Distributed Real-Time Control
Systems

Lecture 13-14
Distributed Control

Linear Programming



Linear Programs

Optimize a linear function subject to a set of linear (affine)
constraints.

P=400 ~.__

300 ~._

S
-
‘ﬁ
-

Many problems can be posed as linear programs and have
wide application in operations research:

— scheduling

— assignment problems

— supply chain management

— automation

— optimal pricing

— transportation



Example: Mr. Silva’s Electronics, Lda

Mr. Silva has an electronics company that produces two products:
— (P1) MP3 players
— (P2) Alarm Clocks.

MP3 players can be sold at 7€ and Alarm Clocks at 5€.

The company has a stock of 100 NIMH battery cells and 240 push
buttons.

Each MP3 player needs 2 battery cells and 4 pushbuttons.
Each Alarm Clock needs 1 battery cell and 3 pushbuttons.

How many items of each product should Mr. Silva produce to maximize
his profit ?



Example: Mr. Silva’s Electronics, Lda

X,: amount of MP3 players to produce
X,: amount of Alarm clocks to produce

*Maximize Profit: 7X, +5X,
eBattery Cells constraint: 2X +1x, <100
*Push Buttons constraint: 4X +3X, <240

*Positivity constraints: 20, X =0



Example: Mr. Silva’s Electronics, Lda

maximize c¢'Xx
subjectto Ax<b, x>0
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Example: Mr. Silva’s Electronics, Lda

When constraints are written as:

v, x+b; >0

then, their gradient (v.), points

2x +1x, <100 toward the feasible region.



Example: Mr. Silva’s Electronics, Lda

\ 2% +1x, <100



Example: Mr. Silva’s Electronics, Lda
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Example: Mr. Silva’s Electronics, Lda
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Properties of linear programs

Feasible regions are convex polyhedra.

Both minimization and maximization problems
are convex (linear functions are both convex and

concave).

Local optima are also global optima.
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Impossible Cases

e Unboundedness:

— If the feasible set is
unbounded in the
direction of the gradient,
there is no finite solution
(solution at infinity)

e [nfeasibility:
— If the conjunction of the
constraint is the empty

set. The problem is
impossible (no solution)
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Degenerate Cases

* Non-uniqueness:

— If the gradient is
orthogonal to a constraint
with optimal solutions, all
“corners” associated to
that constraint are also
optima (multiple solutions)

e Gauge freedom:

— Multiple “corners” at the
same point. Solution is
unigue but some
algorithms may have
problems with this.
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Solutions to Linear Programs

 Unfortunately most real-world problems have more
than two variables. Graphical methods are not

possible.

 Two main types of approaches:

— Simplex methods: iterate over sequences of extreme
points (vertices) of the feasibility polyhedron.

— Interior point methods: iterate on the interior of the
feasibility region.

 Performance depends on problem type.
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Simplex methods

e Start on a feasible solution
(vertex) of the problem and
move along edges to a
neighboor with a better
cost.

e Stop when minimum is
reached or unbounded
edge visited.

e NOTE: Requires an initial
feasible solution at a vertex.
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Standard equality form

minimize c¢'x
subjectto Ax=Db, x>0, b>0

Minimization instead of maximization.
Only equality constraints.

All variables non-negative.

All entries of vector b non-negative.
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Conversion to Standard Equality Form

If problem is “max z”
convert it to “min -z”.

If there are constraints
with negative right hand
side, multiply them by -1

To convert a
unconstrained variables
“x”, replace it by two new
non-negative variables

uX+_X-n .

max /X +95X,

v
min  —7x —5X,

X, —2X, <8

v
—X, +2X,>8

X, unrestricted

v
X=X X%, %20, %20

16



Conversion to Standard Equality Form

Convert “lower-than-or-
equal” inequalities to
equalities by adding non-
negative slack variables.

Convert “greater-than-or-
equal” inequalities to
equalities by subtracting
non-negative surplus
variables.

Set each slack and surplus
variables’s coefficients in
the cost function to zero.

4Ax, +3X, <240

¥
4% +3X,+5 =240, §=>0

—X +2X,2>8

v
—X,+2X,-5,=8 S >0
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Example: Mr. Silva’s Electronics, Lda

x,: amount of MP3 players to produce
X,: amount of Alarm clocks to produce
s,: amount of unused battery cells.

s,: amount of unused push buttons.

Minimize negative profit: _7)(1 — 5x2

Battery Cells constraint: 2X +X,+5 =100

*Push Buttons constraint: 4)(1 -|-3)(2 +S, = 240

*Positivity constraints: 20, x,20, §20, 5,20
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Example: Mr. Silva’s Electronics, Lda

Linear Program in Standard Equality form:

minimize c'x
subjectto Ax=b, x>0, b>0

X Cz[ -7 -5 0 0 J
X

X=| ° - - - -
S A 2 1 1 0 - 100
S, 4 3 0 1 240 |




Definitions

minimize c¢'x xeR" AeR™
subjectto Ax=b, x>0 beR" ceR

cCeR - i™" entry of vector d = number of affine constraits

d h . = number of rows of A
A c R - i"" column of matrix A _

] = number of slack/surplus variables
AT

problem column
0 n = number of original + slack/surplus
= - set of all problem columns :
{h }izl_ P variables

G - H - Asubset of the problem columns

Cs - cost vector reconstructed from columns in G

AG - constraint matrix reconstructed from columns in G
XG - decision variables reconstructed from columns in G



Table Form

H O Fully represents the LP

b " in standard equality form
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Basis

e Assume rank(A)=d. A set B of exactly d columns is
called a basis if rank(Ag)=d

 Example. B ={h,, h,}

h, h,
—/ -5 (0/(0] O
2 1 ||1,/0/ 100
4 3 |01 240




Basic Solutions

Basic solution is a solution x composed of d basic variables x; U, and a set
of n-d non-basic variables x,=0.

A basic variable is a variable with only non-negativity constraints.

A basic solution is feasible if all basic variables are positive.

Example: x = [0 0 100 240]

— Basic variables: —7 —5 O O O
e s5,=100

* 5,=240 2 1 1 O 100

— Non-basic variables:

4 3 0] 1 240

° X2=0 | —

This is a trivial basic solution and can be used to initialize the simplex
search.
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Computing Basic Solutions

Having selected a basis B, a basic solution can be
computed by solving the linear system:

) AeXs =D . | Xg = Agb
kXN:O kXN:O

: : AT
The associated cost is: |Zg; = CgXj

The solution is feasible if all elements of x, are non-
negative.
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Example: Mr. Silva’s Electronics, Lda

Computing a non-trivial
basic solution. A81:|: 0 1/3 }

Let the basis be B = {h,,h,}.
| %=[x,5] =A’b=| 80 20 |
_ ! b B0@e— X5

1 -1/3

0 [100
4 3 0 1 [240

40

30
FEASIBLE BASIC SOLUTION 25



Example: Mr. Silva’s Electronics, Lda

Now let the basis be B = AT = [ 1 (1) ]
th,,h,}. —3

7

2

A

X, 20

NON FEASIBLE BASIC SOLUTION *



Adjacent Bases

Two basis B, and B, are said to be adjacent if only one
variable differs from one to the other, i.e. there exists an
entering column “e” and a leaving column “/” such that:

eeB, leB, B,={Buel\{l!

Example: B, and B, are adjacent bases: e = h,, | = h,.

-/ 5 0 0] O
2 (1 |1 0] 100
0 1 240
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Perturbation Analysis

To evaluate the effect of changing from a basis to an adjacent one, let us
consider:

— B —current basis
— X — current basic solution

— X, — hon-basic variable, corresponding to column h.

Let us perturb the solution by allowing x, to have values above 0
(feasible). The basic variables will change their value to x’; and the
solution must verify:

Ax=b =
[ 1 X / —1
Ag Ah_ X =D - wp =xp — A Apxy
h
X'y = Ag (b—AX,)
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Example: Mr. Silva’s Electronics, Lda

e Perturbed solution:

 Example: B=1{h,, h,}

.CI?/B — B — AglAh:L‘h

o [31-0¢ A1)
B — - 1 1
[ Ah=A1/Xh=X1 20 1 —§ 4
(! =80 — 4
<CB2— —§£El
\3’1:20—%:1:1
w5 |- [0 A1)
= — 1 1
* Ap=AL Xy =S, ; 20 bs :
33/2:80—%82
si =20+ %5



Graphical Analysis

Perturbations around the

current solution (green
dot).

A unit increase in the
variable x; will make the
solution travel along the
green arrow and decrease
4/3 on x,.

A unit increase in variable s,
will make the solution travel
along the red arrow and
decrease 1/3 on x,.
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Reduced cost

 Given a basis B and a single non-basic column h, its reduced cost represents
its contribution to the cost (unitary cost variation) if it enters the basis:

What we gain by adding one

element of this variable to the
solution

resources required.

What we loose by consuming the
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Example: Mr. Silva’s Electronics, Lda

* Reduced costs: C,=C, — C;AélAh

 Example: B={h,, h;}

0

G =0 A (A) 100

{ T = 240
— 0 1 -5
1T [2 4-_ 1/3 -1/3 | 0 |
coe01] 0 1|
{1/3 -1/3 ] 0

reduced costs
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Graphical Analysis

 The cost variation is the
inner product of the
cost gradient with the
perturbation vector.

4x +3X, =240

2%, +1x, =100

= - §A$1 ¥ Cost
Gradient
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Analysis

Current solution: — i

x{o 80 20 0 [ [=5

Reduced costs:

c=| -1/3 0 0 5/3 |

A
U
1

-1/3 '&\B 5/3

Adding a unit of MP3 Player (x,) has a value of 7 but in the current

0

solution it requires 4 unavailable push buttons, that must be removed

from alarm clocks. Because one alarm clock uses 3 push buttons,
removing 4 push buttons will penalize us in 4/3 of the value of the

alarm clock (5). Therefore we gain 7 but loose 20/3, so the net gain is
1/3.

Adding a unit of a push button (s,) has no value and forces us to remove

1 push button from an Alarm clock. By the same reasoning as before,
we loose 1/3 of the value of an alarm clock, i.e. 5/3.

100
240
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The entering column

 Any column whose reduced cost is negative can
enter the basis:

Chzch—AJ(Agl)T c, <0

e Oftenitis chosen the column with the minimal
negative cost:

e = argmin{c, | ¢, <0}
h




The leaving column

a_,_ 7

 Given an entering column “e” we are allowing the non-
basic variable x, to grow from zero to a positive value.

* Asx, grows, what is the first basic variable reaching value
0°?
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The leaving column

 The basic variables will change as (check the
“Perturbation Analysis” slide):

A A

X

e

X's = Ag (b= AX,)




The leaving column 2/2

e To assure feasibility we need:
s = A5 (b— Aeze) >0
(25); = (Ag'b); — (A5 ' Ae)j xe > 0, V)
T, < (ABlb)j |
- (A_lA )

 The first variable X; reaching O as x, grows enters the non

basic variable set.
1
b
(A1),

(AA)

(A5'Ac); >0, V)

S

| (AA) >0y

J 38
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Optimal Solutions

Fundamental theorems:

— If an LP has an optimal feasible solution, then it has an
optimal feasible basic solution.

— Every fully non-degenerate LP has at most one optimal
solution.

— If an LP has an optimal solution and is non-degenerate,
then there exists a sequence of adjacent bases from any
basis B to the unique optimal basis B*.
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Basic Simplex Procedure

1. Let a feasible basis B be given.

2. While there exists an entering column “e” such that

e¢g B, C,<0
find a leaving basic column “l” such that
{Buel\{l}

is still a feasible basis.

3. Exchange “I” with “e” to find a new basis. This
operation is denoted “Pivot”.
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The initial basis

e Choose a subset of the columns of A forming an
diagonal matrix (easily invertible), arising from slack
variables.

e For constraints without slack variables, add an
artificial variable with large associated cost M.

 Advantage: Initial basis is feasible.
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Initial Basis : Artificial Variables

o Artificial variables allow an initial identity basis.

 Greater-than-or-equal constraints take surplus
variables instead of slack variables.

2x1 + x9 > 100 — 201 + 19 — s1 +a1 =100, s1,a1 >0

e Equality constraits have neither slack nor surplus
variables.

dr1 + 3x9 =240 = 4dx1+3x9+ a9 =240, a9 >0

42



Initial Basis : Example

min — (X1 — D9

(22131 —+ X9 Z 100
s.t. <

b’s must b'e —4$1 — 3%2 > 240
non—negatl\:e/ . —

<”2x1+x22100 (201 + 29 — 51+ ag = 100
\—4:1:1 — 3z > 240 \—4:1:1 — 3x9 — So + ao = 240

v
/\\

L1 L9 S1 S92

Initial basis
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The iterations

e Asseen in the previous slides the inverse of the basis
matrix A; plays an important role in many operations.

— Computing the basic solution

Xg = Aglb‘

— Computing the reduced cost

G =G, — CgAélAh
— Select the entering column

e = argmin{c, | ¢ <0}
h
— Selecting the leaving column

j—argmin{(A7D) /(APA) | (AYA) >0
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Gauss Elimination

* When the initial basis is the identity, the computation
of the inverse can be done in a simple way with
Gaussian elimination at each pivot operation, and the

problem table transformed so as the new basis is the
identity again.

T XAB—l T5
B —1 _ 4—1
apa [ 72 =0 0 g [ 2] -

aving the basis as the identity is very useful because
ne solution, entering and leaving columns can be
necked by inspection.

O & T
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Gauss Elimination

e Remember Mr. Silva. CchTB
_ u 2
-7 -5 0 0 |0
2 1 1 0 [100
4 3 0 1 240
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Gauss Elimination

e Starting with identity basis...

I L1 L9 S1 59 b ]
-7 —o 0 0 0
2 I 1 0 100
4 3 0 1 240

T

Ag



Gauss Elimination

e We want to make columns 1 enter the basis and column
3 leave the basis.

L1 L9 S1 59 b
-7 —o 0 0 0
I |1, 0 100
3 0] 1 240




Gauss Elimination

e The new basis will be composed by columns 1 and 4.

I L1 L9 S1 59 b ]
-7 —o 0 0 0
I 0] 100
I 0 .11 240
AB

e We have to make linear combinations of the rows of [A b]
to let the identity matrix “emerge” from columns 1 and 4.



Gauss Elimination

* Locate the pivot element g, in the entering column e at
the row where the leaving column had value 1.

T T2 st sz b
-7 =5 0 0 0
_ 1 3 0 1 240 )

 The objective is to make the pivot equal to 1 and all other
elements of that column equal to O



Gauss Elimination

* Divide the pivot line g; by the pivot value a,.

a «ala,

L1 L9 S1 S9 b

-7 =9 0

RN

0
Pivot 4 3 O 1 2 4 O




Gauss Elimination

* Divide the pivot line g; by the pivot value a,.

a «ala,

r1 T2 S1 S22 b
7 =5 0 0
A1) 05 05 0 50
Pivot 4 3 1 2 40




Gauss Elimination

* Let the remaining lines be a; = a,— a,.0;

Pivor

L1

—7

8 <8 -3,

L2
—9H

240




Gauss Elimination

* Let the remaining lines be a; = a,— a,.0;

8 <8 -3,
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* Let the remaining lines be a; = a,— a,.0;

Gauss Elimination

8 <8 -3,

L9 S1

S9

b

—15 3.5 0 350

0.0 0.9
1 —2

0
1

o0
40
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Gauss Elimination

* The new basic solution is now x, =50, s, =40
* The associated cost is 350

I L1 L9 S1 S9 b ]
0 —1.5 3.5 0 [350
I, 05 0.5 0] [50
vt o1 =2 1] 40]




Simple computations

 Once the basis is the identity, computations are
simpler:

Xg =D'
G =G~ C;Alh
‘e = argmin{c, | ¢, <0}
h

j =argmin{(b) /[(A), | (A');>0]




The Simplex Algorithm (1/2)

Put the problem in standard equality form for minimization with enough
slack/auxiliary variables to have a initial identity basis.

Determine which variable to enter the solution. Identify the column with
the lowest negative reduced cost. This is the pivot column e.

e = argmin{c, | ¢, <0}
h

Determine which variable to replace. Consider only rows with positive
values in the pivot column. Divide each amount in the quantity column
(last column) by the corresponding number of the entering column. The
row with the smallest non-negative number is the pivot row j. If all are
negative, the problem is unbounded. Exit.

j =argmin{(b’), /(A%), | (AY),>0f
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The Simplex Algorithm (2/2)

Compute new values for the pivot row. Divide all elements by the
pivot number.

a «ala,

Compute new values for the remaining rows. Take the element of
this row at the pivot column, multiply it by the pivot row, and
subtract the result from itself.

3 <8 -3

Compute the reduced costs. If all are non-negative, the algorithm
converged, goto 7. Otherwise goto 2.

- TA
C. =G, —CgA,

If an artificial variable is in the basis, the problem is unfeasible.

Otherwise this is the optimal solution. Exit. y



Mr. Silva Full Solution

e Step 1-Table Form

-/ 5 0 0 O
2 1 1 0 100
4 3 0 1 240



Mr. Silva Full Solution

e Step 2 — Compute reduced costs and choose
entering column.

-/ -5 0 0 O
211 1 0 100
41 3 0 1 240

0 O

e=argmin{c. —A''c, | ¢ <0}
h




Mr. Silva Full Solution

e Step 3 — Determine which variable to replace

j=argmin{(b') /(A%), | (A%),>0]




Mr. Silva Full Solution

e Step 4 — Normalize Pivot Row

7 -5/0]/0 0
1 [05]05 0 50 |[(50
4 3 0 1 240 |60

7)== 0 0

a «<ala,




Mr. Silva Full Solution

e Step 5 - Compute remaining rows

64



Mr. Silva Full Solution

e Step 6 — Recompute reduced costs

e Goto 2.

= TA
C, =G —CgA,

- -5 0 0 0
1 05 05 0 50
0O 1 -2 1 40

0 35 0




Mr. Silva Full Solution

e Step 2 — Choose entering column

e=argmin{c. —A''c, | ¢ <0}
h




Mr. Silva Full Solution

e Step 3 — Determine which variable to replace

1 0505|050
0 |1 |-2|1 |40

j=argmin{(b) /(A), | (A),>0]




Mr. Silva Full Solution

e Step 4 — Normalize Pivot Row

1 0505050
0 |1 |-2|1 |40




Mr. Silva Full Solution

e Step 5 - Compute remaining rows

0 |1 |-2 1] 40
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Mr. Silva Full Solution

e Step 6 — Re-compute reduced costs

= TA
C, =G —CgA,

—/ -5 0 0 0
1 0 15 05 30
0O 1 -2 1 40

0 0 05 15

e All reduced costs positive: converged.




Mr. Silva Full Solution

e Step 7 — Conclude

—/ -5 0 0 0
1 0 15 05 30
0 1 -2 1 40

e No artificial variable in the basis.

— Optimal solution: x; = 30, x, = 40, remaining O.



Homework

Formulate the illumination control problem with two
luminaires as a linear program with energy minimization.

Solve the problem for a sensible set of values for the cost
and coupling constraints.



