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In-Situ Camera Calibration *

In-situ camera calibration, i.e. calibration of a camera mounted in the positiom\tlvéll be used,
has the advantage that the camera can be tuned (e.g. focused) in-stttheddtal requirements. On
the other hand, this camera calibration methodology implies that conventiditahtian tools may turn
out to be impractical. For instance, considering the well know calibration ¢addly J. Y. Bouguet]],
one has to image a planar chess pattern at various poses relative to tha,Gweeys covering most of
the imaging area. For example, if an outdoors camera is mounted at the hieggBtdfloor, it is not
simple coming close to it to display an A4 calibration chess pattern, and is rigataconstructing and
moving a chess pattern with various meters wide. In addition, this calibration igynat®ut intrinsic
parameters, and thus do not provide distances (rigid pose transforg)atioong the various cameras of
a network of cameras. In this report we discuss alternatives for catigreameras in-situ.

1 Map Based Camera Calibration

One way to calibrate a camera is finding a set of correspondences heespace points and their 2D
projection on the camera image. Obtaining the 2D information can be done easilyyjalicking on
an image. Obtaining 3D information in a global reference frame for the pobdsreed in the image
is much harder. Professionals working with theodolites can provide stmtmation, but the costs are
very high. In this report we consider an alternative based on usingepiihi of the location.

In many real cases there is an available a map, or blueprint, of the place gdmeras are mounted,
as the one shown on Fig(a). This blueprint may contain already the position of the cameras or may
allow an easy identification of these locations. Similarly, some landmarks caisibke o the camera,
and the calibration procedure can therefore consist of three simple steps

1. Marking on the blueprint two points, namely the camera location and a paitied by the camera.

2. Arbitrating the height of the camera, and assuming a typical field of vievg)levhich allows to
create an initial guess for the projection matix= K [R ¢] (nominal calibration).

3. Using the landmarks found on the image and their correspondencesg @udprint, the con-
structed projection matrix can be fine tuned, minimizing the reprojection errét,,Aprojection
matrix is obtained by varying the focal distance (intrinsic parameters), therearotation angles
and height (extrinsic parameters).

1.1 Nominal Calibration

The camera location and the point can usually be marked by simply inspectibly#print and camera
image (see Fid). Provided some additional information, one obtains an initial guess of tjeqgbion
matrix.

In this work we use the pin-hole projection model, in which a 3D point reptedein homoge-
neous coordinatesy/ = [X Y Z 1], is projected to a 2D point. = [u v 1]7, also in homogeneous

*This report is more detailed in the MSc thelietCam - Network Cameras Calibration, by Manuel Silva (superv: J. Gaspar)
IST/MEEC 2011/2012, and is partially publisheddamera Calibration using a Color-Depth Camera: Points and Lines Based
DLT including Radial Distortion, M. Silva, R. Ferreira, J. Gaspar, In WS in Color-Depth Camera FusiBobotics, held with
IROS2012. This work was partially supported by the FCT project PTDEAERO / 105413 / 2008 DCCAL, and by the
project High Definition Analytics (HDA), QREN - 1&D em Co-Promag 13750.
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Fig. 1. Nominal calibration of a camera mounted in its operating place. The local magp Zapmed
and cropped to a region of interest (ROI), for easier usage, whethera location and a point
seen by the camera (b) can be marked. This scene point is believed tooe &img on the
(camera optical axis), which projects (approximately) on the camera imatgr ¢en
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coordinates:
m ~ PM, Q)

where~ denotes equality up-to a scale factét,= KR t| denotes thed x 4 projection matrix,K

is a3 x 3 matrix containing the intrinsic parameterss a3 x 1 vector indicating the location of the
world origin in camera coordinateg, is a3 x 3 matrix representing the orientation of the world frame
relative to the camera frame. Note thatandt¢ can be obtained easily from and transformed to world

coordinates: ( )T .
R = (YR, YR.=R
{ t = _(wRC)thC <~ { wtc — —RTt (2)

wherevt. denotes the location of the camera in world coordinatés, denotes the camera orientation
also in world coordinates, and we are assuming that all rotation matricestacenmrmal meaning
RTR = RRT = I and thusR~! = RT

In [2] an initial guess of the camera projection matifk,;, can be obtained following three steps:

1. Pointing the camera locatiom,, and selecting a ground poink, on the blueprint of the building
(seep; andpy, marked adnputl andInput2 in Fig.1(b));

2. Entering an elevation anglg,
3. Entering an horizontal field of view; and the aspect ratio of the camera image

Steps 2 and 3 will usually have default values, in order to make as simplessibleche task to the
user. For instance; = 40° corresponds to a common 8mm lens in a 1/4 in CCD. Default values for
depend on the location, but in the case of In-Situ camera calibration manyasare at the level of the
second floor (aboui[m] high), imaging objects in the ground plane closer th@jn|, and thus having
a typical value of) = 17°.

With the parameters referred in steps 1 to 3, one can compute completely al@ifpérspective),
projection modelp; andp, define the azimuth direction, the elevation is given by the user, and the roll
of the camera is assumed null (these three parameters suffice to defioattmmatrix,R); p1, p» and
f define the projection center of the cameray world coordinates; the field of view combined with the
size of an image, and assuming the principal point equal to the image cewtethe intrinsics matrix,

K. Hence we obtain the perspective projection mod&l;) = K [R t] wheref; represents a vector
containing the listed parameters for camgra

The three steps methodology has been tested on the data showrlirFggrel(b) shows the input
data, namely the camera location and a point spotted by the camera. It waseddhat the camera is
at a height of approximatel.5[m]. Using the defaults of steps 2 and 3, together with a zero roll of the
camera, one finally obtains a projection matf; which visual representation is shown in F¢p).

1.2 Optimized Calibration

The nominal calibration is just a rough estimation of the projection m&triA more precise calibration
can be obtained using more information available in the blueprint and the camegga. This method-
ology is based on information consisting of points of the floor plane, lines@fidbr plane and lines
orthogonal to the floor plane.

Extracting points of the ground plane is done with a graphical user ingeviaere one clicks points
in the blueprint (see Fig(a)) and matches these points with the ones on the camera image, as illustrated
in Fig.2(c) and (d) (green). The points clicked on the blueprint represenBDldata on the calibration
process, which can be grouped to form lines on the ground plane atichVénes (e.g. door frames)
which are visible and can be marked in the image. The projection of the gmmint$, using the initial
guessP;,;, is shown on Fig(c).

Figure2 shows some additional information extracted from the blueprint and froimtge, namely
ground lines and vertical lines. Minimizing the error of the 3D lines projectiwh 2D lines found in
the image, allows fine tuning the projection matfy,;, and actually obtaining a better estimate for the
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(a) Ground points indicated in the map (b) 3D display of points, lines and theraame

(c) Nominal calibration gives a rough matching (d) Optimized calibration

Y
(e) Ground and vertical lines used for calibration. Camera location éefwdl after optimization

Fig. 2: Additional information, obtained from the local map and the image acquired éygdmera,
allows the calibration fine tuning. The information contains points on the wall lmfilding,
horizontal and vertical lines (a, b, e). Using the nominal calibration, tbggtion of 3D vertical
lines (red) over the image lines (green) gives just a rough matching (iter éptimizing the
calibration (d), there is a good matching of the projected data (red) ov@iXtuata (green).
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camera pose (see Fife)). In a first approach, the optimization procedure was allowed togehgust
the focal lengths irf(, the rotationR (varying roll, pitch and yaw angles) and the translation vettor

It was concluded, after some experiments, that is not convenient to allwhéhprincipal point
(K(1 : 2,3)) to change freely, as it will compromise the reasonable estimaté ahd R. The other
parameter that is convenient to keep untouched is the location of the carteastan its ground coordi-
natest(1 : 2). All the 16 ground points, and derived horizontal and vertical linege lieeen used in the
minimization process. The resulting projection matfy,; can be decomposed][as:

8276 0 352 0.97 0.08 -0.24 31.28
Kpi=| 0 5786 144|, Ry = | 025 -023 0.94| and to = | 30.44
0 0o 1 0.03 -0.97 -0.24 4.23

The reprojection error was found to have the valite: = > (my, — riu,)? /N = 4.9942[piz?], where
my, are the points marked on the camera image, which are assumed to be the projettt@blueprint
points (green points in Fig(c) and (d)), andny, is the projection of the blueprint points usify,;.

2 Case Study, ISR Camera Network

In this section, the In-Situ calibration methodology proposed in the previxt®os is used to calibrate
a set of cameras mounted at ISR. Fig8f&) shows the blueprint of the 7th floor of ISR and the location
where the cameras are installed, and some calibration data for one of thesdiswlated green crosses).

In the ISR camera network some cameras have significant radial distater-{g3(b)). The cor-
rection of the radial distortion is made by a nonlinear optimization process whjpbses straightness
to bended image lines known to be straight, using the radial distortion model & ifhe nonlinear
optimization problem is solved by a Levenberg-Marquardt algorithm.

Having corrected the radial distortion, F3c), the next step consists of marking the camera loca-
tion in the blueprint, in order to obtain a rough characterization of the nomnoggiion matrix (See
Fig.4). Considering the camera image size and using the same default valuesdiithos as in Sec.(to
estimate the intrinsic parameters), allows to obtain an initial guess to the cam@etipromatrix,P;,,;.
Figure 4 shows this nominal calibration. In this dataset, the central point of the imaga isnnthe
ground, and thus the height was provided to the algoritheig:t = 0.7[m)).

In order to obtain an optimized estimate of the projection matrix, one needs togrquurid points,
horizontal lines and vertical lines. This involves a user to click points on ltephbint and on the cam-
era image. Same work can be simplified here by fitting the blueprint over the imdgie that the
transformation model is just@x 3 matrix (homography) which can be estimated from four (or more)
corresponding points. Figutga) shows the result of superimposing the blueprint over the image.

Given that now the blueprint is superimposed over the image, a graphieghbice can be designed
to help marking points: each point clicked on the image (red circles oB(g)y.has a direct (automatic)
correspondence to a ground point clicked in the blueprint (greesesam Fig(a)).

The optimization process, implemented to search for a better estimation of thetiorojmatrix
(Popt), Was set to vary just the focal length (not the principal point), rotatiotrisnand camera position
(Y component is left fixed). The optimization process searches for thevakss, which minimize
the reprojection error. The process starts with the nominal estim&tjgrand ends with an optimized
estimationP,,;. Figure5(c) shows that the reprojection errors are smaller due to the optimization,
comparing them td>;,,; (see Figh(b)). Visual evaluation on site allows to state that the optimized pose
and orientation of the camera represents better the real mounting, as sh&ugb(d).

The intrinsic parameters are adapted during the optimization processeltheas are various similar
cameras mounted, the intrinsic parameters found for one camera cardlie insgalize the optimization
process for other cameras. Decomposing the projection misiN 3], leads to the following values to
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Fig. 3: Blueprint of the 7th floor of ISR where the location of the cameras and fieldeavs (FOVs)
are marked as red dots and triangles (a). The green crosses indiv&tgiund points that are
on the FOV of a camera. Calibrating a radial distorted camera (b) invohatly ficorrecting its
image by imposing the straightness of bended lines. The information, actpyireslpecting the
blueprint (a) and the corrected image (c), is used to find an initial guetissf@rojection matrix,
Py
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Fig. 4: Nominal calibration. Central point observed by the camera (b) and cameaton marked
on the blueprint (a). An initial guess of the camera projection mattjx;, is estimated. The
localization and orientation of the camera can be extracted from the projewiwix [3] (c). The
additional points, marked on the blueprint, Biggreen crosses), are used to acquire additional
3D data (red circles).
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(a) Blueprint superimposed over the camera image

(b) Projection of 3D points using,; (c) Projection of 3D points using,,:

(d) Estimated camera pose before and after optimization

Fig. 5: Optimized estimation of the projection matrix. The input data consists of grountspground
lines and vertical lines identified in the blueprint and in the image (b). An aliemay to input
ground points both in the blueprint and in the image (superimposed bluemamt}e used to
simplify the task of matching 3D and 2D data (a). After optimization (c), the jeption (red
dots) should match closely the observed data (green circles). The estimfti@encamera pose
is improved by the optimization (d).



3 DLT-Lines Calibration 9

the intrinsic and extrinsic camera parameters:

1247.9 0 640 0.29 -0.22 0.93 16.27
Kopt = 0 16429 400, Ropr = | -095 0.01 030, ty:=| 367 |. (4)
0 0 1 -0.075 -0.98 -0.20 2.56

The reprojection error has the vallgr = > (my, — 1iu,)? /N = 13.3091[piz?], wheremy, are the
points marked on the camera image, which are assumed to be the projectioblokbrnt points, while
My, IS the projection of the blueprint points usirgy,;.

The proposed calibration process starts with an initial estimate obtained dibgcgiginting in a
blueprint the camera location and a point seen by the camera. Assuming soraespch as the knowl-
edge of the lens and the CCD size, one has a good estimation of the intrirencgtars matrix, which
allows to initialize an iterative optimization process where good approximationg tee#h parameters
of the camera are found.

However, there are some parameters whose estimation makes the pragessngitive to noise.
Those parameters are in essence: the principal point and the camiéempoghe blueprint. This is the
reason why in most of the cases we do not optimize these parameters, asgtioiyse to default values
(the principal point is close to the image center) or marked with enough qualityedblueprint.

3 DLT-Lines Calibration

In this section we introduce the calibration methodol@jyect Linear Transformation based in Image
Lines (DLT-Lines) including the estimation of radial distortion. As indicated by the name, we caensid
lines identified on the image of the camera to obtain its parameters. Contrarily to &5 Vutich
are normally represented using Plucker coordinad@gs2D lines have simple representations as cross
products of image points in homogeneous coordinates. In the following plerexthis representation
to build the calibration methodology. The use of lines, as opposed to usinteidateage points, brings
an advantage. Image processing can be used for fine tuning the lochtlmlmes in the image and
therefore automatically improving the calibration data input.

3.1 DLT-Lines

Two cases are considered, namely (i) non-existent radial distortioiigsdynificant radial distortion.
In the case where the radial distortion is considered, it is modeled usingjdbitzgs division model.
Given a 3D lineL;, its projection on the camera image plaihecan be represented by the cross
product of two image points in projective coordinatkss m1; x me;. Any pointmy; lying in the line
l; implies that!] my; = 0. Applying the multiplication byl! on both sides of Ed, i.e.,l] my; =
I P My;, leads to:
7' P My =0 (5)

whereM;,; is a 3D point in projective coordinates lying Iy. As in the case oDLT-Points, using the
Kronecker product one obtains a form factorizing the vectorized gtioje matrix:

(ME @17y vee(P) = 0. (6)

Each pair of 3D point and its corresponding image lio®;, 1;), allows writing Eg6 once, and thus
provides one linear constraint in the entriesvet(P). In order to estimaté® one needs at lease
pairs(My;,1;). 1 ConsideringN > 12 pairs(My;, ;), one forms a matrix3, N x 12, by stacking the
N matricesM; @ II. The least squares solution, more precisely the minimizebec(P)|? s.t.
llvec(P)|| = 1, is the right singular vector corresponding to the least singular valiéi& of
ComparingDLT-Lines with DLT-Points [3], it is important to note that while iDLT-Points one has
to provide one 3D-point to one 2D-point correspondenceBLiftLines one 2D-line/; is an image of a

1 Alternatively, one can state that nondegenerate six 3D lines configuratidriheir corresponding six image lines are
enough to estimat®.
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3D-line, L; and thus indicates, for example, many-3D-points to one-2D-line comegnae. Any point
My, € L; forms alinear constraint with (Eq6). On the other hand, any image lihean be paired with

any 3D point lying onL;, i.e., more than one image line can be paired with a 3D point. This property
of DLT-Lines allows to apply additional image processing tools that add robustness totthetiex of
calibration data.

3.2 DLT-Lines with Radial Distortion

As noted by Fitzgibbor], true lens distortion curves are typically very complex to represent, implying
the use of high-order models or lookup tables to model camera radial disteffézt with high precision.
On the other hand, considering typical computer vision applications, aciesrof the order of a pixel
are all that is required, and an approximation to the cameras’ true distantictidns perform as well as
the preciser ones.

Fitzgibbon proposed the so callBivision Model where an undistorted image poirt,, = [wu, v,]”
is computed from a radially distorted image paing = [ug vq]” as:

My = Mg/ (1 + Alial|?) 7

where\ represents the radial distortion parameter. Dingsion Model can also be conveniently written
in homogeneous coordinates

Uy Ug
vy | = Vg . (8)
1 14 A f[ring 2

Note that an undistorted pointp, = [u, v, 1]7 is a simple function of a distorted pointy; =
[ug vg 17,
My = Mg + Aeg 9)

whereeg = [0 0 ||rql]]”.

The coordinates af1,, andmy are expressed in a 2D coordinate system having the origin coincident
with the image principal point, = [c, c,]7. Redefining a distorted image point,; = [ug vg 1]7,
to have the principal point, as its reference, one obtains the coordinates to use Bidigply with a
translationyng = [ug — ¢, vqg — ¢, 17 = T my, whereT is a3 x 3 matrix.

Using Eq8 a linel;5 can be defined as the cross product of two points:

U1d U2d R
lig = V1d X V2q = l12 + Aer2 (10)
1+ As? 1+ As3

wheres; is the norm of distorted image points? = u2, + v2,, the distorted line is denoted &s =
[u1g vig 1] X [uzq vag 1] and there is a distortion correction teey = [v1453 — V2452, Uzgss —
u1453, 0]T. Applying Eq10into the point-to-line constraint, E§j.one has:

(MkT12 ® (I12 + )\612)T) vee(P) = 0 (11)

which can be rewritten as:
(Bkz'l + )\Bkig) UGC(P) =0 (12)

where By, = ML, ® i1, Brio = M, ® el and My, denotes thé'" 3D point projecting to the
distorted linel1,. ConsideringV > 12 pairs(Mm-,l}), whereN = knaztmaz, ONE forms twaV x 12
matrices,B; and Bs, by stacking matrice®;;; and By;s.

Using once more Fitzgibbon's suggestidih, Jeft-multiplying the stacked matrices b results in
a Polynomial Eigenvalue Problem (PEP):

(BI' By + ABT By) vec(P) =0 (13)
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which can be solved for example in Matlab using ged yei g function. Its solution gives simulta-
neously the projection matrixec(P), the radial distortion parameter and P’ = T-1P, where T is
defined in sec II.C. In a similar way as explained before, both DLT methmolgeal to the radial distorted
camera, can be combined to estim&tand\.

3.3 Solving the Polynomial Eigenvalue Problem

Considering the matrix polynomial (d-matrix) of degreen

P(AN) = Ao + A1+ + A" Ay = DA A, (14)
k=0

whered, € C™"fork = 0 : m, andA = (Ao, A1,..., A,) € CV»x(m+D) the Polynomial
Eigenvalue Problem consists of finding the pairs of eigenvalues and the corresponding eigenvectors
x satisfyingP(A, Az = 0.

The Polynomial Eigenvalue Problem (PEP) extends the well-known Stakdigedvalue Problem
(SEP) and the Generalized Eigenvalue Problem (GEP). In the case 8Efer = 1 andA; = —1,,,
P(A,\) = Ay — M\, wherel,, denotes the x n identity matrix. In the case of the GER, = 1 and 4,
is not constrained to be the identity matrix(A, \) = Ap + AA;. Another important case of PEP is the
Quadratic Eigenvalue Problem (QEP) which can be obtainedmwith 2, P(A, \) = Ag+AA; + A2 As.

The standard methodology for solving PEPs consists of three steps. finsthstep, the PEP is
converted into the GEP form through a process cdileshrization [5, 6, 7]. Let then x n matricesAy,
be combined to form largenm x nm, matricesd and B

Ao 0, -+ 0y —A; —Ay - —A,
: I 0 e 0
A — On In ’ B _ n ' n . 'TL (15)
O, 0y, . . :
0 I, 0, I, 0y,

wherel,, and0,, represent the x n identity and zeros matrices. As proposed 8)y fhere is a decom-
position of the matrix polynomiaP (A, \) such that

P(A,N) 0

0" Ly | = EOA-ABIF, (16)

whereE(\) and F'(\) are unimodular matrices. The left side of E§defines a block diagonal matrix,
where the elements are the matrix polynonftdl4, ) andm — 1 identity matricesy. x n each. The
eigenvalues and eigenvectors of the block matrix contain the PEP solution.

Equation16 allows to represent the PEP in terms of the matrices (&iB) (Eq.15), £(\) and
F()\). Left-multiplying the right half of the equation bi()\)~! leads to

[(A—AB)F(\)]z =0 & (A — AB)z =0, (17)

wherez = F(\)z. The PEP eigenvectors can be obtained from solving the generalizet/aige
problem(A — AB)# = 0, and takingr = F'(\)~'4.

The second step of solving the PEP involves solving the GEP just defitnedGEP can be solved,
for example, using the QZ algorithn®][ For a given matrix paifA4, B) € M,(C)? in Eq.17, this
algorithm computes thgeneralized Schur decomposition [10] in which the matrices) andZ are unitary
andsS, T are upper triangular, such that= QSZ” andB = QT Z”. The upper triangular matrices
andT are known as th&chur form of A and B, respectively. Applying these matrices in E¢leads to

(QSZT —XQTZT)i =0 < (S — \T)y =0, (18)

wherey = Z7i are the eigenvectors of the GEP defined(8y— AT'). As noted in ], the GEP
eigenvalues can be obtained as a ratio between the diagonal elexnenidiag(1")/diag(S), which
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Fig. 6: Camera calibration methodology, using Color-Depth (RGBD) camerdafielines.

contains the PEP eigenvalues as noted earlier. The eigenvalued@&alow computing the eigenvectors
y as the null space dfS — \T").

The third step of solving the PEP, consists of determining the PEP eigers/&ctorthe eigenvectors
y, considering the variables changes made in the first two steps,

r=2ZF\ 1y (19)

3.4 Summary

In order to organize and summarize the aspects already describedtlime aow the complet®LT-
Lines calibration methodology (see Fif). As input one has 2D lines in a RGBD image acquired by a
calibrated camefaand 2D lines in a RGB image acquired by the camera to calibrate.

Each 2D line of the RGB image is described by a number of points. Usually eesdsmmore than
two points per line in order to identify the radial distortion.

e Step 1 of the methodology consists of estimatingd” and finally P’ (using equation40till 12).

e Step 2 consists of a local fine tuning of the lines in the RGB image. The image Imesmposed
by a number of parts (as described by the original number of 2D poirmts)edeh of the parts of
a line, an optimization process is run using a Levenberg-Marquarditalgor

Steps 1 and 2 are repeated until the fine tuning of the lines does not chgniieantly the lines. The
optimization process is bootstrapped with an approximation of the principalqat@ined by factorizing
the current estimate of the projection matrix.

4 DLT-Lines Calibration Experiment

In this experiment, the objective is to calibrate an Axis P1347 high definitioreslance camera (RGB),
with radial distortion, installed on a waiting room. A ASUS X-Tion (RGBD) cameraunted on mobile
platform, is used to capture 3D scene information. The RGBD camera is ads$oime calibrated.
Figures?(b) and (f) show the lines identified on the RGBD and RGB cameras. The imdilse depth
map, Fig.7(c), implies noise in the 3D lines which can be attenuated using RANSAC (seg &y The
data in Figs/(e) and (f), allow applyindLT-Lines and obtaining the results shown in F(g). As in the

2 Alternatively, one can have simply 3D points describing 3D lines (two poietsipe).
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\._ abile RGBD
e = : T g %
. é
(a) Setup (b) RGBD dat (c) RGBD depth map (d) RANSAC on one 3D line
X [m] -1 __-4

1

(e) RGBD lines and cam. () RGB data (g) Result, RGB cam. inred

Fig. 7. Calibration of a surveillance camera, Axis P1347 (RGB), using a mobile expopped with a
color-depth camera, Asus X-Tion (RGBD) (a). Lines in the RGBD image (etine 3D lines
(d,e). Each line formed directly from the depth map (cyan dots) is filteredj IRKNSAC (blue
and black dots), as shown in (d), where the left/right plot has differgmélescales in the axis.
RGBD (e) and RGB lines (f), form the input dataset BirT-Lines. Decomposing the estimated
projection matrix ag([R t], provides the camera position and orientation on the world coordinate
system (g).

simulated setup, a qualitative assessment of the precision of the calibratibe caade by transporting
edges from the RGBD image to the RGB image. The RGB image,7Fig.has been cropped to show
just the area covered by the RGBD camera.

In order to obtain quantitative assessment, some more tests have beeotednttuparticular J. Y.
Bouguet’s calibration toolboxl] was used to estimate the intrinsic parameters of the RGB camera. The
difference between the (horizontal) focal length obtained using Bdisgoelbox and the one extracted
from the estimated projection matrix usibd. T-Lines, was found to be<.,., = 0.05. The real distance
from RGBD to RGB wasl = 3.55[m], measured with a tape, while the estimated ughhd-Lines was
found to bed. = 3.53[m|. The small relative errors assert tlitT-Lines can provide accurate results.
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