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Abstract. The vast streams of data created by camera networks render unfeasi-
ble browsing all data, relying only on human resources. Automation is required
for detecting and tracking multiple targets by using multiple cooperating cameras.
In order to effectively track multiple targets, autonomousactive camera networks
require adequate scheduling and control methodologies. Scheduling algorithms
assign visual targets to cameras. Control methodologies set precise orientation
and zoom references of the cameras. We take an approach basedon informa-
tion theory to solve the scheduling and control problems. Each observable target
in the environment corresponds to a source of information for which an obser-
vation corresponds to a reduction of the uncertainty and, assuch, a gain in the
information. In this work we focus on the effect of observation functions within
the information gain. Observation functions are shown to help avoiding extreme
zoom levels while keeping smooth information gains.
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1 Introduction

The increased need for surveillance in public places and recent technological advances
in embedded video compression and communications have madecamera networks
ubiquitous. However, at the moment, there are still missingsuitable algorithms that
are capable of automatically processing so much data captured by so many cameras
having few staff members.

One of the issues associated with this problem is the decision on which control
action to send to the pan-tilt-zoom cameras (PTZ) in order tosuccessfully carry on the
desired surveillance tasks. In simple words, the cooperative problem of controlling a
network of PTZ cameras for the purpose of active surveillance in a dynamic scenario is
that one wants to maintain high zoom levels without losing track on the targets in the
scene.

The first autonomous surveillance systems were composed of multiple static cam-
eras, working together to solve some practical tasks of interest such as tracking mov-
ing objects. The need for considering overlapping and wide fields (resulting in low-
resolution images) of views of deployed cameras has led to the deployment of pan-tilt-
zoom cameras in modern surveillance systems.
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A number of new architectures appeared, such as master-slave camera configura-
tions, and cooperative smart networks [11]. In the master-slave configuration, static
cameras are used for event detection in order to direct the PTZ camera to the target of in-
terest. In contrast, with more complex architecture, both static and PTZ camera streams
are used for event analysis. This way, the global state of these systems is composed of
both the individual state of each target and the camera state. In both architectures, there
is a need for efficient and reliable target tracking methodologies and, in more complex
cooperative architectures, there is also a need for camera management methodologies,
in order to compute the optimal configuration of the network in order to coordinately
maximize the coverage of tracked visual targets in the scene.

1.1 Related Work

The surveillance problem in active camera networks can be divided into two main com-
ponents. The detection and tracking of visual targets of interest in the scene and the
computation of a scheduling policy to control each of the cameras’ degree of freedom,
in order to take into account the dynamics of the scene.

There are many generic methodologies used for target tracking. The commonly
taken approach, based on the Bayes filter [1], [11], [10], is characterized at each it-
eration by the update of the state estimate based on the predicted state given by the
motion model of the target and the observations given by the sensor. Another approach
is taken in [7], [6], [3] and [2], where, contrary to the recursive approach, the trajec-
tory is estimated in batches, making available both past andfuture observations for the
estimation of the trajectory at a given time instance.

Regarding camera scheduling, Starzyket al. [12] proposed a complete system for
tracking multiple targets using cooperative cameras. The conflicts in behaviors are re-
solved using a central processor, which combines the individual desired behaviors in a
single behavior, which reflects the best compromise betweenall of them.

The Multi-armed bandit algorithm is introduced in [13], [9]and [8], primarily not
being a camera management system, but a decision methodology for coordinately allo-
catingresources to projects, e.g. robots that can travel to certain locations in order to
discover events or network packets that can be routed to various channels in order to
maximize the throughput. This framework can be used to modelthe problem of cam-
era management, as well. Each camera is considered as a resource and each target as a
project. The objective is to allocate cameras (resources) to targets (projects) in order to
maximize some measure of reward over time.

Another approach, based on the information theory framework, is applied to the
problem of camera management in [11] and [10]. This approachis based on the previous
work on automatic zoom selection in [5], in which the camera parameters (i.e. the target-
camera assignment) are chosen based on the mutual information gain between the state
estimate and the estimate given an observation. In this approach, the Extended Kalman
Filter is used as the selected tracking algorithm.

The aforementioned approach is the one adopted in this work.However, it is note-
worthy that the design choice of the observation functions is still an open and ongoing
challenge with the family of the information theory approaches. In the following sec-
tions, we will present our particular approach.
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1.2 Problem Formulation

A set of pan-tilt-zoom cameras is supposed to track and maintain trajectories of as many
targets as possible. The targets are circulating in the environment.

We use an Information Theory framework in which the optimal control policy a∗

for each camera is defined by the following maximization problem

a∗ = argmax
a

I(x;o) = argmax
a

Ha(x)−Ha(x|o), (1)

whereI(x;o) denotes the mutual information gain between the state estimate and the
observation, andHa(x|o) is the conditional entropy of the state estimate given the ob-
servation, given that some controla was sent to the camera.

Each target has an assigned Extended Kalman Filter, with themotion model depen-
dent on the targets being tracked and the pinhole camera model. When a target is in
the field of view of a camera, a new observation is available and its value is used to
update the EKF. In this scenario, there is a reduction of the uncertainty in the target’s
state and, as such, a positive information gain. On the otherhand, when a target is not
in the camera’s field of view, the observation will not contribute to the reduction of the
state uncertainty. In other words, the entropyH(x) = H(x|o) and the information gain
will be zero. This way, by maximizing the mutual informationgain, the cameras will
effectively be in configurations in which more targets are present in the field of view.

The aforementioned problem boils down to how to computeH(x|o) before making
an actual observation. This entropy can be computed by taking into account that the
tracking is being made by using an EKF. In the Kalman Filter (and so in the Extended
Kalman Filter), the assumption is that the state distribution follows a Gaussian distri-
bution with the meanx (the state estimate) and covarianceP. Under this property,H(x)
andH(x|o) are both differential entropies of Gaussian distributed variables, given by

H(x) =
k
2
(1+ log(2π))+

1
2

log(|Σ |), (2)

wherek is the dimension ofx andΣ is the covariance matrix ofp(x).

The first result consists in that the entropy depends only on the covariance matrix
and thus the problem of computingH(x) andH(x|o) can be reduced to computing the
covariance of the state estimatePk and the state estimate after the observationPk+1.

The equations of the Extended Kalman Filter show that the observationzk is only
incorporated in the innovation equation and later used in the state update equation.
Therefore, the update covariance matrixPk|k can be computed prior to any observation.
The same applies to the conditional entropyH(x|o), as well.

In the most general case, the optimization can be achieved byan exhaustive search
procedure over the parameter space of the camera. However, the structure of the sensor
can be considered in order to find better optimization strategies.
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2 System Overview

The surveillance system consists of a set of active pan-tilt-zoom cameras which acquire
images to be processed by a central controller. The controller is responsible for image
processing tasks and for keeping track of each of the targetsmoving in the environment.

Each camera feeds the controller with new image frames and its corresponding state.
The controller is responsible for processing the image and extracting target observations
by fusing the available information and updating the targets state estimates (see Fig 1).

The result of the update is then fed to the decision controller, which is responsible
for computing a new control policy for each camera.

The detection of new targets can be made both by carefully placed static cameras,
or by the same active cameras used in the tracking process. The latter approach is the
one followed in [10], however, this topic will not be addressed in this work.
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Fig. 1. System architecture

3 Scheduling Cameras

Using the Information Theoretic approach proposed in [10],the camera scheduling
problem is modeled as an information gathering problem. Foreach camera, a choice
on the pan-tilt-zoom parameters is made based on the information gain in the state
distribution of all targets given possible observations. The optimal pan-tilt-zoom con-
figuration is the one which maximizes the information gainI(x;o) between the state
estimate and the observation. In other words, it is the one that leads to a greater increase
in the certainty of the state estimate.
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3.1 Single Camera Scenario

In a single camera scenario, a single camera is responsible for tracking and maintaining
the trajectories of various targets which move freely across the environment.

Each target is tracked using an Extended Kalman Filter (EKF)with the motion
model depending on the kind of target being tracked (e.g. pedestrian or vehicle) and the
pinhole camera model as the observation model. Leth(x) denote the sensor model and
Hk denote its Jacobian around the predicted state. Convertingthe pinhole camera model
in projective coordinates





u′

v′

w



= P3×4









x′

y′

z′

h









⇒















u = f1(x,y,z)
f3(x,y,z)

=
p11(

x
h )+p12(

y
h )+p13(

z
h )+p14h

p31(
x
h )+p32(

y
h )+p33(

z
h )+p14h

v = f2(x,y,z)
f3(x,y,z)

=
p21(

x
h )+p22(

y
h )+p23(

z
h )+p24h

p31(
x
h )+p32(

y
h )+p33(

z
h )+p14h

,

(3)

where fk(x,y,z) is the internal product between thekth row of the projective matrix
and the real world position in projective coordinates and thus pi j is the value of the
projective matrix in theith row and jth column.

By taking into account the structure of the sensor model, theJacobianH(x,y,z) ∈
R

2×3 can be easily computed. Letxi be theith state variable of the set{x,y,z}, andgi

the ith observation variable from the setu,v, then the partial derivative in the position
(i, j) of the matrix is given by

∂gi

∂x j
(x,y,z) =

∂ fi
∂x j

(x,y,z) f3(x,y,z)−
∂ f3
∂x j

(x,y,z) fi(x,y,z)

f3(x,y,z)2 . (4)

The decision on which pan-tilt-zoom command to send to each camera is done by
maximizing the mutual information gainI(xt ; ot) for all targets, withxt being the target
state estimate at timet andot the observation made.

Using the definitions of mutual information gainI(x; o) and conditional entropy
H(x|o) [4], the cost function can be expanded

a∗ = argmax
a

I(x; o) = argmax
a

Ha(x)−Ha(x|o) (5)

= argmax
a

Ha(x)+
∫

p(o)
∫

p(x|o) logp(x|o)∂x∂o (6)

= argmax
a

Ha(x)+
∫

v
p(o)∂o

∫

p(x|o) logp(x|o)∂x

+
∫

v̄
p(o)∂o

∫

p(x|o) logp(x|o)∂x,
(7)

where distributionp(o) denotes the probability of making an observation of the target.
Its domain of integration can be divided into two subdomains: v, which denotes all
the camera configurations in which the target is visible and ¯v, which represents all the
configurations in which the target is not visible.

Without further assumptions, this problem is hard to solve.However, recalling the
EKF structure, predict and update steps, one obtains the following properties: (i) The
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probability distributionp(x|o) corresponds to the state distribution after the update
step. In other words,p(x|o) ∼ N (xk|k,Pk|k). (ii) All state variables are gaussian dis-
tributed. This means all differential entropies can be computed in closed form ac-
cording to equation (2). (iii) When there is no observation of the target, the update
step is skipped. This means that the state is independent from the observation and
p(x|o) = p(x) ∼ N (xk|k−1,Pk|k−1). Applying these properties into equation (7), the
objective function is simplified:

a∗ = argmax
a

(

Ha(x)+ω(a)H(x+)+ (1−ω(a))H(x−)
)

, (8)

where
ω(a) =

∫

v
p(o)do (9)

represents the observation function, which depends on the action a.
Note that all the state variables are Gaussian distributed and, by definition, the dif-

ferential entropy for Gaussian distributed variables depends only on the variable covari-
ance matrix. By observing the EKF equations, it can be seen that the observationok is
only used in the innovation equation and in the state update equation. This enables the
computation ofP+ without having an observation. Using the definition of differential
entropy for a multivariate gaussian distribution (2) with the covariance update equation
in the Extended Kalman filter, the cost functional can be simplified

a∗ = argmin
a

ω(a)(log|P+|− log|P−|) (10)

= argmin
a

ω(a) log(I −KkHk). (11)

The choice of the optimal configuration is made by optimizingthe sum of the mutual
information gainsI(x; o) for all targets. Despite the elegance of this cost function,in
the general case its evaluation is intractable because it requires the exhaustive search
over the configuration space of the camera. For each pan-tilt-zoom configuration of
the camera, the observation model must be linearized anew and an EKF update must
be performed to obtain the new Jacobian matrixHk andKk. In order to overcome that
problem, in this work each target is modeled as a circle projected into the ground plane.
The visible regionv of each camera, in the camera coordinates, is also modeled asan
ellipse around the center of the image. The termw(a) in equation (11) is computed by
projecting the target ellipse onto the image plane and computing its intersection with
the visible regionv of the camera.

3.2 Multiple Camera Scenario

In a multiple camera scenario, multiple cameras can have observations of the same
target. The incorporation of these observations is done using a sequential Kalman Filter.
In this variation, a single prediction step is made and each observation is used to make
an update so that the update from the observationk uses the estimated position and
covariance of the update from the observationk−1.
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Each observation contributes to the covariance matrix witha factor of(I −KcHc),
whereKc is the Kalman gain from the observation of camerac andHc is the Jacobian
of the observation model for camerac.

The mutual information gain of a target for multiple observations

I(x; o1, ...,oC) ∝ ∑
c∈C

log|I−ω(a)KcHc|, (12)

is then obtained by combining equation (10) with the new covariance matrix update

P+ =

(

∏
c∈C

(I −KcHc)

)

P−
. (13)

3.3 Observation function

The observation functionω(a), equation (11), is a central component of the target track-
ing methodology as it effects on the convexity of the information gain.

The observation function can be just a flag indicating whether a point representing
the target location, in world coordinates, is visible or notin the image:

ω(a) =

{

1, P(Xgnd; a) ∈ Eimg

0, otherwise
(14)

whereXgnd is a point in the ground plane representing the target position, P(·; a)
is the projection operator on a set of points, which is definedby actiona, i.e. in (3)
the projection matrixP3×4 is modified by actiona andEimg is the ellipse in the image
plane concentric with the image rectangle. However, this observation function does not
perform a smooth regularization of the cost function, making difficult to design iterative
optimization algorithms.

By changing the model of the target from a single point in ground plane into a
surface in the ground plane, one obtains a smoother optimization function. Modeling
the shape of the target as a rectangle, taking into account the visible part normalized
by the area of the imaged shape not truncated by the field of view of the camera, the
observation function takes the form

ω(a) =
A(P(Rgnd; a) ∩ Eimg)

A(P(Rgnd; a))
(15)

whereA()̇ indicates area of a convex hull of points andRgnd is a rectangle in the ground
plane. Alternatively, modeling the target as an ellipse in the ground plane, the function
becomes

ω(a) =
A(P(Egnd; a) ∩ Eimg)

A(P(Egnd; a))
(16)

whereEgnd is an ellipsis in the ground plane.
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(a) Camera 1 (b) Camera 2 (c) Camera 3

(d) Camera 4 (e) Camera 5 (f) Bus closeup
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Fig. 2. Field of view of the cameras at rest orientation and typical bus trajectories.

4 Experimental Results

The experiments described in this section are based in a virtual reality environment
simulating a parking lot (see Fig. 2(a-f)). A number of buses, with the dimension of
2x10x2m, cross the scene according to predefined trajectories shown in Fig. 2(g-i).
These trajectories are generated using the car model ˙x= cos(θ )sin(θ )V , ẏ= sin(θ )cos(φ)V ,

θ̇ = sin(φ)
L V andφ̇ = ωs, whereV is the linear velocity of the bus andφ is the steering

angle, both set using a joystick interface. Tracking is performed using five pan-tilt-zoom
cameras located at fixed positions on the sides of the parkinglot and in the entrance.

In order to evaluate the geometry of the cost function using different observation
functions, the cost function was evaluated from a set of values from the pan-tilt-zoom
space for a camera. This was achieved by placing a target in a fixed location in front
of the camera and making an observation. The camera model andits Jacobian were
computed for the new pan-tilt-zoom configuration and, alongwith the new observation,
used to update an existing EKF. The resulting Kalman gain andthe linearized observa-
tion model were obtained and used in the cost function (11).
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Figures 3(a) show the cost function evolution with both the zoom level and the pan-
tilt values using the observation function (14). Figures 3(b) show the same evolution
as in the previous case, but now using the observation function (16). The termw(a)
defined as in (11) changes the cost minimum from extreme values of zoom, pan and/or
tilt to within-range, central, values.
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(b) Observation function accounting imaged target size.

Fig. 3. Effect of the observation function into the cost function. In case (a) the observation func-
tion ω(a) is defined by (14) and therefore just indicates the target in or out the field of view. In
case (b)ω(a) is defined by (16) and thus takes in account the imaged size of the target and the
field of view. Two plots for each one of the cases, cost vs zoom (left) and cost vs pan and tilt
(right).

The second set of figures was generated in a similar way from the former ones,
however sampling the whole camera parameters space. Figure4 shows slices of the
cost function in the camera parameter space (pan-tilt-zoom) using different observation
functions as described in Section 3.3. Each row represents afixed zoom configuration,
with lower rows representing configurations with higher field of view (less zoom).

In column (a) of Fig. 4, is usedw(a) defined in (11). In column (b) is considered the
samew(a) however, in this experiment, there are two targets in the scene in different
locations and with different state estimate covariances. In columns (c) and (d) the term
w(a) is the one defined by (15) and (16), respectively.
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Fig. 4. Cost function slices at fixed field-of-view (zoom). Each row represents a different zoom
level (field of view, top row 6[deg]≈ 0.1 [rad], bottom row 75[deg]≈ 1.3 [rad]). Colder colors
represent lower cost functions. Configurations in which thetarget was not visible were assigned
high cost. In cases (a,c,d) one camera observes one target. In case (b) one camera observes two
targets. The observation functionω(a) is defined by (14) in cases (a) and (b), and is defined by
(15) or (16) in cases (c) or (d), respectively.

Figure 4(a) shows that the cost function is generally lower in configurations which
make the target appear in the image plane with higher resolution, that is, when the cam-
era is at its highest zoom or when the camera has the target of interest in the corner of
the image. This result comes from the influence of the observation model (in particu-
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lar, its Jacobian) used in the EKF in the cost function. Whilethis is a good result in
the sense resolution is maximized, uncontrolled zoom onto the target is not the desired
behavior, since a minimum movement can make the target disappear from the camera
field of view. Termω(a), as defined in (15) or (16), acts a regularizing factor, manag-
ing the optimal zoom level to observe the target at constant zoom level and preventing
observations just using the ”‘corner of the eye”’.
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Fig. 5. Scheduling experiment. Uncertainty at the ground plane (left) and uncertainty along time
(right), for observation functions defined in (15) or (16).

In the last experiment four cameras are active and four targets (buses) enter the scene
sequentially, separated by approximately 10sec, following different trajectories. The
proposed scheduling methodology is tested with two alternative observation functions,
(15) or (16). The pan, tilt and zoom parameters are estimatedfor all cameras in a round-
robin manner (Fig. 1). Each search of the parameters is basedin Nelder-Mead simplex
direct search and is limited in the number of iterations.

Figure 5 shows the tracking of the first bus along the first 100sec. The plot in the left
shows the uncertainty of the EKF of the first bus, on the groundplane, as ellipses cor-
responding to a 50% confidence level. Covariances are magnified 100× for readability.
The second plot, Fig. 5(right), shows the square root of the maximum eigenvalue of the
covariance matrix, along time, for both observation functions. Results show that (16)
allows for lower and smoother in time localization uncertainty in presence of distrac-
tors, as the other buses entering the fields of view of the cameras, due to its smoother
nature allowing for more effective searches of the pan, tiltand zoom parameters.

5 Conclusions and Future Work

The results show the influence of the target modeling in the cost function proposed by
[10]. By modeling the buses as ellipses projected onto the ground plane and the visible
region of the camera as an ellipse in the image plane, the costfunctions gain a defined
structure, which simplifies the design of fast algorithms tosearch for the optimal policy.
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When a single target is present inside the range of the activecamera, the optimal
command is to zoom on the target, according to the cost function. The regulator term
controls the optimal zoom on the target, independently of the target location.

In a multi-target scenario, the overlapping cost functionscan make the optimal com-
mand to keep both targets inside the camera’s field of view.

The challenges to be addressed in the future include the integration with policies for
exploration of unobserved regions, making the system independent of the need to have
carefully placed static cameras.
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