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Abstract—First prototypes of standard plenoptic cameras
(SPCs) were based on arrays of pinhole cameras. Despite the
array nature, viewpoint pinhole arrays are not intrinsically
provided by current SPC calibration tools. In this work, we start
by detailing the mapping between the SPC model and a camera
array of viewpoints. Then, the mapping is used to propose a
calibration procedure for the SPC based on a grid of corners.
Calibration involves two steps, first a linear solution and then
a nonlinear optimization minimizing the ray re-projection error.
The proposed calibration methodology compares favourably with
state of the art calibrations and the linear solution proposed for
the initial stage of the calibration outperforms the state of the
art.

Index Terms—Standard Plenoptic Camera, Viewpoint Camera
Array, DLT Calibration.

I. INTRODUCTION

IN a pinhole camera, different light rays reflected by a point
in the object space are captured in a single pixel location in

the image space. In a plenoptic camera, these different light ray
directions are captured at different pixels, therefore creating a
lightfield [2], [3]. Lightfields open new possibilities like single
image depth estimation [4], [5] or refocusing [6]. Relevance
and interest of these applications motivated the appearance
of several types of lenslet based plenoptic cameras as the
standard plenoptic camera (SPC) [7] or the focused plenoptic
camera (FPC) [8]. Comprehensive introduction and review of
the major lightfield concepts and capabilities can be found in
overview articles as [9], [10].

In this work, we focus on the SPC which consists of a
main lens, one single high definition imaging sensor, and
a microlens array. The SPC geometry generates unfocused
microlens images (MIs) (Figure 1.a) by placing the main lens
focal plane on the microlens array plane [11].

The geometry model most used for SPCs is the one pro-
posed by Dansereau et al. [12]. This model maps rays in
the image space indexed by pixels and microlenses indices to
rays in the object space defined in metric units. The concept
of viewpoint image (VI) defined by Ng et al. [6], obtained
by selecting the same pixel for each microlens, allows to
conveniently view the SPC as a camera array (Figure 1.c).
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(a) SPC raw image and zoom of microlenses

(b) Reconstructed (c) 3D reconstruction and camera
depth map array (centers spaced 50×)

Fig. 1: Lightfield scene reconstruction and camera array. (a)
Image captured on the sensor of a SPC with detail of the MIs
formed in the sensor. (b) depicts the depth map obtained using
[1]. (c) Viewpoint camera array obtained by calibration where
the spacing among projection centers has been scaled 50 times
to be perceptible on the 3D plot.

Camera arrays help explaining the geometry of viewpoint cam-
eras. However, the projection model for the viewpoint cameras
is still to be fully formalized and there is no connection
established with the camera model proposed by Dansereau et
al. [12].

In this work, we build from the model of Dansereau et al.
[12] and derive the mapping between a SPC and the viewpoint
camera array. The viewpoint camera array representation is
used to define a new calibration procedure. The accuracy of the
mapping described is evaluated by a corner based calibration
for commercially available SPCs. The code and datasets used
are provided 1.

Contributions. The contributions of this work are two-fold:
(i) formal definition of the projection model for a viewpoint
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camera, and mapping between the models of a SPC proposed
by Dansereau et al. [12] and an array of viewpoint pinhole
cameras, and (ii) definition of a linear solution for a SPC
capable of estimating all parameters of the camera model
based on the viewpoint camera array representation. This work
can also be seen as an entry point to plenoptic cameras for
researchers and developers acquainted with the pinhole camera
model.

In terms of structure, we present in Section II a review of the
camera array mappings and calibration procedures for SPCs.
In Section III, we introduce the SPC model removing the
redundancies with the extrinsic parameters. The mapping from
the SPC model to the viewpoint camera array representation is
described in Section IV. The proposed calibration procedure is
presented in Section V with an emphasis on the linear solution
obtained based on the viewpoint camera array representation.
The results of applying the calibration proposed to calibrate
comercially available SPCs are reported in Section VI and the
major conclusions are presented in Section VII.

Notation: non-italic letters correspond to functions, italic
letters correspond to scalars, lower case bold letters correspond
to vectors, and upper case bold letters correspond to matrices.
Vectors represented in homogeneous coordinates are denoted
by (̃·).

II. RELATED WORK

The camera models proposed for SPCs [12], [13] consider
the microlenses as pinholes and the main lens as a thin lens.
Recent works define a projection matrix associated with each
microlens of the microlens array. Namely, Bok et al. [13]
describes the microlens array for a SPC using six parameters
and the knowledge of the corresponding microlenses centers
in the raw image. The microlenses centers are not assumed to
be regularly spaced as in Dansereau et al. [12]. Zeller et al.
[14] also describes the microlens camera array but for a FPC
with the purpose of enabling visual odometry directly from
the MIs.

Bok et al. [13] performs calibration based on line features
extracted from the MIs on the raw image. This method is
not adequate to calibrate the SPC when the calibration grid
is placed near the world focal plane of the main lens because
of the difficulty of detecting features on the unfocused MIs.
On the other hand, the calibration procedure proposed by
Dansereau et al. [12] is capable of calibrating the SPC even
on this situation.

In Dansereau et al. [12], the lightfield in the image space
defined in pixels (i, j) and microlenses (k, l) indices is mapped
to the lightfield in the object space defined by a position (s, t)
and a direction (u, v) in metric units (Figure 2). This mapping
considers a 5 × 5 matrix with ten free intrinsic parameters
that is obtained by propagating the rays from the sensor to
the object space using ray transfer matrices. Nonetheless,
there is not provided a direct connection with a projection
matrix for either the microlens or viewpoint cameras. That
connection, detailed in this work, allows adapting methods
from the mainstream computer vision to plenoptic cameras.

The 5 × 5 matrix is used to calibrate a virtual SPC using
corner points on VI as features. The linear solution for the
calibration procedure described in [12] is based on estimating
an homography for each viewpoint camera and pose of the
calibration pattern. This solution estimates eight from the ten
free intrinsic parameters, being the remaining two parameters
estimated later in the nonlinear optimization.

The calibration with VIs requires a pre-processing step,
denoted as decoding [12], to transform the 2D raw image
(Figure 1.a) into a 4D lightfield. There are several approaches
for the decoding process like the ones presented in [12], [15],
[16]. In this work, we focus solely on the calibration of a
SPC. The decoding originates a virtual SPC that assumes
a lightfield that is obtained considering that the microlenses
define a rectangular tiling instead of the actual hexagonal tiling
(Figure 1.a).

The closer connection of the mapping proposed by
Dansereau et al. [12] to a pinhole projection matrix is the
one provided by Marto et al. [1] regarding the representation
of a camera array composed of identical co-planar cameras.
However, the mapping proposed in [1] does not explain the
zero disparity in the epipolar plane images (EPIs) for points
in the main lens world focal plane (box B in Figure 3.b) [17].

There are few works referring to the geometry of the
viewpoint cameras. In Hahne et al. [18], the location of
the viewpoints projection centers is defined using the same
ray propagation strategy from sensor to object space as in
Dansereau et al. [12]. Nonetheless, the complete viewpoint
projection matrix is not defined and no association with a SPC
model is made since the optical settings of the main lens and
microlens array are assumed to be known. This work is tailored
to aid in the design of new plenoptic cameras. In Bok et al.
[13], a first attempt is made to define the projection matrix for
the viewpoints. However, the intrinsic matrix is assumed to be
common among all viewpoint cameras and is defined based
on the diameter (in pixels) of a MI and the knowledge of the
parameters used to describe the microlens array rather than
using a geometrically approach. Furthermore, the geometry
proposed does not allow to explain the zero disparity for points
in the world focal plane of the main lens.

In this work, we consider the pinhole viewpoint camera
constraint to represent the mapping introduced in [12] using
eight free intrinsic parameters. This is accomplished by shift-
ing the rays parameterization plane along the optical axis of the
camera [19] to the plane containing the viewpoint projection
centers. Additionally, we provide the mapping between the
virtual SPC and the viewpoint camera array that is consistent
with the zero disparity in the EPI for points in the world
focal plane of the main lens. The viewpoint camera array
representation is used to define a calibration for the SPC based
on corner features from VIs. The linear solution proposed
starts from the estimation of a single generalized homography
for all viewpoints per pose of the pattern, and extending
techniques from pinhole camera calibration recover the eight
free intrinsic parameters of the camera model. Generalization
is obtained considering a camera array composed of different
co-planar cameras with parameterized principal point shift and
baseline among viewpoints.
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Fig. 2: Geometry of a SPC whose main lens focal plane
corresponds to plane Ω (a). The lightfield in the image space is
parameterized using pixels (i, j) and microlenses (k, l) indices
while the lightfield in the object space is parameterized using
a point (s, t) defined on the parameterization plane Γ and a
direction (u, v). (b) shows the raw image of a calibration grid
placed on the mains lens world focal plane and (c) exhibits
the details of the microlenses in red box A.

III. STANDARD PLENOPTIC CAMERA

A SPC can be represented by a 5× 5 matrix H [12] which
maps back-projection rays on sensor coordinates to rays in
object (metric) space coordinates. In formal terms, H is a
mapping of rays Φ̃ = [i, j, k, l, 1]

T in the image space to rays
Ψ̃ = [s, t, u, v, 1]

T in the object space:

Ψ̃ = H Φ̃ (1)

where rays Φ are parameterized using pixels (i, j) and mi-
crolenses (k, l) indices and rays Ψ are parameterized using
a position (s, t) on a plane Γ and a direction (u, v) defined
in metric units [17] (Figure 2.a). The mapping defined by
Dansereau et al. [12] has 12 non-zero entries, however choos-
ing the plane Γ to coincide with the plane containing the
viewpoint projection centers (Supp. Material B) and removing
the redundancies with the translational components of the
extrinsic parameters (Supp. Material C) allows to define the
mapping H with 8 non-zero entries

H =


hsi 0 0 0 0
0 htj 0 0 0
hui 0 huk 0 hu
0 hvj 0 hvl hv
0 0 0 0 1

 . (2)

In order to help establishing the relationship between the
SPC and the pinhole camera model, in the following we
denominate H as the lightfield intrinsics matrix (LFIM). We
note that LFIM is a simplified term, as H effectively contains
intrinsic parameters information, however, it also contains
baseline information, as detailed in Section IV. Conventional
extrinsic parameters, as found in pinhole camera models,
defining a world coordinate system, are in fact not contained
in H.

One ray Ψ = [s, t, u, v]T can be represented as one para-
metric 3D line [20], namely [x, y, z]T = [s, t, 0]T +λ[u, v, 1]T

for λ ∈ IR. Therefore, the LFIM matrix (2) allows to define
the relationship between an arbitrary point [x, y, z]T in the
object space and the ray Φ in the image space [17] as

[
x
y

]
= Hst

ij

[
i
j

]
+ z

(
Huv

ij

[
i
j

]
+ Huv

kl

[
k
l

]
+ huv

)
(3)

where the LFIM is partitioned in three 2×2 sub-matrices and
one 2 × 1 vector huv = [hu, hv]

T . The sub-matrices follow
the notation H

(·)
(·) where the subscript selects the columns and

the superscript selects the lines, i.e. for example, Hst
ij selects

the first two columns, denoted by ij, and the first two lines,
denoted by st. Equation (3) shows that given one ray in image
coordinates, the LFIM H allows defining a back-projection ray
in the object space or, equivalently, one 3D point at a specific
depth z.

IV. VIEWPOINT CAMERA ARRAY

In this section, we represent a SPC as a camera array of
viewpoints. The array representation is mapped from the SPC
model defined by Dansereau et al. [12] for SPCs, namely, from
the LFIM (2).

Let the projection matrix Pij , parameterized by the coordi-
nates (i, j) ∈ Z2, represent the SPC as an array

Pij = Kij
[
I3×3 tij

]
cTw (4)

where Kij denotes the intrinsic matrix, I3×3 is a 3×3 identity

matrix, tij is the projection center and cTw =

[
cRw

ctw
01×3 1

]
defines the rigid body transformation between the world and
camera coordinate systems with rotation cRw ∈ SO(3) and
translation ctw ∈ IR3, and 01×3 is the 1× 3 null matrix.

Note that while cTw defines one coordinate system for all
viewpoints, the intrinsic matrix and the projection center are
different for each viewpoint camera (i, j). In the following,
let the camera model for the viewpoint cameras (4) take into
account that the principal point and the projection center are
different for each viewpoint while the scale factor remains the
same:

Kij =

ku 0 u0 + i ∆u0

0 kv v0 + j ∆v0
0 0 1

 and tij =

i ∆x0
j ∆y0

0

 (5)

where the scalars ku and kv denote focal lengths and conver-
sion from metric units to pixels (denominated as scale factors
in the remainder of the paper). The vector [u0, v0]

T defines the
principal point for viewpoint (i, j) = (0, 0), and the vectors
[∆u0,∆v0]T and [∆x0,∆y0, 0]T denote principal point shift
and baseline between consecutive viewpoint cameras, respec-
tively.
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A. Mapping from LFIM to Viewpoint Projection Matrices

Considering that the rays of one viewpoint camera converge
to a unique point (s, t) (Supp. Material B), one may set
constant the values (i, j) and solve equation (3) relatively
to (k, l). This gives an equation of a viewpoint pixel (k, l)
imaging the 3D point (x, y, z) that can be rewritten as a
pinhole model, equations (4) and (5), with the intrinsic matrix
and the projection center defined as

Kij =

 1
huk

0 − hu
huk

− i hui
huk

0 1
hvl

− hv
hvl

− j
hvj

hvl

0 0 1

 and tij =

−i hsi

−j htj

0

 . (6)

This allows to obtain the mappings to the representations in
(5). Namely, comparing (6) with (5), we identify a common
component [u0, v0]

T
= −

[
hu/huk, hv/hvl

]T
and a differen-

tial (shift) component [∆u0,∆v0]
T

= −
[
hui/huk, hvj/hvl

]T
on the principal point. The scale factors are defined as
ku = 1/huk and kv = 1/hvl, and the baseline is defined
as [∆x0,∆y0, 0]

T
= −

[
hsi, htj , 0

]T
.

An example of the pinhole model parameters for a viewpoint
camera array obtained from a calibrated Lytro Illum camera
can be found in Table V. This array is configured for a focused
depth of about 1.09 meters and describes 15 × 15 cameras,
i ∈ {1, . . . , 15}, equal for j, whose VIs have 625× 433 (k, l)
pixels.

B. Properties of Viewpoint Projection Matrices

Considering equation (3), one can obtain the EPI geometry
that relates the depth of a point with the disparity on the VIs[

∆k
∆i ,

∆l
∆j

]T
∆k

∆i
= − hsi

huk

1

z
− hui
huk

and
∆l

∆j
= −htj

hvl

1

z
− hvj
hvl

. (7)

The mapping (6) allows to rewrite the EPI geometry defined
in equation (7) as

∆k

∆i
= ku

∆x0

z
+ ∆u0 and

∆l

∆j
= kv

∆y0

z
+ ∆v0 . (8)

The EPI geometry shows that despite the parallel optical axis,
the zero disparity plane, also known as the optical focal plane
[6] of the SPC main lens is at a finite depth due to the principal
point shift (box B in Figure 3.b). Considering the geometry of
the camera in Figure 2.a, the zero disparity plane corresponds
to the plane Ω with zΩ = −ku ∆x0

∆u0
= −kv ∆y0

∆v0
.

Contrarily, if we consider the principal point shift equal to
zero, i.e. cameras with same principal point and therefore same
intrinsic matrix Kij , one recovers the EPI geometry defined in
[21] that defines points at infinity as the points of zero disparity
[17]. Looking at the EPIs obtained from a lightfield in Figure
3, one can see that the lines corresponding to different points in
the object space have a range of positive and negative slopes.
Namely, objects in the background (box A) have a negative
slope while objects in the foreground (box C and D) have a
positive slope. The disparity zero, in this scene, corresponds
to the position of the person holding the objects (box B).

Notice also that the field of view is similar for all viewpoint
cameras. Scene regions observed by the different viewpoint
cameras change slightly for depths other than the zero disparity
plane depth zΩ (Figure 4.d). This is a consequence of the array
of projection centers and array of principal points modeling
viewpoint cameras. For the zero disparity plane depth zΩ =
− hsi

hui
= − htj

hvj
, the influence of the different projection centers

is cancelled by the principal point shift and the scene region
observed is the same for all viewpoint cameras (Figure 4.c).

(a)

(b)

(c)

Fig. 3: The viewpoint cameras identified in red in Figure 1.c
are used to obtain EPIs from the lightfield at rows 185 (red)
(b) and 265 (green) (c) on the central viewpoint (a).

V. STANDARD PLENOPTIC CAMERA CALIBRATION

The calibration proposed considers the corners of a planar
calibration grid of known dimensions as features. In the
following, we assume that the corners in the world coordinate
system have been matched with the imaged corners. Let us
consider that we have a 4D lightfield obtained from the raw
image (Figure 2.a) after the decoding process [12], [22]. An
imaged corner is defined by a ray Φ = [i, j, k, l]

T in the
image space. The (k, l) coordinates correspond to the pixel
coordinates of the detected corners on the VIs. The (i, j)
coordinates correspond to the viewpoint coordinates.

A. Linear Initialization

In this section, we will consider the mapping in Section IV
to define a linear solution for the LFIM H associated with a
plenoptic camera and the extrinsic parameters for each pose
of the calibration grid.

Homography Estimation. Considering the viewpoint projec-
tion matrix (4), a point m = [x, y, z]

T in the object space is
projected to a point in the image plane q by

q̃ ∼ Pijm̃ = Kij
[
cRw

ctw + tij
]
m̃ (9)

where the symbol ∼ denotes equal up to a scale factor. The co-
planar grid points allow to define a world coordinate system
such that the z-coordinate is zero. In this context, denoting
m̃ = [x, y, 1]

T , one can redefine the projection (9) as q̃ ∼
Hijm̃ where

Hij = Kij
[
r1 r2

ctw + tij
]

(10)
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]
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(a) VIs array model, field of view, (b) Detail of A in (a)
focus plane and 10m depths for z ∈

[
0, 3× 10−3

]
m

0.36 0.365 0.37 0.375 0.38

x [m]

0.24

0.245

0.25

0.255

0.26

0.265

y
 [

m
]

(1,1)

(1,15)

(15,1)

(15,15)

3.45 3.5 3.55 3.6 3.65 3.7

x [m]

2.4

2.45

2.5

2.55
y
 [

m
]

(1,1)

(1,15)

(15,1)

(15,15)

(c) Detail of B in (a) (d) Detail of C in (a)

Fig. 4: Field of view of a Lytro Illum camera analyzed from
the VIs array model. (a) back-projection pyramids of the four
corner VIs, (i, j) =

{
(1, 1) , (1, 15) , (15, 1) , (15, 15)

}
, where

A represents the array of projection centers, B is at the focus
plane at depth zΩ, and C is at depth z = 10m. (b) zoom of
A in (a), other VIs projection centers shown by red lines and
blue dots. (c) zoom of black rectangle B in (a) showing the
region observed at zΩ is the same for all VIs. (d) zoom of
black rectangle C in (a) shows slight differences of regions
observed by the different viewpoint cameras.

is the parametric homography matrix for the viewpoint camera
(i, j), and cRw = [r1, r2, r3]. This matrix can be estimated
from the point correspondences (m̃, q̃) using a direct lin-
ear transformation (DLT) [23]. Each point correspondence
originates 2 linearly independent equations. The homography
matrix has 9 entries to estimate but is defined only up to
scale. Thus, Hij has 8 degrees of freedom needing at least 4
point correspondences to estimate its entries [24]. Assuming
a plenoptic camera with N pixels within each microlens and
considering an independent estimation of each of the viewpoint
cameras’ homography matrices, one has 8N unknowns to
estimate.

A plenoptic camera introduces restrictions on the viewpoint
camera array that allows to decrease the number of unknowns
to estimate. Namely, the homography matrix Hij change
among viewpoints as a result of the principal point shift and
baseline in (6). Let us consider that Hij can be defined from
the homography matrix H0 associated with the viewpoint
coordinates (i, j) = (0, 0) and the homography viewpoint

change matrix Aij by

Hij =

h0
11 h0

12 h0
13

h0
21 h0

22 h0
23

h0
31 h0

32 h0
33


︸ ︷︷ ︸

H0

+

i 0 0
0 j 0
0 0 1

a11 a12 a13
a21 a22 a23
0 0 0


︸ ︷︷ ︸

Aij

.

(11)

Considering the homography projection of a calibration grid
corner m̃ = [x, y, 1]

T in the object space to the image
point q̃ for the viewpoint camera (i, j), applying the cross
product by q̃ on each side of the projection equation leads
to [q̃]×Hijm̃ = 03×1, where

[
(·)
]
× is a skew-symmetric

matrix that applies the cross product. Using the properties
of the Kronecker product [25] and solving for each of the
unknown parameters, one obtains(

m̃T ⊗ [q̃]×

)
T

[
h0

aij

]
= 03×1 (12)

where

T =


I9×9

i 0 0 0 0 0
0 j 0 0 0 0

01×6

0 0 i 0 0 0
0 0 0 j 0 0

01×6

0 0 0 0 i 0
0 0 0 0 0 j

01×6


, (13)

and h0 and aij correspond to vectorizations of the matrix
H0 and Aij by stacking their columns and removing the
zero entries, respectively. The solution

[
h0,aij

]T
for the

parametric homography matrix can be estimated using singular
value decomposition (SVD) (Supp. Material D).

The restrictions introduced by a plenoptic camera allow
to represent the parametric homography matrix (11) using
15 parameters. According to equation (12), each point cor-
respondence (m̃, q̃) originates three equations with only two
being linearly independent. On the other hand, each point
in the object space originates N image points, one for each
viewpoint camera, assuming that the point is observed in all
viewpoint cameras. These pairs provide 2N equations that,
theoretically, are enough to estimate the parametric homogra-
phy matrix, assuming that N ≥ 8. Nonetheless, the restrictions
on the viewpoint camera array also originate restrictions on
the projections of a point in the object space. Namely, the
ray in the image space Φij = [i, j, k, l]

T associated with
an arbitrary viewpoint (i, j) can be described from the ray
coordinates Φ0 = [0, 0, k0, l0]

T associated with the viewpoint
(i, j) = (0, 0) by Φij = Φ0 + [i, j, iβ, jβ]

T , where β
corresponds to the disparity of the point defined on the VIs.
This reduces the number of linearly independent equations
originated by a point in the object space to 4. Thus, one
needs at least 4 non-collinear points to obtain the entries of
the homography matrix Hij .

Intrinsic and Extrinsic Estimation. The structure of the
homography matrix (10) in conjunction with the orthogonality
and identity of the column vectors of cRw allow to define
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constraints on the intrinsic parameters as h1
TBijh2 = 0

and h1
TBijh1 − h2

TBijh2 = 0 [26] where hn refers to
the n-th column vector of Hij , and the symmetric matrix
that describes the image of the absolute conic is defined as
Bij = Kij−TKij−1 [26], [27]. These constraints can be used
to obtain the intrinsic parameters independently for each of
the viewpoint cameras [26]. Alternatively, one can use the
knowledge of the intrinsic matrix defined in Section IV-A
to perform the estimation of a parametric representation of
the absolute conic Bij for a viewpoint camera (i, j) using a
minimal number of parameters.

The intrinsic matrix Kij differs on the principal point for
each viewpoint leading to different images of the absolute
conic. The principal points change regularly between con-

secutive viewpoints by
[
− hui

huk
,−hvj

hvl

]T
which can be used

to constraint the parametric representation of Bij . Namely,
considering (6), Bij can be defined as

Bij = B0 + i Ci + j Dj + i2 Ei + j2 Fj (14)

with

B0 =

 h2
uk 0 huhuk

0 h2
vl hvhvl

huhuk hvhvl 1 + h2
u + h2

v

 , (15)

Ci =

 0 0 huihuk

0 0 0
huihuk 0 2huhui

 , Ei =

[
02×3

0 0 h2
ui

]
, (16)

Dj =

0 0 0
0 0 hvjhvl

0 hvjhvl 2hvhvj

 , andFj =

[
02×3

0 0 h2
vj

]
. (17)

This allows to define a representation for Bij using 11 distinct
non-zero entries bij = [ b11, b13, b22, b23, b33, c13, c33, d23,
d33, e33, f33 ]T where (·)mn represents the entry in row m and
column n of the matrix (·). Considering these parameters, the
intrinsic parameters constraints can be redefined as



h11h12 h11
2 − h12

2

h11h32 + h12h31 2 (h11h31 − h12h32)
h21h22 h21

2 − h22
2

h21h32 + h22h31 2 (h21h31 − h22h32)
h31h32 h31

2 − h32
2

i (h11h32 + h12h31) 2i (h11h31 − h12h32)

i (h31h32) i
(
h31

2 − h32
2
)

j (h21h32 + h22h31) 2j (h21h31 − h22h32)

j (h31h32) j
(
h31

2 − h32
2
)

i2 (h31h32) i2
(
h31

2 − h32
2
)

j2 (h31h32) j2
(
h31

2 − h32
2
)



T

bij = 02×1 .

(18)
Normally, each homography generates 2 equations for deter-
mining the matrix of the absolute conic image [26]. The para-
metric representation (11), representing an arbitrary viewpoint
(i, j), generates 6 equations. Nonetheless, only 2 equations
are independent regarding the entries of B0, so one needs to
acquire at least 3 calibration grid poses to estimate bij defined
up to a scale factor.

The intrinsic matrix parameters can be recovered from Bij .
More specifically, rewriting the intrinsic matrix Kij (6) as

Kij =

 1
huk

0 − hu
huk

0 1
hvl

− hv
hvl

0 0 1


︸ ︷︷ ︸

K0

+

i 0 0
0 j 0
0 0 1


03×2

− hui
huk

−hvj

hvl

0


︸ ︷︷ ︸

Gij

,

(19)
one can define B0 = K0−TK0−1. This allows to estimate the
entries of K0 using the Cholesky decomposition of B0 and
correcting the scale factor considering k0

33 = 1. The principal
point shift can be estimated considering hui

huk
=

ei33
c13

and hvj

hvl
=

fj
33

d23
.

The extrinsic parameters can be estimated once the intrinsic
matrix Kij is known. From (10), the rotation matrix cRw =
[r1, r2, r3] is recovered considering

r1 = λKij−1
h1 , r2 = λKij−1

h2 , and r3 = r1 × r2 . (20)

with λ = 1/
∥∥∥Kij−1

h1

∥∥∥ = 1/
∥∥∥Kij−1

h2

∥∥∥. The translation
and projection center tij are recovered solving the following
system of equations

λh3 =
[
Kij −ik1 −jk2

] ctw
hsi
htj

 (21)

where kn corresponds to the n-th column of the parametric
intrinsic matrix Kij .

B. Nonlinear Optimization

In this section, the linear solution is refined and radial
distortion is considered on the coordinates (u, v). Namely,
the undistorted rays in the object space Ψu = [s, t, uu, vu]

T

are defined from distorted rays in the object space Ψ =
[s, t, u, v]

T by

[
uu

vu

]
=
(

1 + k1 r
2 + k2 r

4 + k3 r
6
)[u̇

v̇

]
+

[
bu
bv

]
(22)

where u̇ = uu − bu, v̇ = vu − bv , r2 = u2 + v2, and
d = (k1, k2, k3, bu, bv) defines the distortion vector. In the dis-
tortion vector, k1, k2 and k3 are the radial distortion correction
coefficients while the vector [bu, bv]

T defines the distortion
center. In the nonlinear optimization, we minimize the ray
re-reprojection error. This optimization refines the intrinsic
parameters H, the extrinsic parameters Rm (parameterized by
Rodrigues formula [28]) and tm, m = 1, . . . ,M where M is
the number of poses, and the distortion vector d:

arg min
H,Rm,tm,d

M∑
m=1

Nm∑
n=1

Λ
(
ηn (H,d) ,Rm mn + tm

)
(23)

where Nm corresponds to the number of corners detected
on a pose m, Λ (·) defines the point-to-ray distance [12], η
defines the direction coordinates (uu, vu) after mapping the
ray in the image space Φn associated with the corner n to the
ray in object space (equation (1)) and followed by distortion
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rectification (equation (22)). mn defines the 3D corner point
in the world coordinate system. The nonlinear optimization is
solved using the trust-region-reflective algorithm [29], where
a sparsity pattern for the Jacobian matrix is provided. The
number of parameters over which we optimize is 8 for the
intrinsic parameters, 5 for the lens distortion parameters, and
6M for the extrinsic parameters.

VI. EXPERIMENTAL RESULTS

The calibration methodology proposed in Section V is
assessed in this section using calibration datasets acquired with
commercially available SPCs: the 1st generation Lytro camera
and the most recent Lytro Illum.

Plenoptic cameras acquire images that have higher storage
requirements than conventional cameras. Namely, the 1st

generation Lytro has a raw image with 3280 × 3280 pixels
(Figure 5.a-c) that allows to define 9×9 VIs with a resolution
of 383 × 381 pixels after the decoding process described in
[12], [22]. On the other hand, the Lytro Illum has a higher
spatial and angular resolution in consequence of the higher
number of microlenses in the sensor and the higher number
of pixels within each microlens. More specifically, the raw
image has 7728 × 5368 pixels (Figure 5.d-e) that allows to
define 15× 15 VIs with a resolution of 625× 433 pixels after
the decoding process described in [12], [22].

(a) (b) (c)

(d) (e) (f)

Fig. 5: Calibration data (raw images) from 1st generation Lytro
camera [12] (a)-(c) and Lytro Illum (d)-(e).

A. 1st Generation Lytro State of the Art Comparison

In this section, we compare the results of the calibration
procedure proposed in Section V with the calibrations pro-
posed by Dansereau et al. [12] (denoted as Dans13) and Bok
et al. [13] (denoted as Bok17). The calibration procedures
are applied to publicly available calibration datasets [12]
that were obtained using a 1st generation Lytro camera. For
this comparison, we considered the root mean square (RMS)
of the re-projection error, the ray re-projection error (i.e.
distance between ray and 3D point as defined in [12]), and
the reconstruction error, for three stages of the calibration
process: the initial linear solution (Section V-A), the nonlinear

RMS Re-Projection Error (pix) Dataset A Dataset B Dataset C Dataset D Dataset E

Initial
Dans13 [12] (10) 1.678

(5) 1.673
(18) 1.687
(5) 1.695

(12) 1.687
(5) 1.671

(10) 1.748
(5) 1.714

(17) 4.290
(5) 4.700

Bok17* [13] - - - - -

Ours (10) 0.838
(5) 0.797

(18) 0.856
(5) 1.035

(12) 0.950
(5) 0.953

(10) 0.965
(5) 0.790

(17) 0.840
(5) 0.627

Optimized
Dans13 [12] (10) 0.435

(5) 0.372
(18) 0.406
(5) 0.429

(12) 0.402
(5) 0.392

(10) 0.404
(5) 0.461

(17) 0.218
(5) 0.185

Bok17* [13] - - - - -

Ours (10) 0.427
(5) 0.366

(18) 0.405
(5) 0.435

(12) 0.420
(5) 0.392

(10) 0.389
(5) 0.489

(17) 0.219
(5) 0.177

Optimized
(with

Distortion)

Dans13 [12] (10) 0.226
(5) 0.221

(18) 0.191
(5) 0.240

(12) 0.161
(5) 0.164

(10) 0.150
(5) 0.163

(17) 0.190
(5) 0.153

Bok17* [13] (5) 0.374 (9) 0.259 - - (14) 0.274

Ours (10) 0.226
(5) 0.211

(18) 0.179
(5) 0.194

(12) 0.156
(5) 0.159

(10) 0.145
(5) 0.163

(17) 0.134
(5) 0.127

TABLE I: RMS re-projection error in pixels for three stages of
the calibration procedure: initial linear solution, and nonlinear
refinement with and without distortion estimation. The number
of poses M considered for the calibration is denoted as (M).
The symbol * indicates that the values reported are retrieved
directly from the corresponding paper.

RMS Ray Re-Projection Error (mm) Dataset A Dataset B Dataset C Dataset D Dataset E

Initial

Dans13* [12] (10) 3.200 (18) 5.060 (12) 8.630 (10) 5.920 (17) 13.800

Dans13 [12] (10) 0.577
(5) 0.627

(18) 0.603
(5) 0.570

(12) 1.036
(5) 0.974

(10) 1.231
(5) 1.081

(17) 8.900
(5) 11.970

Bok17* [13] - - - - -

Ours (10) 0.307
(5) 0.314

(18) 0.341
(5) 0.353

(12) 0.609
(5) 0.593

(10) 0.640
(5) 0.478

(17) 1.657
(5) 1.709

Optimized

Dans13* [12] (10) 0.146 (18) 0.148 (12) 0.255 (10) 0.247 (17) 0.471

Dans13 [12] (10) 0.154
(5) 0.145

(18) 0.147
(5) 0.139

(12) 0.260
(5) 0.245

(10) 0.260
(5) 0.268

(17) 0.485
(5) 0.546

Bok17* [13] - - - - -

Ours (10) 0.151
(5) 0.143

(18) 0.143
(5) 0.139

(12) 0.271
(5) 0.247

(10) 0.251
(5) 0.277

(17) 0.489
(5) 0.532

Optimized
(with

Distortion)

Dans13* [12] (10) 0.084 (18) 0.063 (12) 0.106 (10) 0.105 (17) 0.363

Dans13 [12] (10) 0.085
(5) 0.086

(18) 0.066
(5) 0.069

(12) 0.104
(5) 0.102

(10) 0.116
(5) 0.117

(17) 0.390
(5) 0.456

Bok17* [13] (5) 0.108 (9) 0.071
(5) 0.072 - - (14) 0.492

(5) 0.454

Ours (10) 0.085
(5) 0.085

(18) 0.066
(5) 0.066

(12) 0.103
(5) 0.103

(10) 0.114
(5) 0.116

(17) 0.393
(5) 0.457

TABLE II: RMS ray re-projection error in mm for three
stages of the calibration procedure: initial linear solution, and
nonlinear refinement with and without distortion estimation.
As in Table I, (M) denotes M poses, and * indicates values
retrieved from related work.

refinement, with and without distortion estimation (Section
V-B). Three errors are used in this comparison since the re-
projection error is the usual error while evaluating pinhole
camera calibration procedures but, in plenoptic cameras, the
error normally used is the ray re-projection error [12], [13]. In
addition, the reconstruction error is used to assess the quality
of the reconstruction at the different stages of the calibration.
The errors are summarized in Tables I, II, and III. Notice that
the values from Bok et al. [13] are retrieved directly from their
paper.

Comparing the results of the calibration proposed with the
ones obtained using Dans13 [12], one can see that the major

RMS Reconstruction Error (mm) Dataset A Dataset B Dataset C Dataset D Dataset E

Initial Dans13 [12] (10) 2100.536
(5) 3139.904

(18) 325.215
(5) 203.736

(12) 1293.985
(5) 1397.874

(10) 844.038
(5) 517.783

(17) 2702.292
(5) 3370.725

Ours (10) 3.039
(5) 3.904

(18) 6.212
(5) 8.023

(12) 14.899
(5) 12.558

(10) 20.751
(5) 25.316

(17) 79.681
(5) 102.281

Optimized Dans13 [12] (10) 3.370
(5) 3.627

(18) 4.367
(5) 3.112

(12) 10.174
(5) 10.607

(10) 15.050
(5) 12.401

(17) 123.728
(5) 253.959

Ours (10) 3.747
(5) 3.682

(18) 4.516
(5) 3.927

(12) 10.229
(5) 8.277

(10) 15.168
(5) 12.216

(17) 142.231
(5) 187.750

Optimized
(with

Distortion)

Dans13 [12] (10) 4.408
(5) 4.283

(18) 4.652
(5) 4.415

(12) 9.995
(5) 8.007

(10) 15.425
(5) 13.051

(17) 135.851
(5) 179.697

Ours (10) 4.443
(5) 4.256

(18) 4.706
(5) 4.415

(12) 9.976
(5) 7.932

(10) 15.553
(5) 12.700

(17) 138.968
(5) 183.037

TABLE III: RMS reconstruction error in mm for three stages
of the calibration procedure: initial linear solution, and non-
linear refinement with and without distortion estimation. As
in Tables I and II, (M) denotes M poses.
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differences occur at the linear solution. For a subset of 5 poses
of these datasets, in the linear solution stage, one can see that
the re-projection error of Dans13 [12] is at least 1.63 times
higher, the ray re-projection error is at least 1.61 times higher,
and the reconstruction error is at least 20.45 times higher.
These differences between the two calibration methods are
even greater when we consider the complete datasets. This
confirms that the proposed method for the initial linear solution
outperforms the state of the art.

Comparing with Bok et al. [13], the proposed calibration
obtains smaller re-projection and ray re-projection errors using
the complete datasets. Namely, the re-projection error is 1.44
smaller, and the ray re-projection error is 1.25 times smaller.
Only Dataset B presents a similar performance to the cali-
bration proposed. Considering a subset of 5 poses, the ray
re-projection errors obtained for Bok et al. [13] are similar
with the ones of the calibration proposed with the exception
of Dataset A that exhibits an error 1.26 times higher.

The results obtained show that the entries hsk and htl
can be set to zero without degrading the performance of the
calibration procedure. The position (s, t) of the ray can be
represented using only the viewpoint coordinates (i, j) if the
parameterization plane corresponds to the plane containing the
viewpoint projection centers (Supp. Material C). This allows
to represent the rays with a minimal number of sub-camera
apertures, and the LFIM with a minimal number of parameters.

Concluding, the characterization of the viewpoint camera
array for the 1st generation Lytro camera (Dataset B [12]) is
presented in Table V. These parameters are obtained from the
LFIM estimated at the final stage of the calibration procedure.
The camera array is characterized by a unitary baseline length∥∥tij∥∥ =

√
∆x2

0 + ∆y2
0 of 0.37 mm. Considering the 9 × 9

viewpoint cameras, the maximum baseline length that can be
defined is 2.97 mm. The non-zero principal point shift shows
that the principal point is different for each viewpoint camera.
This gives a zero disparity 3D plane, i.e. the plane in focus
Ω, positioned approximately at 0.29 m for Dataset B [12].

B. Calibration Precision with Number of Poses

As in the calibration of conventional pinhole cameras, the
redundancy and accuracy of calibration data is a key factor
for attenuating the effect of calibration data noise into the
calibration precision. Dansereau et al. [12] considered the
influence of different sizes of calibration patterns while Bok
et al. [13] considered the influence of two different number of
poses: 5 poses or the full calibration dataset.

The Lytro Illum camera is more recent than the 1st genera-
tion Lytro camera, and its specifications indicate improvement
in almost all technical aspects. However, the previous analysis
were only performed with the 1st generation Lytro camera.
Thus, in this section, we want to assess the influence of
the different sizes of the calibration patterns and different
number of poses. For this purpose, we acquired new calibration
datasets with a Lytro Illum camera using two calibration
grids with different sizes: 8 × 6 grid of 211 × 159 mm with
approximately 26.5 mm cells (denoted as Illum-1), and 20×20
grid of 121.5 × 122 mm with approximately 6.1 mm cells

(denoted as Illum-2). Each dataset acquired is composed of
66 fully observable poses of the calibration pattern. Care was
taken to avoid changing the focal settings of the camera.

The higher number of poses acquired allow to define several
subsets for calibration which allow a statistical analysis of the
results. Therefore, in order to evaluate the precision of the
calibration, we repeated 20 times the calibration procedure.
Each calibration involves k = 2, . . . , 20 pattern poses, ran-
domly selected from the full calibration dataset. The calibra-
tion procedure proposed in Section V is compared with the
methodology [12] (denoted as Dans13).

The mean and standard deviation obtained for the re-
projection error, the ray re-projection error, and the recon-
struction error with the number of poses for Dataset Illum-
1 and Illum-2 are depicted in Figure 6. This figure shows
that the errors are similar for both calibration methods after
nonlinear refinement. However, for the initial linear solution,
the calibration proposed obtains smaller errors using 3 or more
calibration pattern poses.

(a) (b) (c)

Fig. 6: RMS errors obtained using the calibration proposed (in
blue and cyan for Dataset Illum-1 and Illum-2, respectively)
and the calibration Dans13 [12] (in red and magenta for
Dataset Illum-1 and Illum-2, respectively): re-projection error
(a), ray re-projection error (b), and reconstruction error (c).
The first row depicts the errors obtained for the initial linear
solution and the second row depicts the errors obtained for the
nonlinear refinement with distortion estimation.

The calibration proposed (Section V) is applied to a set
of 10 randomly sampled poses and on a reduced set of 5
poses to evaluate the quality of the calibration. For comparison
purposes, these sets of poses are also calibrated using the
calibration described by Dansereau et al. [12]. For this compar-
ison, we considered the RMS of the re-projection error, the ray
re-projection error (as defined in [12]), and the reconstruction
error, for three stages of the calibration process: the initial
linear solution, the nonlinear refinement, with and without
distortion estimation. The errors are summarized in Table IV.

The re-projection, ray re-projection and reconstruction er-
rors are similar after the refinement of the initial linear solution
for both calibration methods. Also, the lower number of
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RMS Re-Projection
Error (pix)

Illum-1
10 poses

Illum-1
5 poses

Illum-2
10 poses

Illum-2
5 poses

Initial Dans13 [12] 1.463 1.501 1.480 1.485
Ours 1.659 1.400 0.922 1.249

Optimized Dans13 [12] 0.320 0.428 0.418 0.429
Ours 0.332 0.429 0.421 0.446

Optimized
(with Distortion)

Dans13 [12] 0.235 0.288 0.293 0.288
Ours 0.249 0.284 0.263 0.270

RMS Ray Re-Projection
Error (mm)

Illum-1
10 poses

Illum-1
5 poses

Illum-2
10 poses

Illum-2
5 poses

Initial Dans13 [12] 1.698 1.516 0.965 0.891
Ours 1.813 1.623 0.617 0.776

Optimized Dans13 [12] 0.322 0.342 0.245 0.255
Ours 0.334 0.347 0.247 0.261

Optimized
(with Distortion)

Dans13 [12] 0.241 0.239 0.168 0.173
Ours 0.254 0.243 0.166 0.172

RMS Reconstruction
Error (mm)

Illum-1
10 poses

Illum-1
5 poses

Illum-2
10 poses

Illum-2
5 poses

Initial Dans13 [12] 3483.898 1553.119 304.433 199.785
Ours 37.594 18.717 7.560 9.626

Optimized Dans13 [12] 13.625 9.046 8.126 6.496
Ours 13.747 10.563 8.242 6.914

Optimized
(with Distortion)

Dans13 [12] 10.680 10.255 7.070 5.968
Ours 11.939 10.526 6.850 6.250

TABLE IV: RMS errors for three stages of the calibration
procedure: initial linear solution, and nonlinear refinement
with and without distortion estimation.

poses does not appear to change the errors significantly after
the nonlinear optimization. The accuracy of the calibration
proposed can be seen from the maximum errors obtained at
the final stage of the calibration: the re-projection error has
sub-pixel accuracy (below 0.29 pixels), the ray re-projection
error is below 0.26 mm, and the reconstruction error is below
12 mm.

For the initial linear solution, the re-projection and ray re-
projection errors are similar for the Dataset Illum-1. How-
ever, for the Dataset Illum-2, one can see that these errors
are smaller for the calibration proposed. Additionally, the
reconstruction error is considerably higher for the calibration
proposed by Dansereau et al. [12] regardless of the dataset
considered. More specifically, the reconstruction error is at
least 20 times higher than the one obtained using the calibra-
tion proposed.

The major difference between Dans13 [12] and the proposed
method corresponds to the linear solution. The linear solution
used by Dansereau et al. [12] does not consider any constraint
to obtain the homographies between each viewpoint and
the calibration grid pose, i.e. for a Lytro Illum camera one
computes M × 15× 15 homographies where M corresponds
to the number of calibration grid poses. On the other hand,
the proposed method exploits the geometry of the viewpoint
camera array to estimate a parametric homography matrix that
characterizes the SPC for each calibration grid pose, i.e. M
homographies are computed. Additionally, in Dansereau et
al. [12], the principal point shift is assumed to be zero on
the linear solution and is only estimated during the nonlinear
refinement. The more accurate representation of the viewpoint
camera array by the calibration proposed allows to obtain an
initial solution that is closer to the final one.

Finally, let us evaluate the quality of the estimated poses
and of the distortion model. For the estimated poses, one
considered an image that corresponds to the mean of the
intensity values after warping all VIs using the homography

matrix estimated from LFIM entries for all calibration grid
poses. The images for Dataset Illum-1 for the initial and final
stages of the calibration process are depicted in Figure 7.
Notice that in the final stage of the calibration, the edges of
the calibration grid are not blurred.

(a) All imaged
chessboard poses

(b) Merged after
linear solution

(c) Merged after
nonlinear solution

Fig. 7: Mean intensity values for all VIs warped using the
homography matrix estimated from LFIM entries for all 10
calibration grid poses for Dataset Illum-1. (a) depicts the
calibration pattern limits for the different calibration grid
poses without homography correction. (b) depicts the images
obtained for the initial linear solution and (c) depicts the
images obtained for the nonlinear refinement with distortion
estimation.

For the distortion model, one has rectified the lightfield of
a scene that was not considered for the calibration using the
distortion parameters estimated with the calibration proposed
and Dans13 [12]. The two approaches behave similarly in
rectifying the straight lines in the foreground of the scene
(Supp. Material E).

C. Viewpoint Camera Array

Figure 1 shows the raw image, reconstructed structure and
the viewpoint camera array that characterizes a Lytro Illum
camera. The reconstruction, Figures 1.b and 1.c, is obtained
from disparities estimated with the structure tensor [1], which
are converted to depth values, in metric units, based on
the calibration parameters. The calibration parameters were
extracted from the LFIM obtained at the final stage of the
calibration procedure (Section V-B) using a subset of 10 poses
of Illum-1.

The characterization of the viewpoint camera array is pre-
sented in Table V and depicted in Figure 1.c. Notice that
the viewpoint cameras are virtual cameras so the properties
associated with this camera array like baseline, scale factor
and principal point shift will vary with different zoom and
focus settings of the SPC.

Table V shows that the viewpoint camera array for Lytro
Illum has a scale factor and baseline greater than the 1st

generation Lytro. The estimated unitary baseline length for
the Lytro Illum is 0.52 mm and the maximum baseline length
considering the 15×15 viewpoint cameras is 7.33 mm. Thus,
the unitary baseline for the Lytro Illum is 1.41 times higher
than the 1st generation counterpart. If we consider the camera
arrays, the maximum baseline for the Lytro Illum is 2.46 times
higher.

The increased scale factor is justified by the higher spatial
resolution of the raw (assuming the sensor size remains con-
stant). Notice also the non-zero estimate for the principal point
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Pij ku kv u0 v0 ∆x0 ∆y0 ∆u0 ∆v0
Dataset B [12] 545.84 547.10 188.94 189.03 -0.00027 -0.00026 0.51 0.49

Illum-1 10 poses 841.55 840.40 310.76 214.68 -0.00036 -0.00038 0.28 0.29

TABLE V: Parameters to describe the viewpoint camera
arrays of commercially available SPCs: Lytro Illum and 1st

generation Lytro cameras.

shift that defines a plane in focus Ω positioned approximately
at 1.09 m. This estimate confirms that the principal point
is different for each viewpoint camera and consequently the
epipolar geometry for the SPC corresponds to the one defined
in Section IV-B.

VII. CONCLUSIONS

In this work, we defined the mapping between the model of
a SPC, the LFIM H, and a viewpoint pinhole camera array de-
scribed by a parametric projection matrix Pij . These mappings
show that the viewpoint cameras differ on the location of their
projection centers and on their principal points. Additionally,
the EPI geometry described by the viewpoint camera array
allows to define a zero disparity plane, the main lens world
focal plane.

The viewpoint camera array model is used to define a
linear solution for the SPC that considers two steps: i) a DLT
calibration to obtain the parameters that describe the viewpoint
homography matrix from point correspondences (m̃, q̃), (ii)
and a strategy to decompose the viewpoint homography matrix
into intrinsic and extrinsic parameters based on a parametric
representation of the image of the absolute conic. The linear
solution is then refined using a nonlinear optimization. This
strategy outperforms state of the art calibration procedures at
the linear solution stage of the calibration process. This is the
first work capable of estimating the principal point shift in the
linear solution.

A similar calibration procedure can be performed using the
MIs with the appropriate modifications. Thus, in terms of
future work, we want to evolve this calibration procedure to
work from features on microlenses in the raw image. Namely,
considering alternative features like lines, as described in Bok
et al. [13], since the MIs are unfocused for SPCs.
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Standard Plenoptic Cameras Mapping to Camera Arrays
and Calibration based on DLT - Supplementary Material

Nuno Barroso Monteiro, Joao P. Barreto, José António Gaspar

INTRODUCTION TO THE SUPPLEMENTARY MATERIAL

The supplementary material deduces some of the formulas
used in the main paper and provides more insights regarding
the mapping between a standard plenoptic camera (SPC)
and the viewpoint camera array. Namely, one explains the
parameterization of the rays by a point and a direction and
the influence of re-parameterization on the lightfield intrinsics
matrix (LFIM) H in Supp. Material A. In Supp. Material B,
one presents the location of the viewpoint projection centers
and the restriction to consider the viewpoint cameras as
pinholes. The reduction of the number of non-zero entries
in the LFIM by considering the viewpoint projection centers
location is explained in Supp. Material C. These sections are
the basis for the LFIM representation (2) with 8 non-zero
entries and for the simpler notation of the viewpoint camera
mapping from the LFIM (6). The supplementary material also
addresses some practical aspects regarding the homography
estimation (Supp. Material D) and presents additional results
regarding the quality of the distortion model (Supp. Material
E) and the precision associated with each entry of the LFIM
with the number of poses (Supp. Material F). For a complete
understanding of the notation, please refer to the main article.

A. Ray Parameterization and Re-Parameterization

Consider a lightfield in the object space LΠ (q, r, u, v)
acquired by a plenoptic camera with the plane Ω in focus
(Figure A.1). LΠ (q, r, u, v) is a set of rays, where each ray
Ψ̃Π = [q, r, u, v, 1]

T is parameterized using a point (q, r) on
a plane Π and a direction (u, v) defined in metric units [1].
This lightfield is mapped to the lightfield in the image space
L (i, j, k, l) by the LFIM HΠ introduced by Dansereau et al.
[2]:

Ψ̃Π = HΠ Φ̃ , (A.1)
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Fig. A.1: Geometry of a SPC. The lightfield in the image
space is parameterized using pixels and microlenses indices
while the lightfield in the object space is parameterized using
a point and a direction. The lightfield in the object space can be
parameterized on an arbitrary plane regardless of the original
plane Ω in focus.

where Φ̃ = [i, j, k, l, 1]
T corresponds to a ray that is parame-

terized by pixels (i, j) and microlenses (k, l) indices and

HΠ =


hqi 0 hqk 0 hq
0 hrj 0 hrl hr
hui 0 huk 0 hu
0 hvj 0 hvl hv
0 0 0 0 1

 . (A.2)

This mapping allows writing the positions (q, r) and the
directions (u, v) as affine mappings on the pixels (i, j) and
microlenses (k, l) indices.

On the other hand, the lightfield in the object space
LΠ (q, r, u, v) can be redefined on another plane Γ by shifting
the parameterization plane Π along the optical axis of the SPC,
i.e. along the normal to the plane Π. Assuming that Γ is at a
distance dΠ→Γ from Π, the re-parameterization [3] is defined
as

Ψ̃Γ = D Ψ̃Π (A.3)

where

D =


1 0 dΠ→Γ 0 0
0 1 0 dΠ→Γ 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . (A.4)

Note that D maps a ray Ψ̃Π to a ray Ψ̃Γ = [s, t, u, v, 1]
T

representing a ray passing on a point (s, t) on plane Γ with a

1
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direction (u, v). Notice that D changes the camera coordinate
system origin but does not change the directions (u, v).

Mapping the lightfield in the object space LΠ (q, r, u, v) to
the lightfield in the image space L (i, j, k, l) by (A.1), one has

Ψ̃Γ = D HΠ Φ̃ . (A.5)

The intrinsic matrix HΓ = D HΠ maps the lightfield in the
image space L (i, j, k, l) and the lightfield in the object space
LΓ (s, t, u, v).

B. Viewpoint Pinhole Constraint

In this section, we show that the SPC model [2], repre-
sented in the form (A.2), is equivalent to an array of parallel
viewpoint cameras.

From the previous section, let us consider the lightfield in
the object space whose rays are parameterized at a plane Π
using a point [q, r, 0]

T and a direction [u, v, 1]
T (Figure A.1).

The LFIM HΠ (A.2) maps the rays in the image space Φ to
the rays in the object space ΨΠ [2] by (A.1). For a viewpoint
or sub-aperture camera, the pixel coordinates (i, j) are fixed
and are considered as parameters. Hence, for a viewpoint
camera, the positions (q, r) and the directions (u, v) are affine
mappings only on the microlens coordinates (k, l), namely

q (k; i,HΠ) = hqk k + hqi i+ hq

r (l; j,HΠ) = hrl l + hrj j + hr

u (k; i,HΠ) = huk k + hui i+ hu

v (l; j,HΠ) = hvl l + hvj j + hv

(A.6)

where the LFIM HΠ is also considered as a parameter. To
simplify the notation, we will not include the parameters
(i, j,HΠ) in the following expressions.

A ray captured by a SPC and parameterized by (i, j, k, l)
intersects the plane Π at point p (k, l) = [q(k), r(l), 0]T with
a direction n (k, l) = [u(k), v(l), 1]T . This allows to define
an arbitrary point c (k, l, λ) = [x, y, z]T along the ray [4] as

c (k, l, λ) = p (k, l) + λ n (k, l) , λ ∈ IR . (A.7)

Note that by sweeping the range of (k, l) in (A.7) with λ = 0,
one samples an area of the plane Π through which pass all the
viewpoint imaging rays. In addition, by sweeping (i, j), one
obtains all the viewpoints, and therefore all rays that can be
imaged by the SPC. Finally, sweeping λ, allows representing
all world points within the field of view of the SPC.

The location of the projection centers of an optical setup is
defined by its caustic surface, which is the loci of singularities
in the flux density [4], [5]. The convergence of the rays
captured by a camera at a single point, i.e. a unique projection
center, is considered a degenerate configuration of the caustic
surface (point caustic) [4]. Although there are many techniques
to derive the caustic surface, in this work, we will consider
the Jacobian method [5].

The caustic surface is defined at the points in the object
space where the ray to image mapping (A.7) is singular, i.e. the
mapping from (k, l, λ) to (x, y, z) is singular. The singularities
occur at the set of points where the Jacobian matrix of the

transformation does not have full rank, i.e. points that make the
determinant of the Jacobian vanish det

(
J
(
c (k, l, λ)

))
= 0.

Solving the vanishing constraint one obtains two solutions for
λ:

λ1 = −hqk
huk

∨ λ2 = −hrl
hvl

. (A.8)

Replacing λ1 or λ2 in equation (A.7) identifies the caustic
profile for the viewpoint camera. The caustic profile of a single
viewpoint consists of a line with (i) unique (x, z) and variable
y components if λ = λ1 or (ii) unique (y, z) and variable x
components if λ = λ2. In case λ1 6= λ2 the viewpoint is a
non-central camera. The viewpoint camera corresponds to a
central camera, i.e. a camera with a unique projection center,
if and only if λ1 = λ2 which imply the model parameters
relation

hqk
huk

=
hrl
hvl

. (A.9)

Assuming this constraint and replacing λ in (A.7), expanded
by the expressions in (A.6), the location of the viewpoint
projection center for a viewpoint camera (i, j) is given by

pc =


hq − hqk

huk
hu + i

(
hqi − hqk

huk
hui

)
hr − hrl

hvl
hv + j

(
hrj − hrl

hvl
hvj

)
− hqk

huk

 . (A.10)

Furthermore, considering all viewpoint cameras that can be
defined for a SPC, the SPC originates a co-planar grid of
equally spaced projection centers. Notice that the pixels (i, j)
only affect the x- and y-components of the projection centers
while the z-component of the projections centers is always the
same.

C. Reducing the Parameters of the LFIM Parameterization

The LFIM has 12 non-zero entries (A.2) that help intro-
ducing and explaining the model but some parameters can be
avoided by considering them on the extrinsic parameters.

Considering the parameterization plane Π (Figure A.1) for
the origin of the different rays Ψ̃Π = [q, r, u, v, 1]

T in the
object space, an arbitrary point is defined as [x, y, z]

T
=

[q, r, 0]
T

+λ [u, v, 1]
T , λ ∈ IR [4]. The re-parameterization of

the rays in the object space to the plane Γ (A.3) corresponds
to a shift along the z-axis of the camera coordinate system,
which results in [x, y, zΓ]

T
= [s, t, 0]

T
+ λ [u, v, 1]

T where
s = q+ u dΠ→Γ, t = r+ v dΠ→Γ, and zΓ = z− dΠ→Γ. Thus,
the re-parameterization is redundant with the z-translation of
the extrinsic parameters. Assuming that the plane Γ corre-
sponds to the plane containing the viewpoint projection centers
at dΠ→Γ = −hqk/huk (Supp. Material B), one obtains a LFIM
HΓ with 10 non-zero entries

HΓ =


hsi 0 0 0 hs
0 htj 0 0 ht
hui 0 huk 0 hu
0 hvj 0 hvl hv
0 0 0 0 1

 . (A.11)



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 3

Furthermore, extending the definition of the point (s, t) to
consider the lightfield coordinates in the image space and
redefining x and y as xΓ = x − hs and yΓ = y − ht,
one obtains [xΓ, yΓ, zΓ]

T
=
[
hsi i, htj j, 0

]T
+ λ [u, v, 1]

T .
Hence, as identified by Dansereau et al. [2], the entries hs and
ht are redundant with the (x, y)-translational components of
the extrinsic parameters. Thus, removing the redundant entries,
one obtains a LFIM HΓ with 8 non-zero entries

HΓ =


hsi 0 0 0 0
0 htj 0 0 0
hui 0 huk 0 hu
0 hvj 0 hvl hv
0 0 0 0 1

 . (A.12)

This is the LFIM representation that is considered on the
main paper. Considering this representation for the LFIM, the
viewpoint projection centers location (A.10) reduces to

pc =

i hsij htj
0

 , (A.13)

which is the one considered on the main paper, namely tij =
−pc.

D. Practical Aspects of the Homography Estimation

The parametric homography matrix (10) can be estimated
using a direct linear transformation (DLT) [6]. Denoting the
unknown parameters of the homography matrix as b and the
observation matrix for each point correspondence (m̃, q̃) as
Mn in equation (12), one has(

m̃T ⊗ [q̃]×

)
T︸ ︷︷ ︸

Mn

[
h0

aij

]
︸ ︷︷ ︸

b

= 03×1 . (A.14)

Considering an observation matrix M obtained from stacking
the matrices Mn of each pair (m̃, q̃), the solution corresponds
to a non-zero vector in the null space of M. Since the
projection equation is defined up to a scale factor, one should
constraint the solution to ‖b‖2 = 1 leading to the following
optimization problem

b̂ = arg min
b
‖M b‖2

s.t. ‖b‖2 = 1

. (A.15)

In order to obtain an estimate for the homography matrix (11),
one should have present two practical aspects:
a) Data Normalization: For a DLT it is crucial to normalize the
data in order to improve the condition number of the matrix
MTM [7]. Thus, one should consider a translation of the
image points and the points in the object space so that their
centroids are at the origin and the average distances to the
origin are equal to

√
2 and

√
3 [8], respectively.

b) Computing a Solution in case of a Large Number of
Features: In order to build an over-determined system, having
a least squares solution, one should use each projection q
observed in each viewpoint camera for a given point m.

Therefore, assuming a plenoptic camera with N pixels within
each microlens, a point in the object space generates N pairs
(m̃, q̃), and consequently 2N equations. Normally, in a cali-
bration procedure, ones uses a calibration grid, with K feature
points, that is observed in C different poses. This leads to a
”tall” observation matrix M with L = 2N×K×C rows and 20
columns, i.e. one has a high number of observations compared
with the number of parameters to estimate. Consequently,
using a singular value decomposition (SVD) to obtain the
solution to the optimization problem (A.15) is troublesome
since this decomposition needs to compute the square matrix
MTM with size L × L which requires a prohibitive storage
space. Hence, a solution is to perform a QR-Decomposition [9]
of the observation matrix M = Q

[
V 0(L−20)×20

]T
where

Q is an orthogonal matrix and V is an upper triangular matrix
with size 20 × 20. This allows to rewrite the optimization
problem (A.15) as

b̂ = arg min
b
‖V b‖2

s.t. ‖b‖2 = 1

, (A.16)

which can be solved using SVD.

E. Distortion Model

The distortion model is evaluated rectifying the lightfield of
a scene that was not considered for the calibration using the
distortion parameters estimated with the calibration proposed
in Section V and the calibration procedure of Dansereau et
al. [2] (denoted as Dans13). The central VI of the rectified
lightfield considering the results of the calibration on a subset
of 10 poses for Dataset Illum-2 is presented in Figure A.2.
The radial distortion considered allows to rectify correctly the
straight lines in the foreground of the scene (Figure A.2.b-
c). Notice that for Dans13 [2] (Figure A.2.d), the straight
lines in the background are distorted in the rectification.
Nonetheless, the rectification using the parameters estimated
with the calibration proposed allows to maintain straight lines
in the background and in the foreground (Figure A.2.e).

F. Additional Results on LFIM Parameters Estimation

In order to evaluate the precision of the calibration, we
repeated 20 times the calibration procedure. Each calibration
involves k = 2, . . . , 20 pattern poses, randomly selected from
the full calibration dataset. The calibration procedure proposed
in Section V is compared with the methodology [2] (denoted
as Dans13).

The full calibration dataset is acquired with a Lytro Illum
camera using two calibration grids with different sizes: 8 ×
6 grid of 211 × 159 mm with approximately 26.5 mm cells
(denoted as Illum-1), and 20 × 20 grid of 121.5 × 122 mm
with approximately 6.1 mm cells (denoted as Illum-2). Each
dataset acquired is composed of 66 fully observable poses of
the calibration pattern. Care was taken to avoid changing the
focal settings of the camera.

The mean and standard deviation obtained for each param-
eter of LFIM for Datasets Illum-1 and Illum-2 are depicted in
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(a) Original central VI (b) Rectified central VI [2] (c) Rectified central VI (Section V)

(d) Line in box A of (a)

(e) Line in box A of (b), visible distortion

(f) Line in box A of (c), lesser visible distortion

Fig. A.2: Distortion rectification using the distortion parameters estimated with Dans13 [2] ((b) and (e)) and the calibration
proposed ((c) and (f)) for the Dataset Illum-2. (a) depicts the original central VI while (d)-(f) correspond to zooms of the red
boxes A. Blue rulings were added to aid in the visual confirmation of the straight lines after rectification.

Figures A.3 and A.4. Notice that the calibration Dans13 [2]
obtains a LFIM with 12 non-zero entries while the method pro-
posed has 8 non-zero entries. For comparing the parameters,
we transformed the LFIM obtained by Dans13 as defined in
Supp. Material C. Figures A.3 and A.4 show that a minimum
of 8-9 poses are needed for a precise estimation of the LFIM
parameters. Namely, to have a deviation smaller than 3% of
the mean value, one needs 9 poses using Dans13 [2] and 8
poses using the proposed calibration for Dataset Illum-1. For
Dataset Illum-2, one needs 9 poses using Dans13 [2] and the
proposed calibration.

Let us also consider the statistical analysis of the difference
between the estimates at the initial and final stages of the
calibration process for each of the entries of the LFIM. The
mean and standard deviation values for Dataset Illum-1 and

Illum-2 are depicted in Figures A.5 and A.6. These figures
show that the calibration proposed allows to obtain an initial
solution that is closer to the solution at the final stage of the
calibration procedure. Namely, the proposed calibration allows
to estimate more precisely the entries related with the baseline
and the principal point shift (Figure A.5.a-b and A.6.a-b).
For the remaining entries, the performance is similar for both
calibration methods.
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(a) (b) (c) (d)

Fig. A.3: Precision of the LFIM parameters after nonlinear refinement with distortion estimation using the calibration proposed
(in blue and cyan for dataset Illum-1 and Illum-2, respectively) and the calibration Dans13 [2] (in red and magenta for dataset
Illum-1 and Illum-2, respectively): hsi (a), hui (b), huk (c), and hu (d). The mean values are represented by the solid lines
and the standard deviation by the shaded areas.
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Fig. A.4: Precision of the LFIM parameters after nonlinear refinement with distortion estimation using the calibration proposed
(in blue and cyan for dataset Illum-1 and Illum-2, respectively) and the calibration Dans13 [2] (in red and magenta for dataset
Illum-1 and Illum-2, respectively): htj (a), hvj (b), hvl (c), and hv (d). The mean values are represented by the solid lines
and the standard deviation by the shaded areas.
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Fig. A.5: Difference between the estimated LFIM parameters at the initial and final stages of the calibration proposed (in blue
and cyan for dataset Illum-1 and Illum-2, respectively) and the calibration Dans13 [2] (in red and magenta for dataset Illum-1
and Illum-2, respectively): hsi (a), hui (b), huk (c), and hu (d). The mean values are represented by the solid lines and the
standard deviation by the shaded areas.
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Fig. A.6: Difference between the estimated LFIM parameters at the initial and final stages of the calibration proposed (in blue
and cyan for dataset Illum-1 and Illum-2, respectively) and the calibration Dans13 [2] (in red and magenta for dataset Illum-1
and Illum-2, respectively): htj (a), hvj (b), hvl (c), and hv (d). The mean values are represented by the solid lines and the
standard deviation by the shaded areas.
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