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State of the Art 
 
Natural image statistics [Hyvarinen08] is a recent theoretical framework based on a principle that the 
properties of the biological visual systems emerged from evolutionary adaptation processes and tend to be 
reflections of the statistical structure of natural images. Hence, ambitioning to replicate the amazing plasticity 
capabilities of the biological visual systems implies that one has to study directly the statistics of natural 
images. Despite recent, this kind of research already proved fruitful by evidencing fundamental properties, in 
terms of local, global and spectral statistics, of real-world images, that has been also exploited for computer 
vision tasks, such as classification [Torralba03], image restoration [Freeman00] and 3D inference [Potetz06]. 
 
Considering an even more general setup, Pierce and Kuipers [Pierce97], measure the dissimilarity, or distance, 
between sensor elements that are not necessarily light sensors. The elements are then embedded in a metric 
space using metric scaling [Krzanowski88], which also determines the dimension of the space. A relaxation 
method then improves this embedding, so that the Euclidean distance between sensor elements better 
matches the dissimilarity between the sensor inputs. In an experiment, the authors use this method to 
reconstitute the geometry of an array of visual sensors that scans a fronto-parallel image (under the 
assumption that the array has a rectangular shape). Our approach is closely related to this work. 
 
Going further, Olsson et al. [Olsson04] use the information metric of [Crutchfield90] as a more appropriate 
method to measure the distance between visual or other sensor elements. They also show how visual sensors -
the pixels of the camera of a mobile robot- can be mapped to a plane, either using the method of [Pierce97], 
or their own, that embeds sensor elements in a square grid. 
 
The works of Olsson et al. and of Pierce and Kuipers are very interesting to computer vision researchers but, 
since the geometry of the embedding space is either abstract or fixed to a grid, in either case, it lacks an 
explicit connection to the geometry of the sensor. Thus, although these results are of great interest, they are 
not directly applicable in our case, mainly because we lack images (have just pixel streams). Moreover, these 
statistics are about images formed on a planar image plane, which is a hindrance in our case: first, we do not 
want to exclude the case of visual sensor elements that are separated by more than 180 degrees, such as the 
increasingly popular omnidirectional cameras. Second, in the statistical analysis of Cartesian images, some 
assumptions are implicitly made: a viewing direction is privileged and an image scale (equivalent to a focal 
length) is implicitly chosen. Third, the local statistical properties of perspective images depend of the 
orientation of the image plane with respect to the scene, except in special constrained cases such as the 
fronto-parallel “leaf world” of Wu et al. [Wu04]. In other words, planar image statistics lack generality. 
 
Defining images on the unit sphere thus appears as a natural way to render image statistics independent of the 
sensor orientation, at least with proper assumptions on the surrounding world and/or the motion of the 
sensor. Following these representation and assumptions, our previous work [selfRef07, selfRef08, selfRef10] 



showed that a definite relation can be found between streams of photocell data and the arbitrary geometry of 
the sensor. The number of cells is however still small, about one hundred. 
 
Recently, Censi and Scaramuzza [Censi13] showed that the reconstruction of a sensor can include also a global 
scale factor. The authors formalize calibration as a generalization of multidimensional scaling (MDS) and 
iterate on the distances matrix to minimize a ratio of singular values. 
 
In [selfRef13] our goal is to do auto-calibration of central sensors with a number of pixels orders of 
magnitude larger than [Olsson06, Grossmann10] and 50% larger than [Censi13]. We also approach the 
computational complexity with MDS like algorithms. A relatively old but very effective in the presence of 
noise free data is the Classical MDS [Cox01, Datorro10], based on Euclidean distances. Its goal is to find a 
representation of a data set on a given dimensionality from the knowledge of all interpoint distances. Several 
new algorithms evolved from MDS, such as ISOMAP [Tenenbaum00], where geodesic distances induced by a 
neighbourhood graph are used instead of Euclidean distances. 
 
Regarding the computational complexity, ISOMAP, and even Landmark ISOMAP [Silva08], are still 
considered expensive. Other large scale approximate solutions are currently known, e.g. the Nystrom method 
and column sampling [Talwalkar08]. These methodologies are definitely worth exploring. 
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