p2), ..., µ(pn)] ∈ Nn. About the arcs, (A,w),
A denote the finite set of arcs from places to transitions
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and from transitions to places in the graph defined as A ⊆
(PxT ) ∪ (TxP ), and w is the weight function on the arcs
defined as A → 1, 2, 3, ...; one assigned weight for each
arc in A. The matrix comprised of all w(tj , pi) values is
called the postconditions matrix D+ and the matrix comprised
of all w(pi, tj) is defined as preconditions matrix D−, with
D+, D− ∈ Rnxm. For simplicity, a marked PN shall hence-
forth be referred to as just a PN.

The PN algebraic representation is done in matrix form by
the Incidence Matrix D ∈ Rnxm, which in turn is obtained
from the weight function w as Dij = w(tj , pi) − w(pi, tj),
where i = 1, ..., n and j = 1, ...,m. The dynamic of PNs is
based on two concepts, Enabled Transition and Firing Rule.

a) Enabled Transition: For a given marking, a transition
tj is said to be enabled if its preconditions are verified, i.e.,
µ(pi) ≥ w(pi, tj),∀(pi, tj) ∈ w.

b) Firing Rule: Only enabled transitions may fire. Firing
is described by the PN dynamics, also known as state transition
mechanism, and is based on the equation µ′ = µ + D · q(j)
where q is the firing vector and q(j) a vector representing the
firing of transition tj .

B. IOPT Petri Nets

IOPT PNs [3] are based on Place/Transition nets and
concepts from Interpreted PNs. They allow the specification
of models with input and output signals and events, namely
the association of input events to transitions and output events
to places, simulating the readings of sensors and manipulation
of actuators. The input and output signals guide the controller
through each execution step by defining the system current
state while the input or output events are associated to changes
in input or output signals.

The IOPT PN dynamics are similar to the PN dynamics. A
transition has to be both enabled and ready to be firable. A
transition is ready when the associated input events happen.
After a transition fires, the marking changes according to the
PN dynamics. The marked places will trigger associated output
events.

C. Reachability

The set of all states reachable by a PN from the initial
state µ is called reachable set R, which can be graphically
represented by a reachability tree. Depending on whether the
PN is bounded or unbounded, the reachability tree can be finite
or infinite, correspondingly. When the reachable set is finite it
may be represented by the finite reachability tree. When the
reachable set is infinite the reachability tree becomes infinite.
There exists a way of representing an infinite reachability tree
in a finite form by introducing the infinity symbol ω and the
notion of node dominance (section II-E).

The reachability problem for a PN with initial marking µ0

consists of deciding that a marking µ can be reached from µ0.
This problem was first proposed by Karp and Miller [9] within
the scope of Vector Addiction Systems, but left unsolved.
Esparza’s research on decidability issues for PNs [10] states
that, after an incomplete proof by Sacerdote and Tenney [11],

decidability of the problem was established by Mayr in his
seminal STOC 1981 work [12]. The algorithm uses a structure
called regular constraint graphs and is based on conditions
given by Presburger’s Arithmetic. The proof was then sim-
plified by Kosaraju [13] by disposing of the complicated
tree constructions used by Sacerdote and Tenney, and Mayr,
introducing a ”more general model o VASS’s” known as
Generalized Vector Addiction Systems with States (GVASS).
Further refinements were made by Lambert [14], where he
completely suppressed the use of Presburger’s Arithmetic.

D. Coverability Tree

In 1969, Karp and Miller [9] introduced the rooted tree
T (W ), for any vector addition system W , and the infinity
symbol ω terminology to help represent an infinite reachability
set R(W ) in a finite form.

Later in 1981, Peterson [15] used ω to represent ”a number
of tokens which can be made arbitrarily large”, that can be
thought of as infinity, and described an algorithm to reduce
the infinite reachability tree to a finite representation. Peterson
chose to name both the finite and the infinite reachability tree
as reachability tree.

Note that seeking the finite version is always possible,
meaning the algorithm always terminates, as proven in [15]
who based the proof on [16] and [9].

Finally, 1993, Cassandras and Lafortune [1] introduced
the notation of node dominance, which the previous authors
also used but did not label, to present the technique of the
coverability tree. The authors named coverability tree as the
finite representation of the infinite reachability tree, which
contains the infinity symbol ω.

Often overlooked, node dominance makes possible the
decision of whether a reachable set is finite or infinite.

E. Node Dominance

Let any state µ = [µ(p1), µ(p2), ..., µ(pn)]. Consider states
µ and µ′ belonging to the coverability tree and n the total
number of places in the PN. If there is a node µ′ on the path
from the root node to µ such that

(i) µ(pi) ≥ µ′(pi),∀i = 1, ..., n (state µ covers state µ′)
(ii) ∃i : µ(pi) > µ′(pi), i=1,...,n (there exists at least one

place of µ that has more tokens than the corresponding
place of µ′)

then µ >d µ
′, i.e., ”µ dominates µ′” and set µ(pi) = ω ∀i

that verify (ii). Example in Figure 2.

III. IMPLEMENTATION AND VALIDATION OF
DISCRETE-EVENT PROCESSES

Consider a PLC program represented by a PN with I/O
interacting with (supervising) the world. A PN typically has
inputs at the transitions and outputs at the places.

A. DES to PLC Conversion Toolchain

The DES to PLC conversion toolchain chosen as the object
of analysis started to be developed in [6] and improved in [8].
We assume that the modelling of the DES is made by a system
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Fig. 2. Node dominance example.

designer. More in detail, we assume it is used an IOPT PN 1

which properly models the system and that the PN meets the
format required by the toolchain. Currently, the DES to PLC
conversion toolchain 2 provides, additionally for this work, a
controlled simulation environment and includes the automatic
generation of testing sequences of events.

B. Finite Reachable Set

Unbounded PNs imply infinite reachable sets, therefore do
not allow exhaustive testing of the reachability set. We start
by adding a decision method to reject unbounded PNs to the
PLC-code production toolchain (Figure 3). Given a bounded
PN, we propose a method to automatically generate testing
sequences.

As referred, we want to consider just bounded PNs since
in those cases one finds finite reachable sets and can auto-
matically generate sequence of events for testing the system.
More in detail, we want to start by finding an algorithm to
decide whether a PN is bounded. We start by the reachability
problem introduced in section II-C.

Given a PN C with initial marking µ0, the reachability
problem consists of finding if a state µ is in the reachable
set, i.e. µ ∈ R(C, µ0). This problem was shown to be
decidable [10], [12], [14]. While approaching the reachability
problem in [9], Karp and Miller introduced the node domi-
nance concept to build a coverability tree. The coverability
tree has a finite number of nodes, but may contain the symbol
ω indicating unbounded places on the PN. A coverability
tree not containing ω symbols indicates a bounded PN (see
section II-D).

Our proposal, complementing the DES to PLC conversion
toolchain , involves two additional steps. The first step is
to include a coverability tree construction algorithm in the
toolchain to reject unbounded PNs, which are associated to
coverability trees containing ω. This is introduced in sec-
tion II-D.

The second step is to extract the finite sequence of tran-
sitions for testing, given a finite reachability tree, i.e. a

1IOPT tools [5] http://gres.uninova.pt/IOPT-Tools, accessed 2021-02-22.
2http://www.isr.tecnico.ulisboa.pt/%7Ejag/tools/pn2plc/
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Fig. 3. IOPT PN to ST Converter. A decision method to reject unbounded
PN is added as well as to automatically generate testing sequences.

coverability tree which has no ω symbols as the PN did not
require its use. We find operation cycles, avoiding therefore
deadlock cases, and use sequences of transitions to assess
whether the process code effectively reaches all possible states.
This methodology is developed in section III-C.

C. Generation of Event Sequences

In a reachability tree are shown the transitions next to
each branch. To determine the sequence of transitions to be
triggered in order to evolve the PN from one state to another,
just follow the path from the first to the second.

Doing this process of extracting a sequence of transitions
from the initial state to all its duplicates in the tree, it is
possible to obtain a sequence of transitions describing an
exhaustive test. Then, using the input and output components
of IOPT PN, we replace each transition in the sequence with
the associated events by building a table of sequential events.
For such a table we use the notation table Ut (see table
example in (2)).

The sequentiality is given by the first column of the Ut

table, which represents the moments in time where events will
occur to make transitions ready, guiding the controller through
its reachable states, thus allowing validation of the industrial
process implementation by the PN.

D. Extension of Petri net models to include Time

To better model the interaction of the controller with a real
system, it is necessary to introduce the concept of time in
the toolchain internal PN model. Time allows recreating real
hardware operations. Depending on the time scales used, we
can find out about the existence of critical races when there is
a rapid evolution of states, as well as an unexpected evolution
of the controller when the input signals vary rapidly, due to
input bouncing, for example. Timed PNs [17], well known
extensions of PN, do this using timers in the form of controller
inputs, associating them with each transition. The timeouts
of the timers dictate times of events enabling the firing of
transitions.

IV. EXPERIMENTS

In this section are combined the tools for creating DES
supervisors running on PLCs with the tools for validating
the created DES supervisors. The main objective of the ex-
periments is the assessment of the proposed validation tools
applied to testing the created DES supervisors and identifying
possible design issues.



Fig. 4. PN edited with IOPT Tools to control the alarm (left). Coverability tree for the proposed alarm PN (right). Duplicate states are marked ”dup” on the
top left corner.

A. Setup, Alarm System

The experimental setup is a PLC based mockup of an alarm
system, composed by three inputs - a presence switch, an alarm
switch and a door switch - and by four output components -
a red LED, a yellow LED, a green LED and a buzzer (see
Figure 7(a)).

The IOPT PN in Figure 4 implements three alarm operation
modes: (i) OFF, (ii) Presence Detection, where the alarm
informs a door was opened by a person entering the room, (iii)
Alarm mode (Intrusion Detection), where whenever a door is
opened, the alarm must be sound. The PN is 1-bounded and
has just one token in all states, i.e. whichever the state, only
one place has one mark and all other places have zero marks.

The coverability tree in Figure 4 is obtained by the cov-
erability tree algorithm implemented. Note there are no ω in
the tree and thus it is a coverability tree representing a finite
reachability set, with just ten possible states.

B. Reach All Possible States

In this use case we are assessing if the toolchain performs an
error-free conversion. We feed generated sequences of events
to the IOPT PN and evaluate the resulting state. We follow
the methodology detailed in section III-B: (i) computing the
coverability tree (ii), verifying the alarm controller IOPT PN is
bounded, (iii) using the event sequence automatic generation
tool to generate the exhaustive test that makes the alarm
controller reach all of its states (see section III-C) and finally
(iv) simulating the controller with the test sequence.

We validate the conversion, i.e. consider it is done correctly,
by comparing the results of the test with those expected from
the knowledge PN based controller responses to events. If a
difference is found, it is due to the conversion tool. Otherwise,
the conversion is considered validated.

The PN contains only 1 token, so the current state corre-
sponds to the marked place. Confirmation that all states are
reached is achieved if all places are visited. Figure 5 shows that
effectively all states are reached given the generated sequence
of events.

2/10 3/10 10/10 (100%)visited places...

Inputs

States

Fig. 5. Response of PN (bottom) to exhaustive test sequence of inputs (top)
extracted from its coverability tree.

C. PLC-DES interaction with World-DES

Let PLC-DES denote the alarm controller and World-DES
denote the alarm hardware components connected to the PLC.
Validating the PLC-DES code while including the to/from
world interaction usually requires too much (exhaustive) hu-
man intervention. In addition, the World-DES may introduce
functional deadlocks or even induce unexpected behaviour
in the PLC-DES. Alternatively, we focus on specific tests
based on storyboards, representing the World-DES, covering
expected usages.

1) Closed Loop Simulation, PLC and World Interaction:
The storyboard is created as an IOPT PN that tells a story
from which the sequence of events is extracted (Figure 6).
For example, in our setup, the storyboard describes a typical
correct functioning of the alarm in Alarm mode. The extraction
of the test sequence from the storyboard follows the general
steps of finding the associated coverability tree and converting
the sequence of transitions into a table Ut:

Ut =



0 1 0 1 0 1 0
5.0010 0 1 1 0 1 0
5.0030 0 1 1 0 1 0
45.003 0 1 1 0 0 1
45.005 0 1 1 0 0 1
47.005 0 1 1 0 1 0
47.007 0 1 1 0 1 0
50.007 0 1 1 0 1 0
50.009 0 1 1 0 1 0
55.009 1 0 1 0 1 0


(2)



(a) Storyboard written as an IOPT PN.

(b) Storyboard as a sequence of events and expected controller response.

(c) Controller state and output evolution given the input events.

Fig. 6. Storyboard showing a typical correct functioning of the alarm in
Alarm mode. Alarm PLC program (Figure 4) driven by a storyboard showing
the typical correct functioning of the alarm in Alarm mode.

where the first column indicates time of events and the next
columns show input signals (event sequences) that are used to
fire PN transitions.

Figure 6 shows the results of simulating the PLC-DES with
the World-DES storyboard. The state evolution corresponds to
the expected correct functioning of the alarm in Alarm mode.
Therefore, the implementation of the controller from the PN
is validated in the sense the controller correctly performed the
alarm functioning in Alarm mode.

2) Validation using the PLC Network Interface: The PLC
programming software, Unity Pro, by Schneider Electric, in-
cludes a standard network interface (MODBUS), which allows
injecting input signals (events) to the PLC and receiving
outputs of the PLC. Thus, the terminal shown in Figure 7(a),
connected to the PLC input/output modules by a flat cable,
can be replaced by a software interface.

More in detail, the MODBUS (software) terminal allows

injecting inputs to the PLC given a table Ut, as the one in
(III-C), but now with a number of digital inputs required by
the terminal. As referred, the terminal also receives the outputs
of the PLC.

We run the DES to PLC conversion toolchain ST compiler
to convert the PLC-DES to ST code, which is placed in a
Unity Pro section. Then connect to the PLC, transferring the
project, and run the project. Finally, in the terminal, we load
table Ut (2) and start the injection of inputs protocol.

Figure 6 shows the results of the experiment. We observe
a correct injection of inputs and coil writing, following the
desired storyboard. In addition, we observe a matching be-
haviour of the PLC-DES to the expected one. Again, the
implementation of the controller from the PN is validated
in the sense the controller correctly performed the alarm
functioning in Alarm mode.

D. Effects of Hardware Constraints on PN Designs

In case a DES controller developer does not account for PLC
and/or real system hardware constraints the implementations
can fail validation tests. PLC programs, which are based on
scan cycles, may fail to recognize fast input changes (short
pulses) depending on their duration and the state of the
PLC scan cycle. On an opposite case, if long enough, pulses
associated to input bouncing may be accepted incorrectly by
the PLCs.

The proposed methodology allows searching for bouncing
issues, by creating event sequences to test the PN against
bouncing on all inputs (Figure 7). To assess whether the
methodology correctly detects the existence of the problem,
we looked for a situation in the alarm that was destabilized by
the bouncing effect. Such is a situation in presence detection
mode, when finalising the detection of an individual. Bouncing
occurs on the door switch and a new detection is initiated
incorrectly, causing a double detection. We apply a debouncing
solution directly to the PN to also check if the methodology
effectively detects when the problem is overcome.

Figure 7(b) shows the response of the original PN to the
effect of bouncing on the door switch. The first bounce of
the signal is incorrectly accepted as an input, reflecting in the
detection of a second individual incorrectly. We can validate
that the methodology effectively detects problems caused by
the bouncing effect.

Observing Figure 7(c), showing the response of the de-
bounced PN to the effect of bouncing on the door switch,
we see the debouncing mechanism successfully handles the
bouncing effect. Only after the door switch input signal
stabilizes at the OFF position for 2ms does the PN evolve
to the state of waiting to detect a new individual. We validate
that the methodology effectively detects when the situation is
solved.

V. CONCLUSION AND FUTURE WORK

This paper is focused on the production of discrete-event
process supervisors implemented in PLCs. In particular is
considered the assessment of error-free PN to PLC-code



(a) PLC based setup.

(b) DES/PLC-code from PN without debouncing.

(c) DES/PLC-code from PN with debouncing.

Fig. 7. (a) Alarm setup. The IO terminal allows human interaction. Events
can also be injected with the network interface. Bouncing happens on the
switches, but exists mostly in push-buttons. (b) Response of PN to bouncing
on door switch input. (c) Response of debounced PN to bouncing on door
switch input.

conversion. A PLC code production toolchain is used and
further developed, and are proposed tools that check whether
or not IOPT PNs are correctly translated to PLC ST programs.

One challenge of doing validation by reachability analysis is
the so called state space explosion. We consider (accept) only
bounded PNs based on the construction and analysis of the
coverability tree. An automatic generation of event sequences,
based on the coverability tree, is proposed for driving the
PN through all reachable states. Time is introduced in the
toolchain to allow testing the PLC/DES supervisor code on
expected PLC/DES uses.

Experiments with a PLC based alarm system allowed the
validation testing of both the DES to PLC conversion toolchain
simulation environment, the IOPT PN to PLC code conversion
and the PN design. Furthermore, it was addressed the problem

of bouncing that arises from the connection of digital systems
to noisy, transient-prone, bouncing inputs. A method to test
the toolchain robustness to bouncing was proposed, as well
as a debouncing solution to be implemented directly on the
IOPT PN.

Future work, studying state explosion by using symbolic
model checking may open more ways for the verification
and validation. More in detail, the Cone of Influence [18]
may identify which part of a DES model is relevant for the
evaluation of the given requirement and in that way augment
to a larger class the PNs considered in our work that can
be implemented in PLCs. Safety studies on robot collision-
avoidance systems are a promising application topic.
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