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Syllabus:

Chap. 2 — Discrete Event Systems

Chap. 3 — Stochastic Models
Stochastic Timed Automata (STA)
Stochastic Queueing Networks (SQN)
Stochastic Petri Nets (SPN)
Generalized Stochastic Petr1 Nets (GSPN)

Chap. 4 — Stochastic Analysis

Chap. 5 — Supervision of DESs
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Petri net

|—o§20—+

——

World

actuation

Petri nets interacting with the
world: how to study the
interaction along time?

Al: Test the real system. There
are many options. But may be
impossible / undesirable, e.g. due
to time, costs, security, ...

A2: Study while designing. Given the dynamics
u(k +1) = pu(k) + D q(k) and D~ q(k) < u(k)
characterize statistically the firing vector q(k).
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Test the real system - May not be possible or not desired, e.g. in case of
having security concerns or simply being in a too early system design
stage. Otherwise, possible, and applied, 1n many real-world cases:

Interpreted Petri Nets (IPN) [Adamski00] _ Classic Petri net complemented with
(1) input and output alphabets (sets) which are (i1) mapped to transitions and places.

Input Output Place Transition Petri Net (IOPT) CGomesV7] — (Classic Petri net
complemented with communication channels and mappings of inputs and outputs
to/from transitions and places.

Interpreted Petri Net for Embedded Systems (IPNES) [Kzywicki2ll _ Classic Petri net
completed with modelling of distributed systems involving synchronization and data
exchange.

[Adamski'00] "From interpreted Petri net specification to reprogrammable logic controller design", M. Adamski & J. Monteiro, ISIE’2000 Vol. 1:
13-19, 2000

[Gomes'07] "The input-output place-transition petri net class and associated tools", L. Gomes et al., IEEE Int. Conf. on Industrial Informatics, Vol.
1: 509-514, 2007

[Krzywicki'21] "IPNES-Interpreted petri net for embedded systems", K. Krzywicki et al., Procedia Computer Science 192, 2021
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Study while designing - Given the dynamics u(k + 1) = u(k) + D q(k)
consider a statistical characterization of the firing vector q(k).

Stochastic Timed Automata (STA) [Cassandras’08]1 _ Timed aqutomata where the time
delays are modeled as random variables or probabilistic distributions.

Stochastic Timed Petri Net (STPN) [Zurawski®d] _ T.timed Petri nets, where the time
delays are modeled as random variables or probabilistic distributions.

[Cassandras’08] Introduction to discrete event systems, Christos Cassandras and Stéphane Lafortune, Springer
2008 — chapter 6, section 6.4.

[Zurawski’94] "Petri nets and industrial applications: A tutorial." R. Zurawski, M. Zhou. IEEE Trans. on
Industrial Electronics 41.6 (1994): 567-583. https://www.researchgate.net/publication/3217035

Page 5



IST / DEEC /| MAPI Chap. 3 — Stochastic Models

Stochastic Timed Automata
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Stochastic Timed Automaton (STA) [Cassandras’08]

Definition. A Stochastic Timed Automaton is a six-tuple
(57X:F7p7p07 G)

where

E is a countable event set

X is a countable state space
['(x) is a set of feasible or enabled events, defined for all x € X

with I'(x) C &
p(a’;x,€e’) is a state transition probability, defined for all x, 2" € X, e’ € £,
and such that p(z’;z,e¢’) =0 for all ¢’ ¢ I'(x)
po(x) is the pmf P[ Xy = z|, x € &, of the initial state X

and G = {G; : i € £} is a stochastic clock structure.

[Cassandras’08] Introduction to Discrete Event Systems, Christos Cassandras and Stéphane Lafortune,
Springer 2008 — chapter 6, section 6.4 “Stochastic Timed Automata”. Page 7
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Example of a Stochastic Timed Automaton (STA) [Cassandras’08]

(ngaFapap()aG) ﬁ

E=A{a,pB}, X ={0,1,2} (04
['0)=TQ2) ={ao,8}, I'(1)={a} -

p(1;0,a) =1, p(2;0,8) =1

p(2:1,a) = o

p(0;2,8) =1, p(1;2,a)=1 k\

V4 /3 ﬁ

_(;_ L,p=1 | Z2,p> . . .
1 ' e ) Where is the stochastic nature?
2 e 21 — evenits in . . .
| mean p = 0. Time and rate of events (next slide) ...

z ( ?I )M'\[ 0,pP=1

Recall also the definition of Petrinet C = (P, T, 1, 0O, up)

[Cassandras’08] “Introduction to Discrete Event Systems”, Christos Cassandras and Stéphane Lafortune,
Springer 2008 — section 6.5 “The Generalized Semi-Markov Process™. Page 8
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Events {a, B} have a stochastic nature, form a stochastic clock.
A generalized stochastic Markov process (GSMP) 1s generated
by an STA:

e1 = « eo =a e3 =/ €1 = «
| 0 Y 1 | Y 2 ¥ 0 Y
I T 1 1 T I
0.0 1.0 2.0 2|.5 3.0 4.0
| |
o You,0 ———t :
| |
— | |
B: Ys,0 : ? :
| |
ﬁ ot Ya,1 ):
I |
|
|

|
|
|
|
|
|
|
|
I
|
o a —Ya,2 h[
04 [ !
O 0mO L
13k | !
o |
* Notice B is |
B disabled at place 1. :
|
|
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Stochastic Queuing Networks
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Queueing system represented as a Petri net [Cassandras’08]

queue server

a) customer

. customer
arriv es—b 4O—> (161)8..1-1:'0

b) a) Simple queueing system
b) Petri net model, 1nitial
state (0, 1, 0)
c)

c) Petr1 net after firing

‘ C {a,s,a,a,c,s,a}

QO = #customers waiting
server busy
I = serveridle Page 11
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The A/B/m/K notation, Kendall’s notation

The A/B/m/K notation is a simple
representation of a queueing system

A = interarrival time distribution

B = service time distribution

m = number of servers, m = 1.2....

K = queue storage capacity, K=1,2,...

where distributions A and B:

G = General distribution

D = Deterministic 1.e. fixed interarrival /
service times

M = Markovian 1.e. interarrival / service
times exponentially distributed.

Examples:

M/M/1 = interarrival and service times
exponentially distributed, one server system,

infinite storage. 11— O—>

M/M/1/K = interarrival and service
times both exponentially distributed, one
server, storage equal to K < o,
—O0—

=

“ slefs

M/G/2 = interarrival times are exponentially
distributed, service times have an arbitrary
(general) distribution, two servers, infinite

storage. /CQ—"?
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Conversion of a queueing system to a Petr1 net

M/M/1

customer
arrives

—>

customer

: : departs

SCIrver

° idle
Lo

server
busy

F=O

M/M/m

m Servers

O

o)
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Conversion of a queueing system to a Petri net

M/M/1/K

X A1 —7k) - @ > (1 —mp)

ATK < --- K slots - - >

Lost customers

>
IS P e
\@/
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Closed queueing system serving N customers ( M/M/2//N )

S @

n customers

(N

— n) customers

— @
machine 1
busy

—

2ON
L_)kO&,

machine 2

busy Page 15
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Queueing system including a closed loop

SO

| e RS k machine 1 idle
i | —J}——? O- l
J— O/—) L9 . 4 machine 2 busy
I AT ] JF%Q—a O;\) /@a
i Oij machine 1 — —70-% l
R ) busy machine 3
busy

machine 4a bus

/ , (»@J
{ /

machzne 4b
busy

The Petri net shows the system can serve all incoming costumers. However, the number
of costumers in the system can also become unbounded.
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Stochastic Petri Nets
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Study while designing - Given the dynamics u(k + 1) = u(k) + D q(k)
consider a statistical characterization of the firing vector q(k).

Stochastic Timed Petri Net (STPN) — T-timed Petr1 nets, where the time delays are
modeled as random variables or probabilistic distributions.

Stochastic Petri Net (SPN) — STPN where the time delays are exponentially
distributed (time between events 1s a Poisson point process).

Generalized Stochastic Petri net (GSPN) — SPN models which allow immediate
transitions. I.e. some transitions are immediate and some other have delays modeled as
random variables.

[Zurawski’94] "Petri nets and industrial applications: A tutorial." R. Zurawski, M. Zhou. IEEE Trans. on
Industrial Electronics 41.6 (1994): 567-583. https://www.researchgate.net/publication/3217035
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Example of an STPN [Zurawski®94]
System setup :

Robot | Machine | Robot 2 Machine 2
varts M @ Final
-I ””mm”” Products

Conveyors &&

FD_—_D'llrI J—I] % | [n‘ n]

Fig. 17. A production linc consisting of two machines, two robots, and two
CONVCYETS.

[Zurawski’94] "Petri nets and industrial applications: A tutorial." R. Zurawski, M. Zhou. IEEE Trans. on
Industrial Electronics 41.6 (1994): 567-583. https://www.researchgate.net/publication/3217035
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Example of an STPN

Ml idle

Jobs in a system

Robot 2 Machine 2

@ Final

D Products
Coaveyors
AL AL [TTTTTTTTTTITHH T A,

Robot | Machine |

N

Slots in Conveyor available

Parts ready

P1 P

Break-down

-

S
Ml in prokD

Processing &
unloading

M1 in repair

Loading
processing
& unloading
at M2

[Zurawski’94] "Petri nets and industrial applications: A tutorial." R. Zurawski, M. Zhou. IEEE Trans. on

Industrial Electronics 41.6 (1994): 567-583
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Example of an STPN
pl Workpieces and pallets available
M1 idle Slots in Conveyor available p2 M1 processing a workpiece
Ps @ p3 Workpiece ready for processing at M2
_ t, \tz p4 M1 in repair
Jobs in a system M1 1n process Parts ready p5 Conveyor slots available
P I_I - P2 @
Loading /| P’L?tflf)f;’fg& Loading t1 Loading (R1 > M1)
— 3 processing t2 Processing and unloading (M1 > R1)

: & unioadin
Break-down Repair at M2 g
@ M1 in repair

t3 Loading, processing and unloading (R2, M2)

t4 M1 breaks down
t5 M1 is repaired

Reachability graph:

ey

1 M1=

2

Mp=(100012)T — (010002)T —M,=(001011)7

t41 Tts

My=(000102)7

Q: The graph shows operation cycles. Can we tell state holding times (steady state
statistics) given statistical information about the firing of transitions?
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Example of an STPN

M1 idle Slots in Conveyor available

Ps
. t @ ta
Jobs in a system M1 in process

P I_I - P2 I
Loadin Processing & :
VAT unloading Loading

| L processing

: & unioadin
Break-down Repair at M2 g
@ M1 in repair

Parts ready

®)

/'N[]— [2

Mg=(100012)" —» 010002)T —=M,=(001011)T

t41

1\»13.—.(000102)T

pl Workpieces and pallets available

p2 M1 processing a workpiece

p3 Workpiece ready for processing at M2
p4 M1 1n repair

pS Conveyor slots available

tl Loading (R1 > M)

t2 Processing and unloading (M1 > R1)

t3 Loading, processing and unloading (R2, M2)
t4 M1 breaks down

t5 M1 is repaired

Statistical information
about transition firing:

P(t,) = 0.982591
P(t,) = 0.122824
P(t;) = 0.098259
P(t,) = 0.089308

P(ts) = 0.714460 page 22
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Example of an STPN

M1 idle

Ps
. t @ ta
Jobs in a system M1 in process
b1 u I

~{ P2

Processing &

Loading unloading

Slots in Conveyor available

Loading
processing
& unioading

at M2

function gk=

Statistical information
about transition firing:

o\°

PN tfire(act, t)

Possible-to-fire transitions

% act: 1xN : PN outputs

 t : 1x1l : time
P(tl) — 0982591 % gk : Mx1 : possible firing vector
P(t,) = 0.122824 = 10.98251

.1 4

P(t3) = 0.098259 0.098259
P(t,) = 0.089308 0.089308
P(ts) = 0.714460 S Tasee s

gk= round( rand(5,1) < x );

function main test

% define the PN
D= [-1 0 +1 O O
+1 -1 0 -1 +1
O +1 -1 0 O
O 0 0 +1 -1
-1 +1 0 0 O
O -1 +1 0 O071;
Dp= D.*(D>0);

Dm= -D.* (D<0) ;
MO= [1 O 0 O 1 2]°';

% simulate the PN
ti_tf= [0 50];
[~, M, ~]= PN sim( Dm, MO,

Dp, ti tf );

% show stats places 1:4

fr= sum( M(:,1:4), 1 );

fr= fr / sum(fr);
fprintf (1, '"freg= ');
fprintf (1, '%.2f ', fr);
fprintf (1, '\n');

% outpu

$ freg=]0.05 0.40 0.50 0.05

Can we compute freq without
running the simulation?



