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In-Situ Camera Calibration ∗

In-situ camera calibration, i.e. calibration of a camera mounted in the position where it will be used,
has the advantage that the camera can be tuned (e.g. focused) in-situ, to fit the local requirements. On
the other hand, this camera calibration methodology implies that conventional calibration tools may turn
out to be impractical. For instance, considering the well know calibration toolbox by J. Y. Bouguet [1],
one has to image a planar chess pattern at various poses relative to the camera, always covering most of
the imaging area. For example, if an outdoors camera is mounted at the height of a 3rd floor, it is not
simple coming close to it to display an A4 calibration chess pattern, and is not practical constructing and
moving a chess pattern with various meters wide. In addition, this calibration is mostly about intrinsic
parameters, and thus do not provide distances (rigid pose transformations) among the various cameras of
a network of cameras. In this report we discuss alternatives for calibrating cameras in-situ.

1 Map Based Camera Calibration

One way to calibrate a camera is finding a set of correspondences between 3D space points and their 2D
projection on the camera image. Obtaining the 2D information can be done easily just by clicking on
an image. Obtaining 3D information in a global reference frame for the points observed in the image
is much harder. Professionals working with theodolites can provide such information, but the costs are
very high. In this report we consider an alternative based on using a blueprint of the location.

In many real cases there is an available a map, or blueprint, of the place where cameras are mounted,
as the one shown on Fig.1 (a). This blueprint may contain already the position of the cameras or may
allow an easy identification of these locations. Similarly, some landmarks can be visible to the camera,
and the calibration procedure can therefore consist of three simple steps:

1. Marking on the blueprint two points, namely the camera location and a point spotted by the camera.

2. Arbitrating the height of the camera, and assuming a typical field of view (lens), which allows to
create an initial guess for the projection matrixP = K [R t] (nominal calibration).

3. Using the landmarks found on the image and their correspondences on the blueprint, the con-
structed projection matrix can be fine tuned, minimizing the reprojection error. APopt projection
matrix is obtained by varying the focal distance (intrinsic parameters), the camera rotation angles
and height (extrinsic parameters).

1.1 Nominal Calibration

The camera location and the point can usually be marked by simply inspecting theblueprint and camera
image (see Fig.1). Provided some additional information, one obtains an initial guess of the projection
matrix.

In this work we use the pin-hole projection model, in which a 3D point represented in homoge-
neous coordinates,M = [X Y Z 1]T , is projected to a 2D pointm = [u v 1]T , also in homogeneous

∗This report is more detailed in the MSc thesisNetCam - Network Cameras Calibration, by Manuel Silva (superv: J. Gaspar)
IST/MEEC 2011/2012, and is partially published inCamera Calibration using a Color-Depth Camera: Points and Lines Based
DLT including Radial Distortion, M. Silva, R. Ferreira, J. Gaspar, In WS in Color-Depth Camera Fusionin Robotics, held with
IROS2012. This work was partially supported by the FCT project PTDC / EEACRO / 105413 / 2008 DCCAL, and by the
project High Definition Analytics (HDA), QREN - I&D em Co-Promoção 13750.
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1 Map Based Camera Calibration 2

(a) Local Map (b) ROI

(c) Camera Image

Fig. 1: Nominal calibration of a camera mounted in its operating place. The local map (a)is zoomed
and cropped to a region of interest (ROI), for easier usage, where the camera location and a point
seen by the camera (b) can be marked. This scene point is believed to be a point lying on the
(camera optical axis), which projects (approximately) on the camera image center (c).
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coordinates:
m ∼ PM, (1)

where∼ denotes equality up-to a scale factor,P = K[R t] denotes the3 × 4 projection matrix,K
is a3 × 3 matrix containing the intrinsic parameters,t is a3 × 1 vector indicating the location of the
world origin in camera coordinates,R is a3 × 3 matrix representing the orientation of the world frame
relative to the camera frame. Note thatR andt can be obtained easily from and transformed to world
coordinates:

{

R = (wRc)
T

t = −(wRc)
T wtc

⇔

{

wRc = RT

wtc = −RT t
(2)

wherewtc denotes the location of the camera in world coordinates,wRc denotes the camera orientation
also in world coordinates, and we are assuming that all rotation matrices are ortho-normal meaning
RTR = RRT = I and thusR−1 = RT .

In [2] an initial guess of the camera projection matrix,Pini, can be obtained following three steps:

1. Pointing the camera location,p1, and selecting a ground point,p2, on the blueprint of the building
(seep1 andp2 marked asInput1 andInput2 in Fig.1(b));

2. Entering an elevation angle,θ;

3. Entering an horizontal field of view,ϕ and the aspect ratio of the camera image

Steps 2 and 3 will usually have default values, in order to make as simple as possible the task to the
user. For instance,ϕ = 40o corresponds to a common 8mm lens in a 1/4 in CCD. Default values forθ
depend on the location, but in the case of In-Situ camera calibration many cameras are at the level of the
second floor (about6[m] high), imaging objects in the ground plane closer than20[m], and thus having
a typical value ofθ = 17o.

With the parameters referred in steps 1 to 3, one can compute completely a pin-hole (perspective),
projection model:p1 andp2 define the azimuth direction, the elevation is given by the user, and the roll
of the camera is assumed null (these three parameters suffice to define the rotation matrix,R); p1, p2 and
θ define the projection center of the camera,t in world coordinates; the field of view combined with the
size of an image, and assuming the principal point equal to the image center, give the intrinsics matrix,
K. Hence we obtain the perspective projection model:P (θj) = K [R t] whereθj represents a vector
containing the listed parameters for cameraj.

The three steps methodology has been tested on the data shown in Fig.1. Figure1(b) shows the input
data, namely the camera location and a point spotted by the camera. It was assumed that the camera is
at a height of approximately4.5[m]. Using the defaults of steps 2 and 3, together with a zero roll of the
camera, one finally obtains a projection matrixPini which visual representation is shown in Fig.2(b).

1.2 Optimized Calibration

The nominal calibration is just a rough estimation of the projection matrixP . A more precise calibration
can be obtained using more information available in the blueprint and the cameraimage. This method-
ology is based on information consisting of points of the floor plane, lines on the floor plane and lines
orthogonal to the floor plane.

Extracting points of the ground plane is done with a graphical user interface where one clicks points
in the blueprint (see Fig.2(a)) and matches these points with the ones on the camera image, as illustrated
in Fig.2(c) and (d) (green). The points clicked on the blueprint represents the3D data on the calibration
process, which can be grouped to form lines on the ground plane and vertical lines (e.g. door frames)
which are visible and can be marked in the image. The projection of the groundpoints, using the initial
guessPini, is shown on Fig.2(c).

Figure2 shows some additional information extracted from the blueprint and from theimage, namely
ground lines and vertical lines. Minimizing the error of the 3D lines projection and 2D lines found in
the image, allows fine tuning the projection matrixPini, and actually obtaining a better estimate for the
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(a) Ground points indicated in the map (b) 3D display of points, lines and the camera

(c) Nominal calibration gives a rough matching (d) Optimized calibration

(e) Ground and vertical lines used for calibration. Camera location before and after optimization

Fig. 2: Additional information, obtained from the local map and the image acquired by the camera,
allows the calibration fine tuning. The information contains points on the wall of abuilding,
horizontal and vertical lines (a, b, e). Using the nominal calibration, the projection of 3D vertical
lines (red) over the image lines (green) gives just a rough matching (c). After optimizing the
calibration (d), there is a good matching of the projected data (red) over the2D data (green).
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camera pose (see Fig.2(e)). In a first approach, the optimization procedure was allowed to change just
the focal lengths inK, the rotationR (varying roll, pitch and yaw angles) and the translation vectort.

It was concluded, after some experiments, that is not convenient to allow the the principal point
(K(1 : 2, 3)) to change freely, as it will compromise the reasonable estimate ofK andR. The other
parameter that is convenient to keep untouched is the location of the camera at least in its ground coordi-
natest(1 : 2). All the 16 ground points, and derived horizontal and vertical lines, have been used in the
minimization process. The resulting projection matrixPopt can be decomposed [3] as:

Kopt =





827.6 0 352
0 578.6 144
0 0 1



 , Ropt =





0.97 0.08 -0.24
0.25 -0.23 0.94
0.03 -0.97 -0.24



 and topt =





31.28
30.44
4.23



 .

(3)
The reprojection error was found to have the valueErr =

∑

(mbp − m̂bp)
2/N = 4.9942[pix2], where

mbp are the points marked on the camera image, which are assumed to be the projection of the blueprint
points (green points in Fig.2(c) and (d)), and̂mbp is the projection of the blueprint points usingPopt.

2 Case Study, ISR Camera Network

In this section, the In-Situ calibration methodology proposed in the previous section is used to calibrate
a set of cameras mounted at ISR. Figure3(a) shows the blueprint of the 7th floor of ISR and the location
where the cameras are installed, and some calibration data for one of the cameras (isolated green crosses).

In the ISR camera network some cameras have significant radial distortion (see Fig.3(b)). The cor-
rection of the radial distortion is made by a nonlinear optimization process whichimposes straightness
to bended image lines known to be straight, using the radial distortion model as in[1]. The nonlinear
optimization problem is solved by a Levenberg-Marquardt algorithm.

Having corrected the radial distortion, Fig.3(c), the next step consists of marking the camera loca-
tion in the blueprint, in order to obtain a rough characterization of the nominal projection matrix (See
Fig.4). Considering the camera image size and using the same default values and conditions as in Sec.(to
estimate the intrinsic parameters), allows to obtain an initial guess to the camera projection matrix,Pini.
Figure4 shows this nominal calibration. In this dataset, the central point of the image is not on the
ground, and thus the height was provided to the algorithm (height = 0.7[m]).

In order to obtain an optimized estimate of the projection matrix, one needs to inputground points,
horizontal lines and vertical lines. This involves a user to click points on the blueprint and on the cam-
era image. Same work can be simplified here by fitting the blueprint over the image. Note that the
transformation model is just a3 × 3 matrix (homography) which can be estimated from four (or more)
corresponding points. Figure5(a) shows the result of superimposing the blueprint over the image.

Given that now the blueprint is superimposed over the image, a graphical interface can be designed
to help marking points: each point clicked on the image (red circles on Fig.5(a)) has a direct (automatic)
correspondence to a ground point clicked in the blueprint (green crosses on Fig.3(a)).

The optimization process, implemented to search for a better estimation of the projection matrix
(Popt), was set to vary just the focal length (not the principal point), rotation matrix and camera position
(Y component is left fixed). The optimization process searches for the bestvalues, which minimize
the reprojection error. The process starts with the nominal estimationPini and ends with an optimized
estimationPopt. Figure 5(c) shows that the reprojection errors are smaller due to the optimization,
comparing them toPini (see Fig.5(b)). Visual evaluation on site allows to state that the optimized pose
and orientation of the camera represents better the real mounting, as shownon Fig.5(d).

The intrinsic parameters are adapted during the optimization process. In case there are various similar
cameras mounted, the intrinsic parameters found for one camera can be used to initialize the optimization
process for other cameras. Decomposing the projection matrixPopt [3], leads to the following values to
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(a)

(b) (c)

Fig. 3: Blueprint of the 7th floor of ISR where the location of the cameras and field of views (FOVs)
are marked as red dots and triangles (a). The green crosses indicate some ground points that are
on the FOV of a camera. Calibrating a radial distorted camera (b) involves firstly, correcting its
image by imposing the straightness of bended lines. The information, acquiredby inspecting the
blueprint (a) and the corrected image (c), is used to find an initial guess for the projection matrix,
Pini.
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(a) (b)

(c)

Fig. 4: Nominal calibration. Central point observed by the camera (b) and cameralocation marked
on the blueprint (a). An initial guess of the camera projection matrix,Pini, is estimated. The
localization and orientation of the camera can be extracted from the projectionmatrix [3] (c). The
additional points, marked on the blueprint, Fig.3 (green crosses), are used to acquire additional
3D data (red circles).
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(a) Blueprint superimposed over the camera image

(b) Projection of 3D points usingPest (c) Projection of 3D points usingPopt

(d) Estimated camera pose before and after optimization

Fig. 5: Optimized estimation of the projection matrix. The input data consists of ground points, ground
lines and vertical lines identified in the blueprint and in the image (b). An alternate way to input
ground points both in the blueprint and in the image (superimposed blueprint),can be used to
simplify the task of matching 3D and 2D data (a). After optimization (c), the reprojection (red
dots) should match closely the observed data (green circles). The estimationof the camera pose
is improved by the optimization (d).
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the intrinsic and extrinsic camera parameters:

Kopt =





1247.9 0 640
0 1642.9 400
0 0 1



 , Ropt =





0.29 -0.22 0.93
-0.95 0.01 0.30
-0.075 -0.98 -0.20



 , topt =





16.27
36.7
2.56



 . (4)

The reprojection error has the valueErr =
∑

(mbp − m̂bp)
2/N = 13.3091[pix2], wherembp are the

points marked on the camera image, which are assumed to be the projection of theblueprint points, while
m̂bp is the projection of the blueprint points usingPopt.

The proposed calibration process starts with an initial estimate obtained directlyby pointing in a
blueprint the camera location and a point seen by the camera. Assuming some priors such as the knowl-
edge of the lens and the CCD size, one has a good estimation of the intrinsic parameters matrix, which
allows to initialize an iterative optimization process where good approximations to the real parameters
of the camera are found.

However, there are some parameters whose estimation makes the process very sensitive to noise.
Those parameters are in essence: the principal point and the camera position in the blueprint. This is the
reason why in most of the cases we do not optimize these parameters, as theyare close to default values
(the principal point is close to the image center) or marked with enough quality on the blueprint.

3 DLT-Lines Calibration

In this section we introduce the calibration methodologyDirect Linear Transformation based in Image
Lines (DLT-Lines) including the estimation of radial distortion. As indicated by the name, we consider
lines identified on the image of the camera to obtain its parameters. Contrarily to 3D lines, which
are normally represented using Plucker coordinates [3], 2D lines have simple representations as cross
products of image points in homogeneous coordinates. In the following we explore this representation
to build the calibration methodology. The use of lines, as opposed to using isolated image points, brings
an advantage. Image processing can be used for fine tuning the location of the lines in the image and
therefore automatically improving the calibration data input.

3.1 DLT-Lines

Two cases are considered, namely (i) non-existent radial distortion and(ii) significant radial distortion.
In the case where the radial distortion is considered, it is modeled using Fitzgibbon’s division model.

Given a 3D lineLi, its projection on the camera image plane,li can be represented by the cross
product of two image points in projective coordinates,li = m1i ×m2i. Any pointmki lying in the line
li implies thatlTi mki = 0. Applying the multiplication bylTi on both sides of Eq.1, i.e., lTi mki =
lTi P Mki, leads to:

lTi P Mki = 0 (5)

whereMki is a 3D point in projective coordinates lying inLi. As in the case ofDLT-Points, using the
Kronecker product one obtains a form factorizing the vectorized projection matrix:

(MT
ki ⊗ lTi ) vec(P ) = 0. (6)

Each pair of 3D point and its corresponding image line,(Mki, li), allows writing Eq.6 once, and thus
provides one linear constraint in the entries ofvec(P ). In order to estimateP one needs at least12
pairs(Mki, li). 1 ConsideringN ≥ 12 pairs(Mki, li), one forms a matrixB, N × 12, by stacking the
N matricesMT

ki ⊗ lTi . The least squares solution, more precisely the minimizer of‖B vec(P )‖2 s.t.
‖vec(P )‖ = 1, is the right singular vector corresponding to the least singular value ofB.

ComparingDLT-Lines with DLT-Points [3], it is important to note that while inDLT-Points one has
to provide one 3D-point to one 2D-point correspondences, inDLT-Lines one 2D-line,li is an image of a

1 Alternatively, one can state that nondegenerate six 3D lines configurationand their corresponding six image lines are
enough to estimateP .
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3D-line,Li and thus indicates, for example, many-3D-points to one-2D-line correspondence. Any point
Mki ∈ Li forms a linear constraint withli (Eq.6). On the other hand, any image lineli can be paired with
any 3D point lying onLi, i.e., more than one image line can be paired with a 3D point. This property
of DLT-Lines allows to apply additional image processing tools that add robustness to the extraction of
calibration data.

3.2 DLT-Lines with Radial Distortion

As noted by Fitzgibbon [4], true lens distortion curves are typically very complex to represent, implying
the use of high-order models or lookup tables to model camera radial distortion effect with high precision.
On the other hand, considering typical computer vision applications, accuracies of the order of a pixel
are all that is required, and an approximation to the cameras’ true distortion functions perform as well as
the preciser ones.

Fitzgibbon proposed the so calledDivision Model where an undistorted image point,m̂u = [uu vu]
T

is computed from a radially distorted image pointm̂d = [ud vd]
T as:

m̂u = m̂d/(1 + λ ‖m̂d‖
2) (7)

whereλ represents the radial distortion parameter. TheDivision Model can also be conveniently written
in homogeneous coordinates





uu
vu
1





.
=





ud
vd

1 + λ ‖m̂d‖
2



 . (8)

Note that an undistorted point,mu = [uu vu 1]T is a simple function of a distorted point,md =
[ud vd 1]

T ,
mu

.
= md + λed (9)

whereed = [0 0 ‖m̂d‖]
T .

The coordinates of̂mu andm̂d are expressed in a 2D coordinate system having the origin coincident
with the image principal point̂co = [cu cv]

T . Redefining a distorted image point,md = [ud vd 1]T ,
to have the principal point̂co as its reference, one obtains the coordinates to use in Eq.8 simply with a
translation,md = [ud − cu vd − cv 1]T = T md, whereT is a3× 3 matrix.

Using Eq.8 a linel12 can be defined as the cross product of two points:

l12 =





u1d
v1d

1 + λs21



×





u2d
v2d

1 + λs22



 = l̂12 + λe12 (10)

wheresi is the norm of distorted image pointi, s2i = u2id + v2id, the distorted line is denoted asl̂12 =
[u1d v1d 1]T × [u2d v2d 1]T and there is a distortion correction terme12 = [v1ds

2
2 − v2ds

2
1, u2ds

2
1 −

u1ds
2
2, 0]

T . Applying Eq.10 into the point-to-line constraint, Eq.6, one has:

(

MT
k12 ⊗ (l̂12 + λe12)

T
)

vec(P ) = 0 (11)

which can be rewritten as:
(Bki1 + λBki2) vec(P ) = 0 (12)

whereBki1 = MT
k12 ⊗ l̂T12, Bki2 = MT

k12 ⊗ eT12 andMk12 denotes thekth 3D point projecting to the
distorted linel12. ConsideringN ≥ 12 pairs(Mki, l̂i), whereN = kmaximax, one forms twoN × 12
matrices,B1 andB2, by stacking matricesBki1 andBki2.

Using once more Fitzgibbon’s suggestion [4], left-multiplying the stacked matrices byBT
1 results in

a Polynomial Eigenvalue Problem (PEP):

(BT
1 B1 + λBT

1 B2) vec(P ) = 0 (13)
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which can be solved for example in Matlab using thepolyeig function. Its solution gives simulta-
neously the projection matrix,vec(P ), the radial distortion parameterλ, andP ′ = T−1P , where T is
defined in sec II.C. In a similar way as explained before, both DLT methods applied to the radial distorted
camera, can be combined to estimateP andλ.

3.3 Solving the Polynomial Eigenvalue Problem

Considering the matrix polynomial (orλ-matrix) of degreem

P (A, λ) = A0 + λA1 + · · ·+ λmAm =

m
∑

k=0

λkAk, (14)

whereAk ∈ C
n×n for k = 0 : m, andA = (A0, A1, . . . , Am) ∈ C

n×n×(m+1), the Polynomial
Eigenvalue Problem consists of finding thenm pairs of eigenvaluesλ and the corresponding eigenvectors
x satisfyingP (A, λ)x = 0.

The Polynomial Eigenvalue Problem (PEP) extends the well-known StandardEigenvalue Problem
(SEP) and the Generalized Eigenvalue Problem (GEP). In the case of theSEP,m = 1 andA1 = −In,
P (A, λ) = A0 − λIn whereIn denotes then× n identity matrix. In the case of the GEP,m = 1 andA1

is not constrained to be the identity matrix,P (A, λ) = A0 + λA1. Another important case of PEP is the
Quadratic Eigenvalue Problem (QEP) which can be obtained withm = 2, P (A, λ) = A0+λA1+λ2A2.

The standard methodology for solving PEPs consists of three steps. In thefirst step, the PEP is
converted into the GEP form through a process calledlinearization [5, 6, 7]. Let then× n matricesAk

be combined to form larger,nm× nm, matricesA andB

A =













A0 0n · · · 0n

0n In
.. .

...
...

.. . 0n
0n · · · · · · In













, B =











−A1 −A2 · · · −Am

In 0n · · · 0n

0n
. . . . . .

...
0n · · · In 0n











(15)

whereIn and0n represent then× n identity and zeros matrices. As proposed by [8], there is a decom-
position of the matrix polynomialP (A, λ) such that

[

P (A, λ) 0
0 In(m−1)

]

= E(λ)(A− λB)F (λ), (16)

whereE(λ) andF (λ) are unimodular matrices. The left side of Eq.16 defines a block diagonal matrix,
where the elements are the matrix polynomialP (A, λ) andm − 1 identity matrices,n × n each. The
eigenvalues and eigenvectors of the block matrix contain the PEP solution.

Equation16 allows to represent the PEP in terms of the matrices pair(A,B) (Eq.15), E(λ) and
F (λ). Left-multiplying the right half of the equation byE(λ)−1 leads to

[(A− λB)F (λ)]x = 0 ⇔ (A− λB)x̂ = 0, (17)

where x̂ = F (λ)x. The PEP eigenvectors can be obtained from solving the generalized eigenvalue
problem(A− λB)x̂ = 0, and takingx = F (λ)−1x̂.

The second step of solving the PEP involves solving the GEP just defined. The GEP can be solved,
for example, using the QZ algorithm [9]. For a given matrix pair(A,B) ∈ Mn(C)

2 in Eq.17, this
algorithm computes thegeneralized Schur decomposition [10] in which the matricesQ andZ are unitary
andS, T are upper triangular, such thatA = QSZT andB = QTZT . The upper triangular matricesS
andT are known as theSchur form of A andB, respectively. Applying these matrices in Eq.17 leads to

(QSZT − λQTZT )x̂ = 0 ⇔ (S − λT )y = 0, (18)

wherey = ZT x̂ are the eigenvectors of the GEP defined by(S − λT ). As noted in [9], the GEP
eigenvalues can be obtained as a ratio between the diagonal elementsλ = diag(T )/diag(S), which
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Fig. 6: Camera calibration methodology, using Color-Depth (RGBD) camera andDLT-Lines.

contains the PEP eigenvalues as noted earlier. The eigenvalues in Eq.18allow computing the eigenvectors
y as the null space of(S − λT ).

The third step of solving the PEP, consists of determining the PEP eigenvectors from the eigenvectors
y, considering the variables changes made in the first two steps,

x = Z F (λ)−1 y. (19)

3.4 Summary

In order to organize and summarize the aspects already described, we outline now the completeDLT-
Lines calibration methodology (see Fig.6). As input one has 2D lines in a RGBD image acquired by a
calibrated camera2, and 2D lines in a RGB image acquired by the camera to calibrate.

Each 2D line of the RGB image is described by a number of points. Usually one needs more than
two points per line in order to identify the radial distortion.

• Step 1 of the methodology consists of estimatingλ, P and finallyP ′ (using equations10 till 12).

• Step 2 consists of a local fine tuning of the lines in the RGB image. The image lines are composed
by a number of parts (as described by the original number of 2D points). For each of the parts of
a line, an optimization process is run using a Levenberg-Marquardt algorithm.

Steps 1 and 2 are repeated until the fine tuning of the lines does not changesignificantly the lines. The
optimization process is bootstrapped with an approximation of the principal point obtained by factorizing
the current estimate of the projection matrix.

4 DLT-Lines Calibration Experiment

In this experiment, the objective is to calibrate an Axis P1347 high definition surveillance camera (RGB),
with radial distortion, installed on a waiting room. A ASUS X-Tion (RGBD) camera, mounted on mobile
platform, is used to capture 3D scene information. The RGBD camera is assumed to be calibrated.

Figures7(b) and (f) show the lines identified on the RGBD and RGB cameras. The noise in the depth
map, Fig.7(c), implies noise in the 3D lines which can be attenuated using RANSAC (see Fig. 7(d)). The
data in Figs.7(e) and (f), allow applyingDLT-Lines and obtaining the results shown in Fig.7(g). As in the

2 Alternatively, one can have simply 3D points describing 3D lines (two points per line).
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(a) Setup (b) RGBD data (c) RGBD depth map (d) RANSAC on one 3D line

(e) RGBD lines and cam. (f) RGB data (g) Result, RGB cam. in red

Fig. 7: Calibration of a surveillance camera, Axis P1347 (RGB), using a mobile robotequipped with a
color-depth camera, Asus X-Tion (RGBD) (a). Lines in the RGBD image (b,c) define 3D lines
(d,e). Each line formed directly from the depth map (cyan dots) is filtered using RANSAC (blue
and black dots), as shown in (d), where the left/right plot has different/equal scales in the axis.
RGBD (e) and RGB lines (f), form the input dataset forDLT-Lines. Decomposing the estimated
projection matrix asK[R t], provides the camera position and orientation on the world coordinate
system (g).

simulated setup, a qualitative assessment of the precision of the calibration can be made by transporting
edges from the RGBD image to the RGB image. The RGB image, Fig.7(f), has been cropped to show
just the area covered by the RGBD camera.

In order to obtain quantitative assessment, some more tests have been conducted. In particular J. Y.
Bouguet’s calibration toolbox [1] was used to estimate the intrinsic parameters of the RGB camera. The
difference between the (horizontal) focal length obtained using Bouguet’s toolbox and the one extracted
from the estimated projection matrix usingDLT-Lines, was found to beKerr = 0.05. The real distance
from RGBD to RGB wasd = 3.55[m], measured with a tape, while the estimated usingDLT-Lines was
found to bede = 3.53[m]. The small relative errors assert thatDLT-Lines can provide accurate results.
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