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Abstract

Light field imaging allows discriminating object radiance according to
multiple viewing directions. We introduce the minimal light field repre-
sentation from which depth can be extracted, the affine light field, which
is a first order approximation. One setup to acquire one globally affine
light field is proposed. Consequently, we show how Dansereau Bruton’s
gradient based reconstruction method [1] can be derived from the locally
affine light field assumption.

1 Introduction

Light field cameras, sometimes called plenoptic cameras, have been in-
troduced recently to the consumer market [4]. They are capable of dis-
criminating the contribution of each light ray emanating from a particular
point by projecting the point to several positions of the sensor.

A light field image is usually represented by the 4D plenoptic function
[4], but it can be seen as a collection of 2D viewpoint images, each with
a projection center slightly offset (details in section 2). This means that
from a light field image it is possible to extract depth information. The
only requirements is that the gradients in a viewpoint image are not null.

In this paper we introduce a minimal order approximation for a light
field image which still contains depth information. It is a first order ap-
proximation due to the constraint that the gradients cannot be null. We
refer to such light fields as globally or locally affine. An example setup
to capture a globally affine light field is illustrated in Fig. 1. We use this
approximation to derive the formula to extract depth from a light field
image.

2 Light Field Camera Model

A light field image is a mapping of rays into light intensities. We make
the distinction between the light field in the object space, indexed by rays
in the object space, and the light field in the image space, indexed by rays
in the image space. When a light field image is captured, it’s in the image
space, but in order to obtain metric information about a scene, the light
field must first be converted into the object space.

The model proposed by Dansereau et al. considers a mapping be-
tween rays in the image space, sometimes referred to as raxels [4], and
rays in the object space. This is the light field equivalent of an intrinsic
camera model.

The rays in the object space are modelled with the two plane param-
eterization, see Fig. 2. Each ray is defined by its intersection with a plane
(s, t) and its direction is defined by slopes (u,v) relative to the z axis. To
help illustrate this parameterization, and to facilitate the understanding of
the calculations in the next sections, one writes (x,y) = (s, t)+ z · (u,v)
to show how the (x,y) coordinates of a point along a ray (s, t,u,v) can be
calculated from its z coordinate.

The typical construction of a light field camera is based on an array of
microlenses placed between the camera main lens and the imaging sensor
(usually a CMOS). The raw image extracted from the CMOS results in
the so-called image in the image space after a decoding process.

In the image space, coordinates (k, l) indicate the microlens the ray
passed through before sampling, and (i, j) indicate the pixel within the
microlens image. Alternatively, (i, j) can be seen as selecting a viewpoint,
and (k, l) as selecting a pixel within that viewpoint image. Changing (i, j)
changes the projection center of the viewpoint image slightly within a
plane parallel to the image plane. Another useful construct is the Epipolar
Plane Image (EPI), obtained by fixing ( j, l) (horizontal EPI) or fixing (i,k)
(vertical EPI).
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Figure 1: Setup to acquire a globally affine light field with a light field
camera. The central circle represents the projection center of the central
viewpoint of the light field camera. The array of circles represents the
array of projection centers (not in scale) representing the other viewpoints
of the light field camera.
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Figure 2: Two plane parameterization for rays starting from a point m
using a point and a direction. The point (s, t) is given by the intersection
with the plane Π, and the direction (u,v) with the derivative of the ray’s
coordinates with respect to z. The latter coordinates can also be seen as
the intersection with a plane perpendicular to the first at a distance of one
unit, hence the name "two plane parametrization".

The model defined in [2] takes the form of:
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The model in Eq. 1 has 8 parameters. The values in the last column of
the matrix are not independent parameters, they are set by the requirement
that Ψcenter should map to Φcenter. With a simple and reasonable set of
assumptions, these can be reduced to just two parameters, and a meaning
can be assigned to them by making an analogy to a camera array.

The first simplifying approximation is to consider the parameters re-
ferring to the horizontal and to the vertical coordinates to be equal. This is
supported by the fact that, although the microlens array structure is hexag-
onal, a decoding algorithm can re-sample the microlenses in a square lat-
tice, as is done by Dansereau et al. in [2].

Afterwards, we can move the (s, t) plane along z, such that it now
includes the centres of projection of the viewpoints. The result is a new
Ha matrix that describes the exact same camera, but has hsk = htl = 0.
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The translation in z would be compensated by an opposite translation in
the extrinsic parameters.

Furthermore, the terms hui and hv j describe a shift of the principal
point of each viewpoint image proportional to (i, j). Since this shift can
be easily removed from an image, we will consider it to be zero.

Combining all of these simplifications, we get an intrinsics matrix Ha
with 2 parameters (apart from the 4 in the last column, which continue to
be set by the requirement that Φcenter maps to Ψcenter)

H =


b 0 0 0 s0
0 b 0 0 t0
0 0 f−1 0 −cx/ f
0 0 0 f−1 −cx/ f
0 0 0 0 1

 , (2)

where the parameters hsi = ht j and huk = hvl are replaced by b and f−1.
The reason for this substitution is that these terms now have meaning in
terms of a camera array: b is the baseline, or the distance between adjacent
cameras; f is the focal length of the cameras. A more detailed explanation
of the intrinsics matrix applied to a camera array can be found in [3].

3 Affine Light Field and Depth Estimation

The light field of a fronto-parallel plane colored with a gradient, Fig. 1,
is the simplest scenario producing an affine light field. To show this,
consider a fronto-parallel plane Π where n = (0,0,1), and r = z, such
that p ∈Π =⇒ p ·n = r. The color of the plane at a point p in the plane
Π, is given by c(p) = p · g+ c0, where g is the color gradient, and is a
vector aligned with the plane.

To find out the color sampled by a ray Ψ, we find out where it hits the
plane Π using the back projection equation

(
[s t 0]T +λ [u v 1]T

)
·n = r.

Note that λ , the parameter representing how much the ray extends before
hitting Π, is actually the depth z of this plane at that point. From here on,

we will use z = λ . Hence one has z =
r− (s, t,0) ·n
(u,v,1) ·n

= r. Combining with

the camera parameterization in Eq. 1, we get the affine light field:

L(i, j,k, l) = l0 +
[
ai a j ak al

]
· [i j k l]T , (3)

where ai = bgx, a j = bgy, ak = zgx/ f and al = zgy/ f and l0 collects all
the constant terms. The gradient of L, ∇L =

[
ai a j ak al

]T , contains the
depth z only in the (k, l) derivatives. The only other unknown parameters,
gx and gy, are present in both (i, j) and (k, l) and so can be cancelled by
dividing ak with ai or al with a j. Hence, the affine light field produces
directly a depth estimate

z = b f
ak

ai
and/or z = b f

al

a j
. (4)

Comparing Eq. 4 with stereo reconstruction, one finds, similarly, the base-
line and focal length, while ai/ak and a j/al do the role of disparities.

In order to use Eq. 4 to extract depth from a real scene, one has to
estimate the values of a(·), by calculating a locally affine approximation.
This can be done by estimating the gradients in the EPI’s, based on So-
bel operators, as in [1]. Alternatively, in [5] the structure tensor is used,
which involves derivative estimates in the four components of the light
field combined with low pass filtering in the four dimensions, in order to
attenuate high frequency noise enhanced by the derivative operations. We
use the structure tensor formulation. When both ai and a j are not zero we
output the mean of the two z estimates from Eq. 4. If just one value is not
zero then the depth estimate is based just on that value.

4 Experiments and Results

In a first experiment a synthetic figure is created following the setup in
Fig. 1. The camera parameters in our experiment are b = 3×10−4m and
f = 200, while the parameters of the scene are given by g = (1,0)m−1

and z = 0.15m, which theoretically results in a light field given by L =
10−4i+ 7.5× 10−4k. From the resulting lightfield, the gradients can be
extracted using the structure tensor as in [5] without the regularization
step. Even in this simple setup, one has to contend with errors induced
by quantization of the image signal, in our case 8 bits. Nonetheless, the
reconstruction returned robust results of z = 0.149±0.008 m.

In a second experiment we considered a more involved setting, a
spherical hubcap on top of a plane with a gradient, as represented in Fig. 3.
In this case the light field is not globally affine on the hubcap. The same
reconstruction method was applied with the results illustrated in Fig. 4.
Good results were obtained even on non globally affine light fields, since
they are still locally affine, i.e. are well represented locally by a first or-
der approximation. The mean of the absolute relative errors obtained was
1.49%.

Figure 3: Example light field image to demonstrate depth reconstruction.
Central viewpoint surrounded by two EPI’s. The bottom and right EPI’s
originate from the horizontal and vertical lines, respectively.

Figure 4: Reconstruction of the synthetic light field image. Depth values
are measured with respect to the camera coordinates frame.

5 Conclusions

In this paper we have shown how a light field camera model and its pro-
duced images can be interpreted in familiar terms, so as to facilitate the
reconstruction of the 3D objects captured. Furthermore, we introduced a
minimal order light-field containing depth information which can be ex-
tracted by light-field analysis
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