Modeling and Automation of Industrial Processes

Modelação e Automação de Processos Industriais / MAPI

Stochastic Analysis Markov Chain Modelling

http://www.isr.tecnico.ulisboa.pt/~jag/courses/mapi2223

Prof. José Gaspar, rev. 2022/2023

Syllabus:

Chap. 2 – Discrete Event Systems

Chap. 3 – Stochastic Models

Stochastic Timed Automata (STA) Stochastic Queueing Networks (SQN) Stochastic Petri Nets (SPN) Generalized Stochastic Petri Nets (GSPN)

Chap. 4 – Stochastic Analysis Markov chain (MC) modelling

Chap. 5 – Supervision of DESs

Markov Chains

[Luenberger'79] "Introduction to dynamic systems: theory, models, and applications", David G. Luenberger, Vol. 1. New York: Wiley, 1979.

[Zurawski'94] "Petri nets and industrial applications: A tutorial." R. Zurawski, M. Zhou. IEEE Trans. on Industrial Electronics 41.6 (1994): 567-583. <u>https://www.researchgate.net/publication/3217035</u>

[Cassandras'08] Introduction to discrete event systems, Christos Cassandras and Stéphane Lafortune, Springer 2008 – chapter 6, section 6.4.

In this example, on a sunny day, chances are 50% it continues sunny or 50% changes to cloudy (not rainy).

P always *sums 1 at every row*, is always a *right-stochastic matrix*.

Markov Chain, example 1 ^[Luenberger'79] *The weather chain*

Transition probabilities

If one starts at a sunny day, $x(0)^T = [1 \ 0 \ 0]$, what are the chances of sunny / cloudy / rainy after 1, 2, ... days?

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.25 & 0.25 \\ 0 & 0.5 & 0.5 \end{bmatrix} \qquad x(1)^{T} = x(0)^{T}P = \begin{bmatrix} 0.5 & 0.5 & 0 \end{bmatrix} x(2)^{T} = x(1)^{T}P = x(0)^{T}P^{2} = \begin{bmatrix} 0.5 & 0.375 & 0.125 \end{bmatrix}$$

State Holding Times

Initial state
$$x(0)^T = [1 \ 0 \ 0]$$

transition matrix

$$P = \begin{bmatrix} 0.5 & 0.5 & 0\\ 0.5 & 0.25 & 0.25\\ 0 & 0.5 & 0.5 \end{bmatrix}$$

What are the chances of sunny / cloudy / rainy after 1, 2, ... days?

end

```
xOT = [1.000 \ 0.000 \ 0.000]
x1T = [0.500 \ 0.500 \ 0.000]
x2T = [0.500 \ 0.375 \ 0.125]
x3T = [0.438 \ 0.406 \ 0.156]
x4T = [0.422 \ 0.398 \ 0.180]
x5T = [0.410 \ 0.400 \ 0.189]
x6T = [0.405 \ 0.400 \ 0.195]
x7T = [0.403 \ 0.400 \ 0.197]
x8T = [0.401 \ 0.400 \ 0.199]
x9T = [0.401 \ 0.400 \ 0.199]
x10T = [0.400 \ 0.400 \ 0.200]
x11T = [0.400 \ 0.400 \ 0.200]
x12T = [0.400 \ 0.400 \ 0.200]
x13T = [0.400 \ 0.400 \ 0.200]
x14T = [0.400 \ 0.400 \ 0.200]
x15T = [0.400 \ 0.400 \ 0.200]
x16T = [0.400 \ 0.400 \ 0.200]
x17T = [0.400 \ 0.400 \ 0.200]
x18T = [0.400 \ 0.400 \ 0.200]
x19T = [0.400 \ 0.400 \ 0.200]
x20T = [0.400 \ 0.400 \ 0.200]
```

Positive Linear System [Luenberger'79]

A discrete-time linear system x(k + 1) = Ax(k) is defined to be positive (or nonnegative) if the elements of A are all nonnegative.

If $\mathbf{A} = [a_{ij}]$ is a matrix, we write:

- (i) A > 0 if $a_{ij} > 0$ for all i, j
- (ii) $A \ge 0$ if $a_{ij} \ge 0$ for all i,j and $a_{ij} \ge 0$ for at least one element
- (iii) $A \ge 0$ if $a_{ij} \ge 0$ for all i, j.

Terminology:

- (i) A is strictly positive if all its elements are strictly greater than zero
- (ii) A is *positive* or *strictly nonnegative* if all elements of A are nonnegative but at least one element IS nonzero, and
- (iii) A is *nonnegative* if all elements are nonnegative.

[Luenberger'79] "Introduction to dynamic systems: theory, models, and applications", David G. Luenberger, Vol. 1. New York: Wiley, 1979.

Theorem 1 (Frobenius-Perron). If A > 0, then there exists $\lambda_0 > 0$ and $\mathbf{x}_0 > 0$ such that (a) $A\mathbf{x}_0 = \lambda_0 \mathbf{x}_0$; (b) if $\lambda \neq \lambda_0$ is any other eigenvalue of A, then $|\lambda| < \lambda_0$; (c) λ_0 is an eigenvalue of geometric and algebraic multiplicity 1.

Theorem 2. Let $A \ge 0$ and suppose $A^m > 0$ for some positive integer m. Then conclusions (a), (b), and (c) of Theorem 1 apply to A.

Theorem 3. Let $A \ge 0$. Then there exists $\lambda_0 \ge 0$ and $\mathbf{x}_0 \ge 0$ such that (a) $A\mathbf{x}_0 = \lambda_0 \mathbf{x}_0$; (b) if $\lambda \ne \lambda_0$ is any other eigenvalue of A, then $|\lambda| \le \lambda_0$.

x(k + 1) = A x(k)it is going to be written the equation transposed, as it is common in Markov chains

Note: in the following instead of writing

$$\boldsymbol{x}^{T}(k+1) = \boldsymbol{x}^{T}(k) \boldsymbol{P}$$

hence $A = P^T$.

Definition. A Markov chain is said to be <u>regular</u> if $\mathbf{P}^m > \mathbf{0}$ for some positive integer *m*.

Theorem 4 (Basic Limit Theorem for Markov Chains) [Luenberger'79]

Let **P** *be the transition matrix of a <u>regular</u> Markov chain. Then:*

(a) There is a unique probability vector $\mathbf{p}^{\mathrm{T}} > 0$ such that

 $\mathbf{p}^{\mathrm{T}} \mathbf{P} = \mathbf{p}^{\mathrm{T}}$

(b) For any initial state *i* (corresponding to an initial probability vector equal to the *i*th coordinate vector \boldsymbol{e}_i^T) the limit vector

$$\mathbf{v}^{\mathrm{T}} = \lim_{m \to \infty} \mathbf{e}_{i}^{\mathrm{T}} \mathbf{P}^{m}$$

exists and is independent of *i*. Furthermore, \mathbf{v}^{T} is equal to the eigenvector \mathbf{p}^{T} .

(c) $\lim_{\mathbf{m}\to\infty} \mathbf{P}^{\mathbf{m}} = \overline{\mathbf{P}}$, where $\overline{\mathbf{P}}$ is the $n \times n$ matrix, each of whose rows is equal to \mathbf{p}^{T} .

Proof starts at the Frobenius-Perron theorem and the fact that the dominant eigenvalue is $\lambda_0 = 1$.

What are the probabilities of the states after an infinite running time?

```
P= [.5 .5 0; .5 .25 .25; 0 .5 .5];
 P= [0.5 0.5 0
                                       [A,B] = eig( P' ); eigenvalues = diag(B)', eigenvectors = A
     0.5 0.25 0.25
         0.5 0.5 1;
     0
                                       eigenvalues =
                                          -0.2500
                                                     1.0000
                                                                0.5000
 P2 = P*P
                                       eigenvectors =
 P2 =
                                          -0.5345
                                                    -0.6667
                                                               -0.7071
     0.5000
               0.3750
                          0.1250
                                          0.8018
                                                    -0.6667
                                                               -0.0000
     0.3750
               0.4375
                          0.1875
                                          -0.2673
                                                    -0.3333
                                                                0.7071
               0.3750
                          0.3750
     0.2500
                                      p inf= eigenvectors(:,2) '/sum(eigenvectors(:,2))
Good news \mathbf{P}^m > 0 for m = 2 > 0
                                      p inf =
we can use Theorem 2.
                                                   0.4000
                                                               0.4000
                                                                           0.2000
                                                                                              Page 10
```

Markov Chain, example to do by hand Two states MC Λ

R

1/2

1/2

 $1/_{2}$

2/3

A

$$P = \begin{bmatrix} 2/3 & 1/3 \\ 1/2 & 1/2 \end{bmatrix}$$
Cood Mews
$$P > 0$$
hence $\exists_{d=1}^{1}$

1-6

Matlab :

syms a b [V,E]= eig([1-a b; a 1-b])

$$\begin{bmatrix} P_A, P_B \end{bmatrix} \mathbf{P} = \begin{bmatrix} P_A, P_B \end{bmatrix}$$

$$\begin{bmatrix} 2/3 P_A + 1/2 P_B \\ 1/3 P_A + 1/2 P_B \end{bmatrix} = \begin{bmatrix} P_A, P_B \end{bmatrix}$$

$$\begin{bmatrix} 1/3 P_A + 1/2 P_B = 0 & P_A = 1/2 \\ 1/3 P_A - 1/2 P_B = 0 & P_B = 1 \\ 1/3 P_A - 1/2 P_B = 0 \\ 1/3 P_A - 1/2 P_B - 1 \\ 1/3$$

Homework, 7-state MC

Simplified Monopoly [Luenberger'79]

Toss a coin, face1 move 1 step, face2 mode 2 steps. Stepping into *Go to jail* implies going to *Jail*.

[0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0
	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0
P =	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0
	0	0	0	0	0	<u>1</u> 2	1 2
	0	0	0	$\frac{1}{2}$	0	0	$\frac{1}{2}$
1	$\frac{1}{2}$	0	0	<u>1</u> 2	0	0	0

Homework: Simulate the simplified Monopoly as an SPN. Find the most visited place. Find the place that provides the maximum profit.

Stochastic Timed Petri nets (STPN), Markov Chains (MC)

STPN to MC, and MC to STPN

input

q(k) has a statistical characterization

3. Markov chain $1 - \alpha$ α $1 - \beta$ β

Example of an STPN (continued), steady state computation using an MC

Reachability graph / Markov chain:

Statistical information about transition firing:

 $P(t_1) = \alpha_1 = 0.982591$ $P(t_2) = \alpha_2 = 0.122824$ $P(t_3) = \alpha_3 = 0.098259$ $P(t_4) = \alpha_4 = 0.089308$ $P(t_5) = \alpha_5 = 0.714460$

Markov chain matrix:

curr next state
state
$$P = \begin{bmatrix} 1 - \alpha_1 & \alpha_1 & 0 & 0 \\ 0 & 1 - \alpha_2 - \alpha_4 & \alpha_2 & \alpha_4 \\ \alpha_3 & 0 & 1 - \alpha_3 & 0 \\ 0 & \alpha_5 & 0 & 1 - \alpha_5 \end{bmatrix}$$

Example of an STPN (continued), steady state computation using an MC

MC to STPN

$$P = \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{bmatrix} \qquad p^{p} P = p^{T} \implies P_{\alpha} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix} / \alpha + \beta$$

To obtain 70% holding time in A
one has
$$\begin{bmatrix} 0.7\\ 0.3 \end{bmatrix} = \begin{bmatrix} 3\\ 0 \end{bmatrix}$$

 $\boxed{x} + \beta$
 $\begin{bmatrix} 0 \end{bmatrix}$
 $\begin{bmatrix} 0.7\\ 0.3 \end{bmatrix} = \begin{bmatrix} 3\\ 0 \end{bmatrix}$
 $\boxed{x} + \beta$
 $\begin{bmatrix} 0 \end{bmatrix}$
 $\begin{bmatrix}$

Transient Analysis and Classification of States

Transient Analysis and Classification of States

What happens if there does NOT exist m > 0 such that $P^m > 0$?

- Some states of the MC will not have a stationary probability in [0, 1], those states will have **0** stationary probability
- In other words, as $t \to \infty$ some states will not be visited after some time.
- *Those states will have transitory visits, will be transitory states, within the operation time.*

IST / DEEC / MAPI

Markov Chain, example 2 [Luenberger'79]

Learning model

$$\begin{array}{c|c}
 L & N \\
\hline
 L & 1 & 0 \\
\hline
 N & \alpha & 1 - \alpha
\end{array}$$

Specific example $\alpha = 0.5$:

$\mathbf{P} =$	
1.0000	0
0.5000	0.5000
P^2 =	
1.0000	0
0.7500	0.2500

 $\begin{array}{l} P^{\wedge}3 = \\ 1.0000 & 0 \\ 0.8750 & 0.1250 \end{array}$

P^10 = 1.0000 0 0.9990 0.0010

 $\begin{array}{ll} P^2 0 = & \\ 1.0000 & 0 \\ 1.0000 & 0.0000 \end{array}$

Always finding zeros in P^m

Page 20

Markov Chain, example 2 [Luenberger'79]

Learning model

Continuing the specific example $\alpha = 0.5$:

```
P=[1 0; .5 .5]
```

```
[eigenvectors,B]= eig( P' );
evalues=diag(B)', eigenvectors
```

```
evalues =

1.0000 0.5000

eigenvectors =

1.0000 -0.7071

0 0.7071
```

One concludes:

- state L, the *learnt* state, is an **absorbing state**
- state N, the *yet to learn* state, is a **transient state**

Markov Chain, example 3 [Luenberger'79]

Gambler's ruin – Two players have 2 coins each one. Player A has probability p of winning one coin from player B. Thus, player B has probability q = 1 - p of being him to win a coin from A. (In the following is used p = q = 0.5.)

Page 22

Markov Chain, example 3 [Luenberger'79]

Gambler's ruin

[eigenvectors,B]= eig(P'); evalues=diag(B)', eigenvectors

evalues =

 	1.0000	1.0000	0.7071	-0.7071	0
ei	genvectors	=			
	1.0000	0	-0.5445	0.1434	-0.3162
	0	0	0.3190	-0.4896	0.6325
I	0	0	0.4511	0.6924	0.0000
	0	0	0.3190	-0.4896	-0.6325
	0	1.0000	-0.5445	0.1434	0.3162

States 0 and 4 are **absorbing states**.

States, 1, 2 and 3, are *transient states*.

Classification of States

Gambler's ruin

[eigenvectors,B]= eig(P'); evalues=diag(B)', eigenvectors

evalues = 1.0000 1.0000 0.7071 -0.7071 $\left(\right)$ eigenvectors = 1.0000 -0.5445 0.1434 -0.31620 0.3190 -0.4896 0.6325 $\left(\right)$ 0 0.4511 0.6924 0.0000 \cap ()0.3190 -0.4896 -0.6325 1.0000 -0.5445 0.1434 0.3162

States 0 and 4 are *absorbing states*.

States, 1, 2 and 3, are *transient states*.