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Chap. 2 – Discrete Event Systems

Chap. 3 – Stochastic Models
Stochastic Timed Automata (STA)
Stochastic Queueing Networks (SQN)
Stochastic Petri Nets (SPN)
Generalized Stochastic Petri Nets (GSPN)

Chap. 4 – Stochastic Analysis
Markov chain (MC) modelling

Chap. 5 – Supervision of DESs

Syllabus:
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Markov Chains

[Luenberger'79] "Introduction to dynamic systems: theory, models, and applications", 
David G. Luenberger, Vol. 1. New York: Wiley, 1979.

[Zurawski’94] "Petri nets and industrial applications: A tutorial." R. Zurawski, M. Zhou. 
IEEE Trans. on Industrial Electronics 41.6 (1994): 567-583. 
https://www.researchgate.net/publication/3217035

[Cassandras’08] Introduction to discrete event systems, Christos Cassandras and Stéphane
Lafortune, Springer 2008 – chapter 6, section 6.4.
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Cloudy

Sunny Rainy

Markov Chain (MC), example 1 [Luenberger’79]

The weather chain

In this example, on a sunny day, chances are 50% it continues sunny 
or 50% changes to cloudy (not rainy).

P always sums 1 at every row, is always a right-stochastic matrix.

curr
state

next state

Transition probabilities

P
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Markov Chain, example 1 [Luenberger’79]

The weather chain

If one starts at a sunny day, � 0 � = [1 0 0], what are the chances 
of sunny / cloudy / rainy after 1, 2, … days?

� =
0.5 0.5 0
0.5 0.25 0.25
0 0.5 0.5 x 1 � = � 0 �� = 0.5 0.5 0

x 2 � = � 1 �� = � 0 ��� = 0.5 0.375 0.125

curr
state

next state

Transition probabilities
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State Holding Times

Initial state � 0 � = [1 0 0]
transition matrix

� =
0.5 0.5 0
0.5 0.25 0.25
0 0.5 0.5

What are the chances of 
sunny / cloudy / rainy after 
1, 2, … days?

x0T = [1.000 0.000 0.000]
x1T = [0.500 0.500 0.000]
x2T = [0.500 0.375 0.125]
x3T = [0.438 0.406 0.156]
x4T = [0.422 0.398 0.180]
x5T = [0.410 0.400 0.189]
x6T = [0.405 0.400 0.195]
x7T = [0.403 0.400 0.197]
x8T = [0.401 0.400 0.199]
x9T = [0.401 0.400 0.199]

x10T = [0.400 0.400 0.200]
x11T = [0.400 0.400 0.200]
x12T = [0.400 0.400 0.200]
x13T = [0.400 0.400 0.200]
x14T = [0.400 0.400 0.200]
x15T = [0.400 0.400 0.200]
x16T = [0.400 0.400 0.200]
x17T = [0.400 0.400 0.200]
x18T = [0.400 0.400 0.200]
x19T = [0.400 0.400 0.200]

x20T = [0.400 0.400 0.200]

x0T= [1 0 0];
P = [.5 .5 0; .5 .25 .25; 0 .5 .5];
for n= 0:20

fprintf('x%dT = [%.3f %.3f %.3f]\n', ...
n, x0T*P^n);

end
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Positive Linear System [Luenberger’79]

A discrete-time linear system � � + 1 = ��(�) is defined to be 
positive (or nonnegative) if the elements of A are all nonnegative.

Terminology:
(i) A is strictly positive if all its elements are strictly greater than zero
(ii) A is positive or strictly nonnegative if all elements of A are nonnegative but 

at least one element IS nonzero, and 
(iii) A is nonnegative if all elements are nonnegative. 

[Luenberger'79] "Introduction to dynamic systems: theory, models, and 
applications", David G. Luenberger, Vol. 1. New York: Wiley, 1979.



Page 8

IST / DEEC / MAPI Chap. 4 – Stochastic Models

Note: in the following instead of writing
 � � + 1 = � �(�)

it is going to be written the equation transposed, as it is common in 
Markov chains

 �� � + 1 = �� �  �
hence   � = �� .
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Proof starts at the Frobenius-Perron theorem and the fact that the dominant 
eigenvalue is �� = 1.

Theorem 4 (Basic Limit Theorem for Markov Chains) [Luenberger’79]

Let � be the transition matrix of a regular Markov chain. Then:

(a) There is a unique probability vector �� > 0 such that

�� � = ��

(b) For any initial state i (corresponding to an initial probability vector equal 

to the ith coordinate vector ��
�) the limit vector

�� = lim
�→�

��
� ��

exists and is independent of i. Furthermore, �� is equal to the eigenvector ��.

(c) lim
�→�

�� = ��,  where �� is the � × � matrix, each of whose rows is equal to �� .
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Markov Chain, example 1 [Luenberger’79]

The weather chain

What are the probabilities of the states after an infinite running time?

curr
state

next
state

� =
0.5 0.5 0
0.5 0.25 0.25
0 0.5 0.5

p_inf= eigenvectors(:,2)'/sum(eigenvectors(:,2))
p_inf =

0.4000    0.4000    0.2000

P= [.5 .5 0; .5 .25 .25; 0 .5 .5];
[A,B]= eig( P' ); eigenvalues= diag(B)', eigenvectors= A

eigenvalues =
-0.2500    1.0000    0.5000

eigenvectors =
-0.5345   -0.6667   -0.7071
0.8018   -0.6667   -0.0000

-0.2673   -0.3333    0.7071

P= [0.5 0.5  0
0.5 0.25 0.25
0   0.5  0.5 ];

P2= P*P

P2 =
0.5000    0.3750    0.1250
0.3750    0.4375    0.1875
0.2500    0.3750    0.3750

Good news �� > 0 for � = 2 > 0
we can use Theorem 2.
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Markov Chain, example to do by hand
Two states MC syms a b

[V,E]= eig( [1-a b; a 1-b] )

V = 
[ b/a, -1]
[   1,  1]

E = 
[ 1,         0]
[ 0, 1 - b - a]
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Homework, 7-state MC

Simplified Monopoly [Luenberger’79] Toss a coin, face1 move 1 step, face2 mode 
2 steps. Stepping into Go to jail implies 
going to Jail.

Homework: Simulate the simplified Monopoly 
as an SPN. Find the most visited place. Find 
the place that provides the maximum profit.
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Stochastic Timed Petri nets (STPN),
Markov Chains (MC)

STPN to MC, and MC to STPN
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Petri net

World
actuation

input

Given the dynamics

� � + 1 = � � + � �(�) and   
�� � � ≤ �(�)

� � has a statistical characterization

STPN to MC

p1

p2 p3

t1

t2

A= (1, 0, 0)

B= (0, 1, 1)

A

B

�

1 − �

�

1 − �

1. STPN (example) 2. Reachability 
graph

3. Markov chain

� �� = �
� �� = �
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Example of an STPN (continued), steady state computation using an MC

Statistical information
about transition firing:

� �� = �� = 0.982591
� �� = �� = 0.122824
� �� = �� = 0.098259
� �� = �� = 0.089308
� �� = �� = 0.714460

Reachability graph / Markov chain:

Petri net:

Markov chain matrix:

� =

1 − �� �� 0 0
0 1 − �� − �� �� ��

�� 0 1 − �� 0
0 �� 0 1 − ��

curr
state

next state
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Example of an STPN (continued), steady state computation using an MC

Reachability graph / Markov chain:

� =

1 − �� �� 0 0
0 1 − �� − �� �� ��

�� 0 1 − �� 0
0 �� 0 1 − ��

P =
0.0174    0.9826         0         0

0    0.7879    0.1228    0.0893
0.0983         0    0.9017         0

0    0.7145         0    0.2855

P*P*P =
0.0119    0.6864    0.2060    0.0957
0.0206    0.6197    0.2712    0.0885
0.0815    0.1648    0.7451    0.0086
0.0086    0.7081    0.1733    0.1100

Good news �� > 0 for � = 3 > 0
we can use Theorem 2.

[eigenvectors, B]= eig(P'); evalues=diag(B)', 
eigenvectors

evalues =
1.0000    0.7842    0.0467    0.1617

eigenvectors =
0.0776   -0.0915    0.4088    0.0905
0.6209    0.6832   -0.8472   -0.8006
0.7762   -0.7141    0.1217    0.1329
0.0776    0.1224    0.3167    0.5772

p_inf= eigenvectors(:,1)'/sum(eigenvectors(:,1))
p_inf =

0.05    0.40    0.50    0.05
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MC to STPN

A

B

�

1 − �

�

1 − �
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Transient Analysis and Classification of States
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What happens if there does NOT exist � > 0 such that �� > 0 ?

- Some states of the MC will not have a stationary probability in 
]0, 1], those states will have 0 stationary probability

- In other words, as � → ∞ some states will not be visited after 
some time.

- Those states will have transitory visits, will be transitory states, 
within the operation time.

Transient Analysis and Classification of States
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Markov Chain, example 2 [Luenberger’79]

Learning model

Not learnt
(yet to learn)

Learnt
(will not forget)

Specific example � = 0.5 :

P =
1.0000         0
0.5000    0.5000

P^2 =
1.0000         0
0.7500    0.2500

P^3 =
1.0000         0
0.8750    0.1250

P^10 =
1.0000         0
0.9990    0.0010

P^20 =
1.0000         0
1.0000    0.0000

Always finding zeros in ��
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Markov Chain, example 2 [Luenberger’79]

Learning model

Not learnt
(yet to learn)

Learnt
(will not forget)

Continuing the specific example � = 0.5 :

P=[1 0; .5 .5]

[eigenvectors,B]= eig( P' ); 
evalues=diag(B)', eigenvectors

evalues =
1.0000    0.5000

eigenvectors =
1.0000   -0.7071

0    0.7071

One concludes:

- state L, the learnt state, is an absorbing state
- state N, the yet to learn state, is a transient state
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Markov Chain, example 3 [Luenberger’79]

Gambler’s ruin - Two players have 2 coins each one. Player A has probability � of
winning one coin from player B. Thus, player B has probability � = 1 − � of being him
to win a coin from A. (In the following is used � = � = 0.5 .)

P=[1 0 0 0 0; q 0 p 0 0; 0 q 0 p 0; 0 0 q 0 p; 0 0 0 0 1]

P^2 =
1.0000         0         0         0         0
0.5000    0.2500         0    0.2500         0
0.2500         0    0.5000         0    0.2500

0    0.2500         0    0.2500    0.5000
0         0         0         0    1.0000

P^100 =
1.0000         0         0         0         0
0.7500    0.0000         0    0.0000    0.2500
0.5000         0    0.0000         0    0.5000
0.2500    0.0000         0    0.0000    0.7500

0         0         0         0    1.0000

Always finding zeros in ��
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Markov Chain, example 3 [Luenberger’79]

Gambler’s ruin

States 0 and 4 are 
absorbing states.

States, 1, 2 and 3, are 
transient states.

[eigenvectors,B]= eig( P' ); evalues=diag(B)', eigenvectors

evalues =

1.0000    1.0000    0.7071   -0.7071         0

eigenvectors =

1.0000         0   -0.5445    0.1434   -0.3162
0         0    0.3190   -0.4896    0.6325
0         0    0.4511    0.6924    0.0000
0         0    0.3190   -0.4896   -0.6325
0    1.0000   -0.5445    0.1434    0.3162
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Classification of States

Gambler’s ruin

States 0 and 4 are 
absorbing states.

[eigenvectors,B]= eig( P' ); evalues=diag(B)', eigenvectors

evalues =

1.0000    1.0000    0.7071   -0.7071         0

eigenvectors =

1.0000         0   -0.5445    0.1434   -0.3162
0         0    0.3190   -0.4896    0.6325
0         0    0.4511    0.6924    0.0000
0         0    0.3190   -0.4896   -0.6325
0    1.0000   -0.5445    0.1434    0.3162

States, 1, 2 and 3, are 
transient states.


