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Abstract

This paper departs from traditional calibration in the sense that the pixels forming the camera have an unknown
topology. Previous works have shown that the statistical properties of natural scenes, and a uniform motion of
a camera in 6 DoF, allow determining the topology of the camera. Here we show that there is a quasi-linear
relationship between time-correlation and angular-distance inter-pixel, considering small angles and a simple
scenario encompassing one bright light on a dark background as e.g. a full moon. The topology reconstruction
algorithm is therefore constructed based on correlating time series (pixel streams) acquired by the pixels of
the camera. Correlations are converted to inter-pixel distances using a fixed linear transformation. Distances are
finally embedded on a plane using a manifold learning methodology. In particular we propose using the Landmark-
Isomap learning methodology in order to deal with a large number of pixels (order of 104). Experiments both
on simulated and real datasets have been conducted and shown promising results, namely that the theoretical
derivations are accurate for a simple moonlight scenario, and tolerate significant deviations of the scenario such
as a binarized natural scene.

1 Introduction

Traditional imaging sensors are formed by pixels precisely placed in a rectangular grid, and thus look
like calibrated sensors for many practical purposes such as localizing local extrema, edges or corners.
In contrast, the most common imaging sensors found in nature are the compound eyes, collections of
individual photo cells which clearly do not form rectangular grids, but are very effective for solving various
tasks at hand and thus have inspired the design of many artificial systems. Völkel et al.studied several
types of eyes and discussed the miniaturization of imaging systems [15]. Neumann et al. [7] proposed a
compound eye vision sensor for 3D ego motion computation. Recently, Micro-Electro-Mechanical Systems
fabrication technologies were applied to build artificial compound eyes on planar surfaces [4].

In other words, novel fabrication technologies allow creating sensors with pixel arrangements (topolo-
gies) tuned for the tasks at hand. In the cases where the sensor topology is not a rectangular grid using
traditional calibration methodologies [1, 16, 12] will not be possible. Hence, the question arising here is:
how to calibrate sensors with unknown topologies? In the case that the sensors are mounted on mobile
robots the question can be restated as: can we calibrate an unknown topology of a moving sensor just
with the data acquired by the sensor?

Pierce and Kuipers have shown that it is possible to reconstruct the topology of a group of sensors
just by knowing their output [10]. They use natural properties of an agent’s world in order to infer the
structure of its sensors. Olsson et al.improved the methodologies introduced by Pierce and Kuipers by
adding information distances and, in particular, Hamming metrics [8, 9]. They compute the position of
several sensors of a Sony Aibo robot, which has, among other sensors, one camera sub-sampled to 8× 8
pixels. Hyvarinen et al.shown that imaging natural scenes allow defining a neuronal topography using
Independent Subspace Analysis [6]. Recently, Grossmann et al. [5] proposed a method for calibrating a
central imaging sensor based on a number of photocells. They need to know (estimate) a priori a function
curve relating correlation (or information-distance) and distance-angles. Their algorithm has been tested
on a small set of pixels (photocells), about one hundred, as otherwise the computation time and memory
would be too large.

In this work we want to do auto-calibration of central sensors with a number of pixels orders of
magnitude larger than [9, 5]. We approach the computational complexity with Multi Dimensional Scaling
(MDS) like algorithms. A relatively old but very effective in the presence of noise free data is the
Classical MDS [2], based on Euclidean distances. Its goal is to find a representation of a data set on a
given dimensionality from the knowledge of all interpoint distances. Several new algorithms evolved from
MDS, such as Isomap [14], where geodesic distances induced by a neighborhood graph are used instead
of Euclidean distances. More recently Landmark Isomap [11] was introduced, which uses only a subset
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2 Correlation of Pixel Streams 2

of the all-to-all distances used in Isomap and has been proven to work on large scale datasets (millions
of data points) [13] and constitute therefore a promising research direction.

The structure of the paper is the following: in Sec.2 we study a simple black and white scenario and
show there is a linear relationship between the correlation of the time series acquired by pairs of pixels
and the inter-pixel angle; in Sec.3 we describe Landmark-Isomap applied to topological calibration and
propose a methodology for choosing a coordinate frame for the imaging sensor; in Sec.4 we show some
experimental results, and finally in Sec.5 we draw some conclusions.

2 Correlation of Pixel Streams

2.1 Correlation vs Angular Distances

Let f ∈ R
k and g ∈ R

k be the aligned pixel streams of two pixels located on a sphere at position p ∈ S
2

and q ∈ S
2. Considering the normalized cross correlation

C(f, g) =
E [fg]− E [f ]E [g]

√

(E [f2]− E2 [f ]) (E [g2]− E2 [g])
(1)

Grossmann et al.[5] showed experimentally that there is a relationship between the normalized cross
correlation and the angular distance between pixel streams, d(p,q) = acos(pTq).

Property 1. Correlation invariant to the shuffling of time series

Here we propose to better understand the relationship between correlation and angular distance in
a particular simple case where: (i) the camera is in the center of a unit sphere (R = 1) which is black
everywhere except in a hub-cap corresponding to the projection of a white circle with radius r tangent
to the sphere, (ii) the integration area of each pixel of the camera collapses to a single point, and (iii)
the camera motion covers uniformly the rotation configuration space SO(3) and acquires an infinite time
series (pixel stream) with each of the pixels.

Equation (1) shows that to compute the theoretical correlation value, one needs only to compute
E [f ], E [g], E

[

f2
]

, E
[

g2
]

and E [fg]. Since the camera motion is uniform and the time sequences are
infinite, there is no difference in the expected values of the isolated pixel stream, i.e. E [f ] = E [g] and
E
[

f2
]

= E
[

g2
]

. Without loss of generality it is assumed that each pixel reports a value of 1 when it
is pointed towards the white circle and a value of −1 when pointed towards a black area. Note that
the definition of correlation is invariant to the choice of these values. This particular choice leads to
E
[

f2
]

= E
[

g2
]

= 1. We are left with the task of computing E [f ] and E [fg].

Expected value of a pixel stream, E [f ] - Since the camera pose distribution is uniform, the probability
of a pixel observing the white circle corresponds to the area of this circular section 1 Ad = 2πR(R −√
R2 − r2) divided by the total surface area of the sphere (As = 4πR2):

p = P [Pixel observing white] =
(

2π(1−
√

1− r2)
)

/(4π) =
(

1−
√

1− r2
)

/2 (2)

and thus
E [f ] = 1 · p+ (−1)(1− p) = −

√

1− r2. (3)

In the case of small values of r, Eq.2 can be approximated by p ≈ r2/4 which corresponds to using
the area of the circle, Ac = πr2, instead of the area of the circular cap Ad. If the approximate formula is
used, the expected value is E [f ] ≈ r2/2− 1 .

Cross correlation, E [fg], approximated value - To compute E [fg] first notice that the pointwise result
of fg is either 1, when both pixels observe the interior of the circle or none of the pixels do, or −1 when
one pixel observes the interior of the circle and the other does not.

Note: relate E [fg] with convolution on a sphere surface ....
Here we approximate the true value of E [fg] by assuming that the observed white circle is small, thus

we can think of the necessary areas on the tangent planes v.s. on the surface of the sphere. Figure 1
shows two pixels p and q separated by a distance d on this tangent plane. We know that a pixel observes
white whenever the center of the projected white circle falls within a distance r of the pixel (within circle

1 http://en.wikipedia.org/wiki/Spherical cap
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(a) (b) (c) (d)

Fig. 1: Illumination and the information acquired by pixels xi and xj . A light source like the sun is seen
as an illuminating hemisphere around the camera (a). A light source like a full-moon is seen as
an illuminating hubcap (b). Instead of infinitesimal pixels, one can consider enlarged pixels and
an infinitesimal illumination (c). The intersection of the pixel areas C = A ∩B 6= ∅ if θ < 2ρ (d).

A in the figure or within circle B, depending on the considered pixel). Thus the probability of exactly
one pixel observing the white circle is

Area(A) + Area(B)− 2Area(C)

Area(Sphere)
(4)

where the intersection area C is removed since the center of the circle falling within this region means
both pixels would measure white. Again note that here the numerator is approximated. Since Area(A) =
Area(B) = 2πr2 and, if the two circles intersect 2, Area(C) = 2r2 acos( d

2r )− d
2

√
4r2 − d2 one has that in

the case of 2r > d the probability is

p = P [Pixel observing white] ≈
(

2πr2 − 4r2 acos(
d

2r
) + d

√

4r2 − d2
)

/(4π), (5)

or, in the case that the two circles do not intersect,

p = P [Pixel observing white] ≈ (2πr2)/(4π) = r2/2. (6)

Finally, one obtains the approximated value of the cross correlation as

E [fg] = (−1)p+ (1)(1− p) = 1− 2p (7)

≈
{

1− 2πr2−4r2 acos( d
2r )+d

√
4r2−d2

2π if 2r > d

1− r2 if 2r ≤ d.
(8)

Cross correlation, E [fg], true value - TBA - Area of A and B is already computed, its Area of C that
is hard(er).

The area of intersection of two equal sized circular sections (radius r) on the sphere, at an angular
distance d, can be computed as

Ai =

∫∫

C

dω (9)

where ω is the area form on the surface of the sphere. To compute this integral we’ll choose as coordinates
the projection from the center of the sphere of the sphere’s surface on a tangent plane touching the sphere
at the center of one of the circular sections.

The coordinate transformation from the tangent plane to the sphere is thus

f(x, y) =









x√
x2+y2+1

y√
x2+y2+1

1√
x2+y2+1









(10)

2 http://mathworld.wolfram.com/Circle-CircleIntersection.html
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from the jacobian determinant of this coordinate transformation, the integral 9 can be computed as

Ai =

∫∫

f−1(C)

(

x2 + y2 + 1
)−3/2

dx ∧ dy (11)

Ai = 4

∫ r√
1−r2

tan(d/2)

∫ 0

−
√

r2

1−r2
−y2

(

x2 + y2 + 1
)−3/2

dx ∧ dy (12)

The area is thus

Ai =2π
(

1−
√

1− r2
)

(13)

− 4 asin

(

tan(d/2)

r
√

tan2(d/2) + 1

)

(14)

− 4
√

1− r2 asin

(

−
√

1− r2

r2
tan (d/2)

)

(15)

=2π (1− cos(ρ)) (16)

− 4 asin

(

sin(d/2)

sin(ρ)

)

(17)

− 4 cos(ρ) asin

(

− tan (d/2)

tan(ρ)

)

(18)

(19)

where r = sin(ρ) (angular angle).
This can now be inserted in equation 4 as the area of C, while the area of A and B are given by Ad.

Thus,

p = P [Pixel observing white] (20)

=
8 asin

(

sin(d/2)
sin(ρ)

)

+ 8 cos(ρ) asin
(

− tan(d/2)
tan(ρ)

)

4π
(21)

=
2

π
asin

(

sin(d/2)

sin(ρ)

)

+
2

π
cos(ρ) asin

(

− tan (d/2)

tan(ρ)

)

(22)

(23)

thus

E [fg] = 1− 4

π
asin

(

sin(d/2)

sin(ρ)

)

− 4

π
cos(ρ) asin

(

− tan (d/2)

tan(ρ)

)

(24)

2.1.1 Computing the correlation

Now that all the values are available, C(f, g) can be computed as in expression (1).

Approximated -

C(f, g) ≈











1−
2πr2−4r2 acos( d

2r
)+d

√
4r2−d2

2π −( r2

2 −1)2

1−( r2

2 −1)2
if 2r > d

1−r2−( r2

2 −1)2

1−( r2

2 −1)2
if 2r ≤ d

(25)

True -

C(f, g) =
E [fg]− (1− r2)

√

(1− (1− r2)) (1− (1− r2))
=

E [fg]− (1− r2)

r2
(26)

C(f, g) =







− 4
π asin( sin(d/2)

sin(ρ) )− 4
π cos(ρ) asin(− tan(d/2)

tan(ρ) )+sin2(ρ)

sin2(ρ)
if 2ρ > d

1− 2(cos(ρ)−1)
sin2(ρ)

if 2ρ ≤ d
(27)
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Fig. 2: Correlation v.s. angular distance between pixels for several observed circle sizes. The tangents to
each curve at the origin are overlayed in light gray.

Taylor expansion The 4th order Taylor expansion of the correlation function near the origin is

C(f, g) ≈ 1− 2

π sin(ρ)
d−

(

1

12π sin(ρ)
− 1

12π sin3(ρ)

)

d3 (28)

Property 2. Correlation, C(f, g), is a linear function of the inter pixel distance, d(p, q), when ρ = π/2.

Demo:

Observation 1. Correlation, C(f, g), is approximately a linear function of the inter pixel distance,
d(p, q), when d ≈ 0.

As shown in figure 2, and in the Taylor expansion.

3 Auto-Calibration Methodology

For the particularly simple scenery described in section ??, it is clear that for correlation values above
0.5 the look up table needed in [5] can be replaced by a single slope parameter dependent on the size
of the observed hubcap. We propose to further drop this requirement for small sensors by embedding
the locations in a plane up to a scale factor. The proposed method consists of directly converting the
obtained correlation values to distance values and then applying the landmark Isomap algorithm [11] to
obtain the reconstruction. Hence we will consider that the distance between two pixels whose correlation
is above 0.5 is given by d(xi,xj) = 1 − C(fi, fj). In the following we provide a short description of the
Landmark Isomap algorithm.

MDS and Landmark Isomap - The classical Multi-Dimensional Scaling (MDS) [2] is based on euclidean
distances and its goal is to find the optimal representation of a data set, X, such that:

d2(xi,xj) = 〈xi − xj ,xi − xj〉 = 〈xi,xi〉 − 2〈xi,xj〉+ 〈xj ,xj〉 (29)

Collecting all squared distances in a matrix D2 = [d2(xi,xj)] this can be transformed to a matrix of
inner products by inverting the previous linear relation and forcing the resulting embedding to have zero
mean [3]. More precisely, a matrix of inner products G is obtained from D2 through the transformation
G = −JD2J/2, where J = (I − 1/n), I is the n × n identity matrix and n is the number of the
elements of the data. Next, one observes that if the desired point embedding is collected in a matrix
X = [x1 x2 · · · xn], then

G =







〈x1,x1〉 . . . 〈x1,xn〉
...

. . .
...

〈xn,x1〉 . . . 〈xn,xn〉






= XTX. (30)

X can thus be obtained (reconstructed) up to a unitary transformation using an SVD decomposition, as
G = XTX = UΣUT = U

√
Σ
√
ΣUT , and thus XT = U

√
Σ.

Property 3. If distances are multiplied by a scale factor, d1 = αd, then the resulting topology is scaled
by the same factor, X1 = αX .
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Proof. Suppose all distances are affected by a gain α, d1 = αd, then the matrix of squared distances will
be D2

1 = α2D2. The inner product matrix will have a gain of α2 since G1 = α2JD2J/2 which will make

the SVD of matrix G1 = U(α2Σ)UT . The solution of the algorithm will then be XT
1 = U

√
α2Σ. Since

XT = U
√
Σ one concludes that X1 = Xα which proves that a gain in the distances changes the topology

of the sensor only by a scale factor as required.

The classical MDS works well when the distances are Euclidean and when the structures are linear,
however, when the manifolds are nonlinear, the classical MDS fails to detect the true dimensionality
of the data set. Isomap is built on classical MDS but instead of using Euclidean distances it uses an
approximation of geodesic distances [14]. These geodesic distance approximations are defined as a series
of hops between neighboring points in the Euclidean space using a shortest path graph algorithm such
as Dijkstra’s.

Isomap has two computational bottlenecks, namely the memory and time complexity of computing
an all-to-all distance matrix, n × n for a n pixels camera, and computing its eigenvalues. Landmark
Isomap improves both inefficiencies [11]. Instead of using all the data points Landmark Isomap proposes
using just k randomly selected points (landmarks) with k ≪ n. The embedding is done the same way
as in MDS but using only the k landmarks. The distance matrix, D is now just a k × n matrix. After
embedding the landmarks, K =

√
ΣUT , where K collects the k reconstructed landmark locations, one

can embed the remaining points:

X =
1

2
K∗(Dk −Dk) (31)

where K∗ = [uT
1 /

√
Σ1 . . . uT

s /
√
Σs]

T is the pseudo-inverse transpose of K, s is the size of the dimen-
sionality space, Dk is the distance matrix from the landmarks to the complete data, and Dk is the mean
of the columns of Dk.

In our particular case, this algorithm is used to provide a pixel embedding given the inter-pixel
distances estimated from the pixel stream correlations.

Choosing the Imaging Coordinate System - As referred, MDS (and derived methods) provide a
reconstruction of the vectors collected in X up to a unitary transformation. Assuming that the camera is
mounted on a mobile robot, we propose to fix the unitary transformation in accordance with the motion
degrees of freedom of the robot.

Having reconstructed the topology of the imaging sensor allows doing 2D interpolation and therefore
computing (approximated) directional derivatives and finding feature points using standard image pro-
cessing techniques. Then, considering for example that a camera has experienced from t1 to t2 a leftwards
pan motion and from t3 to t4 an upwards tilt motion, where ti denote timestamps, allows computing
two median optical-flows (or disparities), v1 and v2. The two flow vectors allow therefore setting the
coordinates of a pixel location to be first horizontal, growing right, and the second to be vertical, growing
down:

Xf = TX = [v̂1 v̂2]
−1X (32)

where v̂1 and v̂2 denote normalization to unit length of v1 and v2. Note that noise prevents perfect
orthogonality, i.e. vT1 v2 6= 0, in which case we rotate both vectors in opposing directions to meet orthog-
onality. Having vT1 v2 = 0 with nonzero v1 and v2, implies | det(T )| = 1, where det(T ) = −1 indicates a
mirroring effect found in the reconstructed topology.

Calibration Methodology - Summarizing the previous sections, estimating and embedding the topology
of a central imaging sensor involves acquiring a set of images observing a bright circle faraway, e.g. the full
moon. Since the correlation of pixel-streams, C(fi, fj) is invariant to shuffling of the time-series (as long
as both time series are affected by the same shuffling), these images can be acquired either as a continuous
sequence (i.e. a video) or as discrete individual images. In the end one wants to obtain the embedded
pixel locations, Xf = [x1 x2 · · ·xN ]. The required steps are the following: (i) Data binarization using
a fixed threshold such that each pixel stream value is either 1 or −1. (ii) Computing the normalized
correlation between all the pixel-streams using Eq.1. (iii) Converting the inter-pixel correlations into
distances, using the linear transformation d(xi,xj) = 1 − C(fi, fj) (based on properties ?? and 3). (iv)
Using Landmark Isomap to compute the topology of the sensor. (v) (optional in case an external reference
frame is available) Choosing a coordinate system for the camera based on the supporting robot motion
(Eq.32).
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(a) 6 of 14784
calibration frames

(b) Topology found (c) Topology found,
rotated

(d) Zoomed
top-right

Fig. 3: Moon images used to estimate the topology of a 100 × 100 sensor (a). Estimated topology after
random permutation of the pixel-streams (b,c,d).

4 Results

In order to test the proposed topology estimation methodology two experiments have been conducted
using a Nikon D5000 camera in video mode, selecting just a central region of 100x100 pixels, and thus
having the ground truth of a sensor composed by square pixels forming a regular square grid.

Topology estimation In the first experiment the camera was pointed to the moon, in a full-moon
night, to obtain calibration data (see Fig. 3(a)). The data acquisition was performed at 24fps for about
ten minutes (14784 frames), while panning and tilting the camera. Figures 3(b,c) show the estimated
topology, approximately forming a regular square grid, close to the ground truth.

Robustness to pixel shuffling and illustration of an horizontal mirror effect and its correction A test
image, acquired in daylight (Fig. 4(d)), was then used to illustrate more clearly that the sequencing of
the pixel-streams (see pixel permutations in Figs. 4(e,f,g,h)) does not influence the perceptual quality
of the estimated topology and image reconstruction (Figs. 4(i,j,k)). Despite having obtained the results
in Figs. 4(i,j,k) with different calibrations, and thus subject to different random selections of landmark
pixels, the differences of the estimated topologies are small. Using a 2D Procrustes, to register the three
reconstructed topologies with a square 1-pixel-steps grid, resulted in inter-pixel (four nearest neighbors)
distance-error distribution with a standard deviation of 0.566, 0.563 and 0.563 pixels, respectively.

Topology estimation using the garden sequence In the second experiment, the main purpose is to
explore more general calibration scenarios, while keeping the topology estimation accurate. In the moon
sequence, edges are clearly defined and have directions distributed uniformly despite of the discretization
due to the non-infinitesimal pixel size. Hence we considered the garden scenario, Fig. 5(a,b,c,d), where
the vegetation also provides many edge directions. For this data set we filmed about twelve minutes,
at 24fps, having acquired 17448 frames. In this case we do pan and tilt motions, as well as roll and
translation. Figure 5(g) shows the topology reconstruction considering binary level pixel-streams. Some
images used by the algorithm can be seen in Figs. 5(e,f). Despite the complexity of scene texture we
do not use a look up table as required in [5]. Note that Fig. 5(g) is the direct result of the Landmark
Isomap, while Fig. 5(h) is the result after using Eq.32, and thus show a detected and corrected mirror
effect.

5 Conclusions and Future Work

In this paper we consider cameras as simple collections of pixels, arranged with an unknown topology,
that one wants to estimate. By assuming that the cameras are mobile, one can obtain the topology from
the correlation of the pixel-streams. In particular, we demonstrated that in a simple scenario where the
camera is in the center of a spherical-surface, half-white and half-black, the correlation of pixel-streams
is linearly related with the inter-pixel angle. In the cases where the white hub-cap is smaller than a
hemisphere, we show that the relationship between correlation and inter-pixel angle is approximately
linear for high correlation values. Combining the inter-pixel angle estimation, directly from correlation,
with manifold learning for embedding all the inter-pixel angles, has proved to be an effective methodology
for topology estimation. In addition, we presented a methodology for detection/correction the mirror
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(a) Test image (b) 4× 2 shuffling

(c) 4× 2 shuffling (d) 10× 10 shuffling (e) 100× 100 shuffling

(f) Reconstruction after (g) Reconstruction after (h) Reconstruction after
4× 2 shuffling 10× 10 shuffling 100× 100 shuffling

Fig. 4: Topology estimation applied to the reconstruction of a shuffled 100 × 100 sensor. Test image
before shuffling (a). The pixels of the sensor are shuffled in (i) 4× 2 blocks, (ii) 10× 10 blocks, or
(iii) 100× 100 (all) pixels, as illustrated on the test image, (b,c), (d) or (e), respectively. Each of
the three shufflings is then subject to topology estimation, and the resulting topology applied to
reconstruct the test image (f,g,h).

(a) Calibration
frame 1

(b) Calibration
frame 25

(c) Calibration
frame 6105

(d) Calibration
frame 13209

(e) Frame 6105
binarized

(f) Frame 13209
binarized

(g) Topology found (h) Frame 13209
reconstructed

Fig. 5: Topology estimation applied to 17448 images random images of the University campus
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effect inherent to the manifold learning modalities presented. Future work will focus on calibrating
cameras combining optic fibers with a conventional CCD/CMOS sensor that implicitly impose the need
of topological calibration.
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