Modeling and Automation of Industrial Processes

Modelação e Automação de Processos Industriais / MAPI

Supervised Control of Discrete Event Systems - SCADA

http://www.isr.tecnico.ulisboa.pt/~jag/courses/mapi2223

Prof. Paulo Jorge Oliveira, original slides Prof. José Gaspar, rev. 2022/2023

Syllabus:

•••

Chap. 2 – Discrete Event Systems

Chap. 5a – Supervised Control of DESs * SCADA * Methodologies for the Synthesis of Supervision Controllers * Failure detection

•••

IST / DEEC / MAPI

Some pointers on Supervised Control of DES

History:The SCADA Web, http://members.iinet.net.au/~ianw/Monitoring and Control of Discrete Event Systems, Stéphane Lafortune,http://www.ece.northwestern.edu/~ahaddad/ifac96/introductory_workshops.html

Tutorial:http://vita.bu.edu/cgc/MIDEDS/http://www.daimi.au.dk/PetriNets/

Analysers &http://www.nd.edu/~isis/techreports/isis-2002-003.pdf (Users Manual)Simulators:http://www.nd.edu/~isis/techreports/spnbox/ (Software)

Bibliography: * SCADA books <u>http://www.sss-mag.com/scada.html</u>
* K. Stouffer, J. Falco, K. Kent, "Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems Security", NIST Special Publication 800-82, 2006
* Moody J. e Antsaklis P., "Supervisory Control of Discrete Event Systems using Petri Nets," Kluwer Academic Publishers, 1998.
* Cassandras, Christos G., "Discrete Event Systems - Modeling and Performance Analysis," Aksen Associates, 1993.
* Yamalidou K., Moody J., Lemmon M. and Antsaklis P. Feedback Control of Petri Nets Based on Place Invariants http://www.nd.edu/~lemmon/isis-94-002.pdf

Supervision of DES: SCADA

Supervisory

Control

And

Data

Acquisition

SCADA interface

Control / Data GUI / HMI

IST / DEEC / MAPI

SCADA example, Rail Monitoring and Control

SCADA vs ICS

Industrial Control Systems (ICS):

- Supervisory Control and Data Acquisition (SCADA) systems,
- Distributed Control Systems (DCS), or
- smaller configurations such as skid-mounted PLCs

ICSs are typically used in industries such as electric, water, oiland-gas, transportation, chemical, pharmaceutical, pulp-andpaper, food and beverage, and discrete-manufacturing (e.g. automotive, aerospace, and durable goods).

SCADA topics

- Remote monitoring of the state of automation systems
- Logging capacity (resorting to specialized Databases)
- Able to access to *historical* information (plots along time, with selectable periodicity)
- Advanced tools to design Human-Machine interfaces
- Failure Detection and Isolation capacity (*threshold* and/or logical functions) on supervised quantities
- Access control

SCADA system general layout

Hardware Support Architecture of SCADA

General term: Fieldbus (IEC 61158). *Examples:* PROFIBUS (Fieldbus type, Siemens), MODBUS (Schneider), CAN bus (Bosch), ...

Examples of software packages including SCADA solutions

- Aimax, de Desin Instruments S.A.
- CUBE, Orsi España S.A.
- FIX, de Intellution.
- Lookout, National Instruments.
- Monitor Pro, de Schneider Electric.
- SCADA InTouch, de LOGITEK.
- SYSMAC SCS, de Omron.
- Scatt Graph 5000, de ABB.
- WinCC, de Siemens.

IST / DEEC / MAPI

from https://en.wikipedia.org/wiki/Fieldbus (May 2020)

Fieldbus 🔶	Bus power 🗢	Cabling redundancy \$	Max devices 🖨	Synchronisation 🖨	Sub millisecond cycle 🗢	
AFDX	No	Yes	Almost unlimited	No	Yes	
AS-Interface	Yes	No	62	No	No	
CANopen	No	No	127	Yes	No	
CompoNet	Yes	No	384	No	Yes	
ControlNet	No	Yes	99	No	No	
CC-Link	No	No	64	No	No	
DeviceNet	Yes	No	64	No	No	
EtherCAT	Yes	Yes	65,536	Yes	Yes	-
Ethernet Powerlink	No	Optional	240	Yes	Yes	$\begin{bmatrix} r \\ c \end{bmatrix}$
EtherNet/IP	No	Optional	Almost unlimited	Yes	Yes	2
Interbus	No	No	511	No	No	
LonWorks	No	No	32,000	No	No	
Modbus	No	No	246	No	No	-
PROFIBUS DP	No	Optional	126	Yes	No	
PROFIBUS PA	Yes	No	126	No	No	
PROFINETIO	No	Optional	Almost unlimited	No	No	
PROFINET IRT	No	Optional	Almost unlimited	Yes	Yes	
SERCOS III	No	Yes	511	Yes	Yes	
SERCOS interface	No	No	254	Yes	Yes	
Foundation Fieldbus H1	Yes	No	240	Yes	No	
Foundation Fieldbus HSE	No	Yes	Almost unlimited	Yes	No	
RAPIEnet	No	Yes	256	Under Development	Conditional	
				10		

An invitation for project 3:

Do a presentation about OpenSCADA <u>http://oscada.org/</u>

Some links:

General characteristics of OpenSCADA <u>http://oscada.org/main/characteristics/</u>

OpenSCADA on a Raspberry-Pi <u>http://oscada.org/wiki/Using/Raspberry_Pi</u>

Modeling and Automation of Industrial Processes

Modelação e Automação de Processos Industriais / MAPI

Supervised Control of Discrete Event Systems Supervision Controllers (Part 1/2)

http://www.isr.tecnico.ulisboa.pt/~jag/courses/mapi2223

Prof. Paulo Jorge Oliveira, original slides Prof. José Gaspar, rev. 2022/2023

Syllabus:

Chap. 2 – Discrete Event Systems (DESs)

Chap. 5b – Supervised Control of DESs * SCADA * Methodologies for the Synthesis of Supervision Controllers * Failure detection

...

...

IST / DEEC / MAPI

Some pointers on Supervised Control of DES

History:The SCADA Web, http://members.iinet.net.au/~ianw/Monitoring and Control of Discrete Event Systems, Stéphane Lafortune,http://www.ece.northwestern.edu/~ahaddad/ifac96/introductory_workshops.html

Tutorial:http://vita.bu.edu/cgc/MIDEDS/http://www.daimi.au.dk/PetriNets/

Analysers &http://www.nd.edu/~isis/techreports/isis-2002-003.pdf (Users Manual)Simulators:http://www.nd.edu/~isis/techreports/spnbox/ (Software)

Bibliography: * SCADA books <u>http://www.sss-mag.com/scada.html</u>
* K. Stouffer, J. Falco, K. Kent, "Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems Security", NIST Special Publication 800-82, 2006
* Moody J. e Antsaklis P., "Supervisory Control of Discrete Event Systems using Petri Nets," Kluwer Academic Publishers, 1998.
* Cassandras, Christos G., "Discrete Event Systems - Modeling and Performance Analysis," Aksen Associates, 1993.
* Yamalidou K., Moody J., Lemmon M. and Antsaklis P. Feedback Control of Petri Nets Based on Place Invariants http://www.nd.edu/~lemmon/isis-94-002.pdf

And

Now

Something

Completely

Different

Given one Unsafe Petri net can one obtain a Safe Petri net?

Unsafe Petri net

Safe Petri net

In many cases yes: **Supervision** of DES may be achieved using linear algebra based methodologies. *See the next slides!*

Other possible goals:

- Supervise and bound the work of the supervised DES
- Reinforce that some properties are verified
- Assure that some states are not reached

- Performance criteria are verified
- Prevent deadlocks in DES
- Constrain on the use of resources (e.g. mutual exclusion)

Some history on Supervised Control

- Methods for finite automata [Ramadge et *al*.], 1989
 - some are based on brute-force search (!)
 - or may require simulation (!)

• Formal verification of *software* in Computer Science (since the 60s) and on *hardware* (90, ...)

• Supervisory Control Method of Petri Nets, method based on *monitors* [Giua et *al*.], 1992.

• Supervisory Control of Petri Nets based on Place Invariants [Moody, Antsaklis et *al*.], 1994 (shares some similarities with the previous one, but deduced independently!...).

Advantages of the Supervisory Control of Petri Nets

- Mathematical representation is clear (and easy)
- Resorts only to linear algebra (matrices)
- More compact then automata
- Straightforward the representation of infinity state spaces
- Intuitive graphical representation available

The representation of the controller as a Petri Net leads to simplified Analysis and Synthesis tasks

Place Invariants

Place invariants are sets of places whose token count remains always constant. Place invariants can be computed from integer solutions of $w^T D = 0$. Non-zero entries of w correspond to the places that belong to the particular invariant.

Supervisor Synthesis using Place Invariants [ISIS docs]:

What type of relations can be represented in the method of Place Invariants?

- Sets of linear constraints in the state space
- Representation of convex regions (there are extensions for non-convex regions)
- Constraints to guarantee liveness and to avoid deadlocks (that can be expressed, in general, as linear constraints)
- Constraints on the events and timings (that can be expressed, in general, as linear constraints)

Methods of Analysis/Synthesis

Method of the Matrix Equations (just to remind)

The dynamics of the Petri net state can be written in compact form as:

$$\mu(k+1) = \mu(k) + Dq(k)$$

where:

- $\mu(k+1)$ marking to be reached
- μ (k) initial marking
- q(k) firing vector (transitions)
- D incidence matrix. Accounts the balance of tokens, giving the transitions fired.

Methods of Analysis/Synthesis

How to build the Incidence Matrix? (just to remind)

For a Petri net with *n* places and *m* transitions

$$\mu \in N_0^{n}$$

$$q \in N_0^{m}$$

$$D = D^+ - D^-, \quad D \in Z^{n \times m}, \quad D^+ \in N_0^{n \times m}, \quad D^- \in N_0^{n \times m}$$
The enabling firing rule is $D^-q \leq \mu$

Can also be written in compact form as the inequality $\mu + Dq \ge 0$, interpreted element-by-element.

Note: in this course all vector and matrix inequalities are read element-by-element unless otherwise stated.

Place Invariants

 $W^{T}\mu(K+1) = W^{T}\mu(K) + W^{T}\rho(K)$ $\sum_{k=0}^{\infty} e_{s,k} = 0 \quad \forall_{K}$

Place invariants are sets of places whose token count remains always constant. Place invariants can be computed from integer solutions of $w^T D = 0$. Non-zero entries of w correspond to the places that belong to the particular invariant.

Supervisor Synthesis using Place Invariants [ISIS docs]:

What type of relations can be represented in the method of Place Invariants?

- Sets of linear constraints in the state space
- Representation of convex regions (there are extensions for non-convex regions)
- Constraints to guarantee liveness and to avoid deadlocks (that can be expressed, in general, as linear constraints)
- Constraints on the events and timings (that can be expressed, in general, as linear constraints)

Some notation for the method

• The supervised system is modelled as a Petri net with *n* places and *m* transitions, and incidence matrix

$$D_{P} \in \mathbb{Z}^{n \times m} \cdot \begin{bmatrix} \mathcal{M}_{p}(\mathcal{W}^{(1)}) \\ \mathcal{M}_{c}(\mathcal{W}^{(1)}) \end{bmatrix} = \begin{bmatrix} \mathcal{M}_{p}(\mathcal{W}) \\ \mathcal{M}_{c}(\mathcal{W}) \end{bmatrix}^{\dagger} \begin{bmatrix} D_{P} \\ D_{c} \end{bmatrix}^{q(\mathcal{W})}$$

• The supervisor is modelled as a Petri net with n_C places and m transitions, and incidence matrix

$$D_C \in \mathbb{Z}^{n_C \times m}.$$

• The resulting total system has an incidence matrix

$$D \in \mathbb{Z}^{(n+n_c) \times m}.$$

Theorem: Synthesis of Controllers based on Place Invariants (T1)

Given the set of linear state constraints that the supervised system must follow, written as

$$L\mu_P \leq b$$
, $\mu_P \in N_0^n$, $L \in Z^{n_C \times n}$ and $b \in Z^{n_C}$.

If
$$b-L\mu_{P_0}\geq 0$$
,

then the controller with incidence matrix and the initial marking, respectively

$$D_{C} = -LD_{P}$$
, and $\mu_{C_{0}} = b - L\mu_{P_{0}}$,

enforce the constraints to be verified for all markings obtained from the initial marking.

Theorem - proof outline :

The constraint $L\mu_P \leq b$ can be written as $L\mu_P + \mu_C = b$, using the slack variables μ_C . They represent the marking of the n_C places of the controller.

To have a place invariant, the relation $w^T D = 0$ must be verified and in particular, given the previous constraint:

$$w^T D = \begin{bmatrix} L & I \end{bmatrix} \begin{bmatrix} D_P \\ D_C \end{bmatrix} = 0$$
, resulting $D_C = -LD_P$.

From $L\mu_{P_0} + \mu_{C_0} = b$, follows that $\mu_{C_0} = b - L\mu_{P_0}$.

Page 27

IST / DEEC / MAPI

Some more details : $L_{p} \leq 6 \longrightarrow D_c = -LD_P, M_{co} = b - L_{po}$ Using slack variables Mc [L I] [D] g(x) = 0
[D] desind tq(x) allows Lmp <b -> Lmp + Mc = b which can be written in matrix $\begin{bmatrix} z \\ z \end{bmatrix} \begin{bmatrix} z \\ D \end{bmatrix} = 0$ form as $[I][M_p] = b$ $LD_{p} + D_{c} = 0 \longrightarrow D_{c} = - LD_{p} /$ Given the dynamics $\begin{bmatrix} m_{j}(w_{1}) \\ m_{j}(w_{1}) \end{bmatrix} = \begin{bmatrix} m_{j}(w) \\ m_{j}(w) \end{bmatrix} + \begin{bmatrix} D_{j} \\ D_{j} \end{bmatrix} f(w)$ $\begin{bmatrix} m_{j}(w_{1}) \\ m_{j}(w_{1}) \end{bmatrix} = \begin{bmatrix} m_{j}(w) \\ m_{j}(w) \end{bmatrix} + \begin{bmatrix} D_{j} \\ D_{j} \end{bmatrix} f(w)$ The initial state is direct: $L_{\mu_p} - \mu_c = 5 - T_{\mu_c}$ one has $[L I] \left(\begin{bmatrix} M P \\ M \end{bmatrix} + \begin{bmatrix} D P \\ P C \end{bmatrix} q^{(K)} \right)^{=} b$ $L_{m_{0}} + m_{0} = b$ $M_{0} = b - L_{M_{0}}$

Example 1 of controller synthesis: Mutual Exclusion

Linear constraint: $\mu_2 + \mu_4 \leq I$ that can be written as: $L\mu_P \leq b \quad \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \begin{vmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \end{vmatrix} \leq 1.$ Incidence Matrix $D_P = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ and initial marking

Page 29

Example 1 of controller synthesis: Mutual Exclusion

 $b - L\mu_{P_0} = 1 - \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \begin{vmatrix} 1 \\ 0 \\ 1 \\ 0 \end{vmatrix} = 1 \ge 0.$ 1) Test OK. 2) Compute $D_{C} = -LD_{P} = -\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix},$ and

$$\mu_{C_0} = b - L \mu_{P_0} = 1.$$
 OK.

Page 30

Example 1 of controller synthesis: Mutual Exclusion

Example 1 of controller synthesis: Mutual Exclusion

```
% The Petri net D=Dp-Dm, and m0
                                                 Result using the function
% (Dplus-Dminus= Post-Pre)
                                                 linenf.m of the toolbox
Dm= [1 0 0 0;
                                                 SPNBOX:
    0 1 0 0;
    0 0 1 0;
    0 0 0 1];
                                                 Df =
Dp= [0 1 0 0;
                                                     -1 1
                                                                 0
                                                                       0
    1000;
                                                          -1 0
                                                      1
                                                                       0
    0 0 0 1;
                                                      0 0 -1 1
    0 0 1 0];
                                                      0 0 1 -1
                                                     -1 1
                                                                -1 1
mO = [1 \ 0 \ 1 \ 0]';
% Supervisor constraint
                                                 ms0 =
L = [0 \ 1 \ 0 \ 1];
                                                      1
b = 1;
                                                      0
                                                      1
% Computing the supervisor
                                                      0
                                                      1
[Dfm, Dfp, ms0] = linenf(Dm, Dp, L, b, m0);
Df= Dfp-Dfm
```

ms0

Definition:

Maximal permissivity occurs when (i) all the linear constraints are verified and (ii) all legal markings can be reached.

Lemmas:

L1) The controllers obtained with T1 have maximal permissivity.

L2) Given the linear constraints used, **the place invariants** obtained with the controller synthesized with T1 **are the same** as the invariants associated with the initial system.

n Readers / 1 Writer

Example 2 of controller synthesis $\forall s \in N_0, \forall t \in N_0, \forall n \in N_0$ Linear constraint $\mu_2 + n\mu_4 \le n$ (max *n* readers or 1 writer) That can be written as: $L\mu_P \leq b \qquad \begin{bmatrix} 0 & 1 & 0 & n \end{bmatrix} \begin{vmatrix} r & 1 \\ \mu_2 \\ \mu_3 \end{vmatrix} \leq n.$ $D_{P} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ and initial marking 0

0

Example 2 of controller synthesis

$$\mu_{C_0} = b - L\mu_{P_0} = n.$$
 OK.

Example 2 of controller synthesis

n Readers / 1 Writer

3) Resulting in

Advantages of the Method of the Place Invariants [ISIS docs]:

Other characteristics that can impact on the solutions?

- Existence and uniqueness
- Optimality of the solutions (e.g. maximal permissivity)

• Existence of transition non-controllable and/or not observable (remind definitions for time-driven systems)

In general the solutions can be found solving:

Linear Programming Problems, with Linear Constraints

Example 3 of controller synthesis

Given one Unsafe Petri net can one obtain a Safe Petri net?

Modeling and Automation of Industrial Processes

Modelação e Automação de Processos Industriais / MAPI

Supervised Control of Discrete Event Systems Supervision Controllers (Part 2/2)

http://www.isr.tecnico.ulisboa.pt/~jag/courses/mapi2223

Prof. Paulo Jorge Oliveira, original slides Prof. José Gaspar, rev. 2022/2023

Some pointers on Supervised Control of DES

Analysers &http://www.nd.edu/~isis/techreports/isis-2002-003.pdf (Users Manual)simulatorshttp://www.nd.edu/~isis/techreports/spnbox/ (Software)

Bibliography: Supervisory Control of Discrete Event Systems using Petri Nets, J. Moody J. and P. Antsaklis, Kluwer Academic Publishers, 1998.

> **Supervised Control of Concurrent Systems: A Petri Net Structural Approach**, M. Iordache and P. Antsaklis, Birkhauser 2006.

Discrete Event Systems - Modeling and Performance Analysis, Christos G. Cassandras, Aksen Associates, 1993.

Feedback Control of Petri Nets Based on Place Invariants, K. Yamalidou, J. Moody, M. Lemmon and P. Antsaklis, <u>http://www.nd.edu/~lemmon/isis-94-002.pdf</u>

Example of controller synthesis: s **Producers / t Consumers**

Let p2= #machines working, t2= product produced
 p3= #consumers, t3= request to consume (e.g. transport product)
 Q: How to write *consume only when produced* ? What is the linear constraint?

Not possible to write it as a linear constraint on places $L\mu_p \le b$. Is it impossible to solve this problem with the supervised control?

Page 41

Detail of elements that allow forming generalized linear constraints

Methods of Synthesis Generalized linear constraint

State:
$$\mu_p(k) = \begin{bmatrix} \mu_{p1} \\ \mu_{p2} \\ \mu_{p3} \end{bmatrix}_k$$

Firing vector: $q_p(k) = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix}_k$
Parikh vector: $v_p(k) = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}_k$

 $L\mu_P + Fq_P + C\nu_P \leq b$

$$\begin{split} \mu_P \in {N_0}^n, \ \nu_P \in {N_0}^m, \ q_P \in {N_0}^m, \\ L \in Z^{n_C \times n}, \ F \in Z^{n_C \times m}, \ C \in Z^{n_C \times m}, \\ b \in Z^{n_C} \end{split}$$

Page 42

Methods of Synthesis Generalized linear constraint

Let the generalized linear constraint be

$$L\mu_P + Fq_P + C\nu_P \le b$$

n = #places m = #transitions $n_C = \#$ constraints

$$\mu_P \in N_0^n, \quad q_P \in N_0^m, \quad \nu_P \in N_0^m$$

 $L \in Z^{n_C \times n}$, $F \in Z^{n_C \times m}$, $C \in Z^{n_C \times m}$ and $b \in Z^{n_C}$

where

- μ_P is the marking vector for system P
- q_P is the firing vector since t_0
- v_P is the number of transitions (firing) that can occur, also designated as *Parikh vector*

Function LINENF of SPNBOX

Theorem*: Synthesis of Controllers based on Place Invariants, for Generalized Linear Constraints

Given the generalized linear constraint $L\mu_P + Fq_P + Cv_P \le b$, if $b - L\mu_{P_0} \ge 0$, then the controller with incidence matrix and initial marking, respectively

$$D_{C}^{-} = \max(0, LD_{P} + C, F)$$

$$D_{C}^{+} = \max(0, F - \max(0, LD_{P} + C)) - \min(0, LD_{P} + C),$$

$$\mu_{C_0} = b - L\mu_{P_0} - Cv_{P_0},$$

guarantees that constraints are verified for the states resulting from the initial marking.

* In the next slides this will be called the **LINENF theorem.**

Page 44

Example 1 of controller synthesis

Producer / Consumer

 $\forall s \in N_0, \forall t \in N_0, \forall n \in N_0$ $v_3 \leq v_2$ Linear constraint: that can be written as: $\begin{vmatrix} Cv_{P} \leq b \\ L = 0, F = 0 \end{vmatrix} \begin{bmatrix} 0 & -1 & 1 & 0 \\ v_{3} \\ v_{4} \end{vmatrix} \le 0.$ $D_{P} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ Initial marking S 0 $\mu_{P_0} =$ 0

Example of controller synthesis

Producer / Consumer

1) Test
$$b - L\mu_{P_0} = 0 - 0 \ge 0.$$
 OK.

2) Compute

$$D_{C}^{-} = \max(0, LD_{P} + C, F)$$

$$D_{C}^{+} = \max(0, F - \max(0, LD_{P} + C)) - \min(0, LD_{P} + C),$$

$$D_{C}^{-} = \max(0, [0 - 1 \ 1 \ 0], \ 0) = [0 \ 0 \ 1 \ 0]$$

$$D_{C}^{+} = \max(0, -[0 \ 0 \ 1 \ 0]) - \min(0, [0 \ -1 \ 1 \ 0])$$

$$= [0 \ 0 \ 0 \ 0] - [0 \ -1 \ 0 \ 0] = [0 \ 1 \ 0 \ 0]$$
and

$$\mu_{C_{0}} = b - L\mu_{P_{0}} - Cv_{P_{0}},$$

$$\mu_{C_{0}} = b - L\mu_{P_{0}} = 0 - 0 = 0.$$
OK.

Example of controller synthesis

Producer / Consumer

3) Resulting in

IST / DEEC / MAPI

Methods of Synthesis

% The Petri net D=Dp-Dm, and mO (Dplus-Dminus= Post-Pre) ₽;

Dm= [1 0 0 0;
0 1 0 0;
0 0 1 0;
0 0 0 1];
Dp= [0 1 0 0;
1000;
0 0 0 1;
0 0 1 0];
mO= [1 0 1 0]';
% Supervisor constraint
*
L= []; F= []; C= [0 -1 1 0];
b= 0;
% Computing the supervisor
*
[Dfm, Dfp, ms0] = linenf(Dm, Dp, L, b, m0, F, C)
Df= Dfp-Dfm
msO

Example of controller synthesis: Producer Consumer

Result using the function
LINENF.m of the
toolbox SPNBOX:
Df =

-1	l	0	0
1	-1	0	0
0	0	-1	1
0	0	1	-1
0	l	-1	0

msO	=
	1
	0
	1
	0
	0

Example 2 of controller synthesis

Bounded Producer / Consumer

 Incidence matrix
 Initial marking

 $D_P = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$ $\mu_{P_0} = \begin{bmatrix} s \\ 0 \\ t \\ 0 \end{bmatrix}$

TWO linear constraints:

$$\begin{cases} v_3 \leq v_2 \\ v_2 \leq v_3 + n \end{cases} \Leftrightarrow \begin{cases} v_3 - v_2 \leq 0 \\ v_2 - v_3 \leq n \end{cases}$$
$$\forall s \in N_0, \forall t \in N_0, \forall n \in N_0 \end{cases}$$

The two linear constraints can be written as:

$$Cv_{P} \leq b$$

i.e. $L = 0, F = 0$ $\Leftrightarrow \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix} \leq \begin{bmatrix} 0 \\ n \end{bmatrix}$

Page 49

Example of controller synthesis

Bounded Producer / Consumer

1) Test

$$b - L\mu_{P_0} = b = \begin{bmatrix} 0\\ n \end{bmatrix} \ge 0.$$
OK.
2) Compute

Compute

$$D_{C}^{-} = \max\left(0, \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}, 0\right) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$D_{C}^{+} = \max\left(0, 0 - \max\left(0, \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}\right)\right) - \min\left(0, \begin{bmatrix} 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix}\right)$$
$$= \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

and $^{a}\mu_{C_{0}}=b-L\mu_{P_{0}}=\begin{bmatrix}0\\n\end{bmatrix}.$

OK.

Example 3 of controller synthesis – *Flow regulation*

Consider a Petri net with a large initial marking

(1000) - t,

Objective: do *NOT allow consuming too many tokens* in a single step. For example, one wants to enforce max q_1 to be 2, i.e. *accepting only* $q_1 = 0$ or $q_1 = 1$ or $q_1 = 2$.

Constraint:

Solution:

Function LINENF of SPNBOX

LINENF Lemma 1: From General Constraints to Theorem T1

Given the generalized linear constraint $L\mu_P + Fq_P + C\nu_P \le b$ and the conditions of the LINENF theorem:

If
$$L \neq 0$$
, $F = 0$, $C = 0$

 $\mu_{C0} = b - L\mu_{P0}$

then
$$D_{C}^{+} = (LD_{P})^{-}, \quad D_{C}^{-} = (LD_{P})^{+}$$
 and $D_{C} = -LD_{P}$

(see proof in the next page)

Notation: $D^{+} = \max(0, D)$ $D^{-} = -\min(0, D)$ $D^{-} = D^{+} - D^{-}$ $D^{+}, D^{-} \in N_{0}^{n \times m} \text{ and } D \in Z_{0}^{n \times m}$

IST / DEEC / MAPI

$$D_{C}^{-} = \max(0, LD_{P} + C, F) \qquad \qquad \mu_{C_{0}} = b - L\mu_{P_{0}} - Cv_{P_{0}}, D_{C}^{+} = \max(0, F - \max(0, LD_{P} + C)) - \min(0, LD_{P} + C),$$

$$L \neq 0, F=0, C=0 \implies L_{M_P} \leq b$$

$$D_{c} = D_{c}^{+} - D_{c}^{-} = (LD_{p})^{-} - (LD_{p})^{+} = -((LD_{p})^{+} - (LD_{p})^{-}) = -LD_{p}/(2D_{p})^{+} - (LD_{p})^{-} = -LD_{p}/(2D_{p})^{-} - (LD_{p})^{-} = -LD_{p}/(2D_{p})^{-} = -LD_{$$

 $M_{co} = b - L_{P_{o}} - f_{V_{p_{o}}} = b - L_{P_{o}}$

Function LINENF of SPNBOX

LINENF Lemma 2: Firing Regulation

Given the generalized linear constraint $L\mu_P + Fq_P + C\nu_P \le b$ and the conditions of the LINENF theorem:

If
$$L = 0$$
, $F \neq 0$, $C = 0$

then $D_C^+ = F^+$, $D_C^- = F^+$ and $D_C = 0$ $\mu_{C0} = b$

(homework, prove this lemma)

Function LINENF of SPNBOX

LINENF Lemma 3: Constraints on Counters

Given the generalized linear constraint $L\mu_P + Fq_P + C\nu_P \le b$ and the conditions of the LINENF theorem:

If
$$L = 0$$
, $F = 0$, $C \neq 0$

then $D_{C}^{+} = C^{-}$, $D_{C}^{-} = C^{+}$ and $D_{C} = -C$ $\mu_{C0} = b - Cv_{P0}$

(homework, prove this lemma)

(empty page, do yourself the proof of the last two lemmas)

Methods of Synthesis:intro to Uncontrollable and
Unobservable transitions

Definition of Uncontrollable Transition:

A transition is uncontrollable if its firing **cannot be inhibited** by an external action (e.g. a supervisory controller).

Definition of Unobservable Transition:

A transition is unobservable if its firing **cannot be detected or measured** (therefore the study of any supervisory controller can not depend from that firing).

Proposition:

In a Petri net based controller, both input and output arcs to/from plant transitions are used to trigger state changes in the controller. *Since a controller cannot have arcs connecting to unobservable transitions, then all unobservable transitions are also implicitly uncontrollable*.

Methods of Synthesis: intro to Uncontrollable and Unobservable transitions

If **t1 is controllable** and **<u>t2 is uncontrollable</u>**:

- case (a), then t2 cannot be directly inhibited; it will eventually fire

- case (b), then t2 can be indirectly prevented from firing by inhibiting t1.

i.e. may exist indirect solution despite t2 being uncontrollable.

If <u>t2 is unobservable</u> and t3 is observable, then we cannot detect when t2 fires. The state of a supervisor is not changed by firing t2. However we can **indirectly detect that t2 has fired**, by detecting the firing of t3.

i.e. may exist indirect solution despite t2 being unobservable.

: may exist indirect solution despite t2 uncontrollable and/or unobservable.

Definition: A marking μ_P is admissible if

i) $L\mu_P \leq b$ and ii) $\forall \mu' \in R(C, \mu_P)$ verifies $L\mu' \leq b$

Definition: A **Linear Constraint** (*L*, *b*) is admissible if

i)
$$L\mu_{Po} \leq b$$
 and

ii) $\forall \mu' \in R(C, \mu_{Po})$ such that $L\mu' \leq b$

 μ ' is an admissible marking.

Note: ii) indicates that the firing of uncontrollable transitions can never lead from a state that satisfies the constraint to a new state that does not satisfy the constraint.

Proposition: Admissibility of a constraint

A linear constraint is admissible *iff*

- The initial markings satisfy the constraint.
- There exists a controller with maximal permissivity that forces the constraint and does not inhibit any uncontrollable transition.

Two sufficient (not necessary) conditions:

Corollary: given a system with uncontrollable transitions, $\begin{bmatrix} l^T D_{uc} \leq 0 \end{bmatrix}$ implies admissibility.

Corollary: given a system with unobservable transitions, $\begin{bmatrix} l^T D_{uo} = 0 \end{bmatrix}$ implies admissibility.

Function MRO_ADM of SPNBOX

Lemma *: Structure of Constraint transformation

If
$$L'\mu_p \le b'$$
 is verified by supervision and
was created from $L\mu_p \le b$ and (R_1, R_2)

where

$$\begin{array}{ll} \mathbf{L}' = \mathbf{R}_1 + \mathbf{R}_2 \mathbf{L} & \text{and} & \mathbf{b}' = \mathbf{R}_2(\mathbf{b} + 1) - 1 \\ \mathbf{R}_1 \in Z^{n_C \times n} & \text{and} & \mathbf{R}_1 \mu_p \ge 0 \\ \mathbf{R}_2 \in Z^{n_C \times n_C} & \text{is a matrix with positive elements in the diagonal} \end{array}$$

then

 $L\mu_p \le b$ is a

is also verified by the same supervisor.

Typical usage:

- list extra constraints as unobservable (uo) and/or uncontrollable (oc) transitions
- constraints (L, b) + extra constraints \Rightarrow (R_1, R_2) \rightarrow (L', b')
- compute the supervisor $(L', b') \rightarrow (D_C^+, D_C^-, \mu_{C0})$ (example in the next slides)
- * Lemma 4.10 in [Moody98] pg46

Example 4: design controller with t1 unobservable (1/4)

Objectives: $\mu_1 + \mu_3 \ge 1$ and $\mu_2 + \mu_3 \ge 1$ which can be written in matrix form as

$$L\mu \le b$$
, $L = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix}$, $b = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

Example extracted from "Supervised Control of Concurrent Systems: A Petri Net Structural Approach", M. Iordache and P. Antsaklis, Birkhauser 2006.

Page 63

Example: design controller with t1 unobservable (2/4)

% System and constraints

D= [-1 1 0; -1 0 1; +2 -1 -1];

Dm= -D.*(D<0); Dp= D.*(D>0);

mO= [1 1 0]';

L= [-1 0 -1; 0 -1 -1]; b= [-1; -1];

% Supervisor computation

```
[Dfp, Dfm, mf0] =
    linenf( Dp, Dm, L, b, m0 );
```


 ^{A}Bad news, supervisor touches t_1 .

Example: design controller with t1 unobservable (3/4)

Solution obtained with the function MRO ADM.m of the SPNBOX toolbox:

$$R1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \qquad La = \begin{bmatrix} -2 & 0 & -1 \\ 0 & -2 & -1 \end{bmatrix} \qquad ba = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
$$R2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \qquad Note: verify that \quad L_a \mu \le b_a \quad implies \quad L \mu \le b_a$$

Page 65

b

Example: design controller with t1 unobservable (4/4)

Finally the supervised controller is simply obtained from L_a and b_a :

$$D_{c} = -L_{a}D_{p}$$

$$= \begin{bmatrix} -2 & 0 & -1 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\mu_{c0} = b_a - L_a \mu_{p0}$$
$$= \begin{bmatrix} -1 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 & 0 & -1 \\ 0 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Obtained the desired result: supervisor does not touch t_1 .

End of chapter on supervision control.

What is next? *

* The starting point for studying and supervising Discrete Event Systems (DES), base elements of the Theory of Computation, have been introduced in early years of the ECE MSc

<u>https://fenix.tecnico.ulisboa.pt/disciplinas/ETC/2021-2022/1-semestre/programa</u> Many evolutions are expected to the teaching of supervision control!