Modeling and Automation of Industrial Processes

MEEC / MEGE 2022/2023
1st Exam, $28^{\text {th }}$ June 2023

[^0]
-- Part 1 --

The first part of this exam is resolved in Moodle https://moodle.deec.tecnico.ulisboa.pt. The questions in Moodle have automatic evaluation. Do not deliver paper resolution to the questions of this part.

-- Part 2 --

The second part of this exam should be resolved in detail and justified. Deliver your resolution on sheets of paper to the questions in this part.

P2.1 [Square wave] The code provided in this question allows generating a square wave based on a sequence of pulses. Various wave forms are available depending on your student number written in variable \%MDO. Consider the code shown below is the single code run by a PLC in a MAST section configured as cyclic.
a) Assume that the assignments denoted by the symbol ":=" are the single instructions consuming time, and that each one takes about 0.2 msec . The PLC input and output take 1 msec +1 msec . Note some scan cycles are faster than others. Compute the minimum scan cycle period and the maximum scan cycle period.
b) Given the program, indicate the possible values of \%MD2. Can we replace \%MD2 by \%MD1, in all places of the program, without effecting the results in \%MD4?

```
```

(* sequence of 1sec pulses *)

```
```

(* sequence of 1sec pulses *)
TP_0(IN:=NOT (%m0), PT:=t\#1s, Q=>%m0);
TP_0(IN:=NOT (%m0), PT:=t\#1s, Q=>%m0);
(* output value on %MD190 *)
(* output value on %MD190 *)
if RE (%m0) then
if RE (%m0) then
if %MD2=0 then
if %MD2=0 then
%MD2:=1;
%MD2:=1;
elsif GE(%MD2,100000) then
elsif GE(%MD2,100000) then
(* found %MD2 >= 100000 *)
(* found %MD2 >= 100000 *)
%MD2:=1;
%MD2:=1;
else
else
%MD2:=10*%MD2;
%MD2:=10*%MD2;
end if;
end if;
%MD4:= MOD(%MD0/%MD2, 10);
%MD4:= MOD(%MD0/%MD2, 10);
%MD190:= %MD4 +48 +256*32;
%MD190:= %MD4 +48 +256*32;
end_if;

```
```

end_if;

```
```

c) Write additional Structured Text code so that at the first scan cycle, and just in that scan cycle, the memory variable \%MDO is set with your student number (5 or 6 digits).
d) Consider that \%MD0 contains your student number. Assume \%MD4 is zero at $\mathbf{t = 0}$ (as usual in PLCs after boot). Plot the values of $\%$ MD4 from $\mathbf{t}=\mathbf{0}$ to $\mathbf{t}=\mathbf{1 2}$ seconds, according to the program running. Say one possible application for the value stored in \%MD190. Note: the division of a double integer is rounded to a double integer.

P2.2 [Petri net properties] This problem focus on the discrete event systems analysis tools studied in the course. Consider the Petri net shown in the next figure.
a) Discuss the boudedness, safeness and coverability properties resorting to a reachability tree. Discuss the liveness of each transition.
b) Using the method of matrix equations, classify the Petri net about its conservation.

P2.3 [Supervision] Consider a Petri net $C=\left(P, T, D^{+}, D^{-}, \mu_{0}\right)$ where D^{+}and D^{-}denote pre and post incidence matrices, μ_{0} is the initial state and

$$
\begin{gathered}
P=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\} \\
T=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}
\end{gathered} \quad D^{+}=\left[\begin{array}{cc}
\overrightarrow{0} & 1 \\
I_{N-1} & \overrightarrow{0}
\end{array}\right] \quad D^{-}=I_{N} \quad \begin{aligned}
& N \text { is a natural number, } N \geq 3 \\
& I_{N} \text { is a } N \times N \text { identity matrix }
\end{aligned}
$$

a) Let $\mu_{0}=\left[\begin{array}{lllll}1 & 1 & 0 & \cdots & 0\end{array}\right]^{T}$. Compute a supervisor, $\left(D_{c}, \mu_{c_{0}}\right)$ based in place invariants, that makes the net safe.
b) Ignore the supervisor designed in (a). Consider $N=5$, $\mu_{0}=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]^{T}, L=\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$, $b=[1], R_{1}=\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array} 0\right], R_{2}=[1]$. The linear constraint $L \mu_{p} \leq b$ implies safeness of any place(s)? Let $L_{a}=R_{1}+R_{2} L$ and $b_{a}=R_{2}(b+1)-1$, prove that the solutions $\mu_{p} \in \mathbb{N}_{0}^{5}$ of $L_{a} \mu_{p} \leq b_{a}$ are also valid solutions for $L \mu_{p} \leq b$. Propose a supervisor respecting $L_{a} \mu_{p} \leq b_{a}$. Check the transitions involved in the supervisor. Suggest a supervisor respecting $L \mu_{p} \leq b$ and that t_{3} is unobservable.

P2.4 [Stochastic PN and Markov chains] Consider a Petri net $C=\left(P, T, A, w, \mu_{0}\right)$ where $P=\left\{p_{A}, p_{B}\right\}, T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ and $\mu_{0}=(2,0)$.
There are 8 arcs all with unit weight:

$$
A=\left\{\left(p_{A}, t_{1}\right),\left(t_{1}, p_{B}\right),\left(p_{A}, t_{2}\right),\left(t_{2}, p_{A}\right),\left(p_{B}, t_{3}\right),\left(t_{3}, p_{A}\right),\left(p_{B}, t_{4}\right),\left(t_{4}, p_{B}\right)\right\}
$$

a) Draw the Petri net. Indicate the reachable set of the Petri net.
b) Consider now the transition firing probabilities $\operatorname{Prob}\left(t_{1}\right)=\alpha, \operatorname{Prob}\left(t_{2}\right)=1-\alpha, \operatorname{Prob}\left(t_{3}\right)=\beta$ and $\operatorname{Prob}\left(t_{4}\right)=1-\beta$. Let $P_{20}=\operatorname{Prob}(\mu=(2,0))$ denote a steady state probability, i.e. state holding time. If $\alpha=1 / 4$ and $\beta=1 / 2$ then what is the value P_{20} ?
c) Consider again $\alpha=1 / 4$ and $\beta=1 / 2$, and, in addition, the total number of firings of t_{1}, t_{2}, t_{3} and t_{4} is 2800 . Indicate the expected number of firings of transition t_{1}.

[^0]: Read all questions of the exam carefully before starting to answer.

 - Provide detailed justifications to all answers.
 - \quad The use of bibliographic material, either in paper or in digital format is allowed.
 - Exchange of information with others is forbidden (e.g. voice, WiFi, Bluetooth, GPRS, WAP, ...).
 - Exam duration: 2 hours.

